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A randomized space S(n) touring machine is machine that uses space S(n) on inputs of length n, has two
non-deterministic choices at any step of computation depending on an unbiased coin-flip. In words, the
machine has a read-only input tape, one work tape of size S(n) and a one way output tape. The machine
is said to be halting if for any input and any sequence of coin-flips the computation terminates. We write
BPL for the class of languages L for which there is halting randomized log(n) space machines such that for
each input x ∈ L the machine accepts with probability at least 2/3 and for x /∈ L the machine rejects with
probability at least 2/3.

Given such a machine, we may visualize computation on an input x as a state transition graph on a directed
graph G as follows: The vertex set of the graph is the set of configurations in the computation, namely the
instantaneous content of the work-tape, the head’s position on the input and the state of the finite state
machine. Each vertex has two outgoing edges labelled by either 0 or 1. There is a directed edge from a
vertex u to v with label b iff starting at configuration u the computation goes to v if the coin flip of this
step is b. The graph also has two states ACCEPT and REJECT. Since the configuration is guaranteed
to halt, the graph is acyclic (except for the halting configurations). So, any computation must halt in at
most the number of vertices of this graph. So, to prove that BPL is equal to L it is enough to show that,
assuming such a graph exists, we can deterministically compute the probability of start to ACCEPT within
1/4-additive error in O(log n) space.

Say graph G has m = poly(n) vertices. The simplest such algorithm simply computes Pm(start, ACCEPT )
using logm matrix multiplication and uses O(log2 m) = O(log2 n) space. This was improved by Saks and

Zhao to O(log3/2 n) using Nisan’s pseudorandom generator in 1995. It remains a big open problem, and

perhaps the easiest open problem in complexity theory to improve the log3/2 n to log n.

A landmark result in this area is by Reingold [Rei08] who showed that if the graph G is undirected then
one can deterministically test whether there is a path from Start to Accept in space O(log n). Building on
[Rei08], [RTV06] designed a deterministic log-space algorithm that given an Eulerian directed graph, i.e., a
graph that each vertex has an outdegree equal to its indegree, and two vertices s and t, finds a path between
s, t if one exists.

The point is Eulerian directed graphs inherit several properties of undirected. For example, it was show in
[BPS16] that, similar to undirected graphs, for Eulerian digraphs, the mixing time is O(mn), where m is the
number of edges and n is the number of vertices. Such a fact fail miserably for non-Eulerian directed graphs
as the mixing time can be exponentially large in the number of vertices.

Reingold, Trevisan and Vadhan [RTV06] proved the following problems is also complete for the class BPL.
Given a graph G with N vertices, an integer k given in unary and s, t with a promise that one of the following
is true:

Yes Instances: The (simple) random walk on G has a stationary distribution π with π(s),π(t) ≥ 1/k and
the walk on G mixes in O(k logN).

No Instances: There is no path from s to t in G.
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In these lectures we will present a recent work of Ahmadinejad, Kelner, Murtagh, Peebles, Sidford and
Vadhan [AKMPSV20] who proved the following statement:

Theorem 15.1. There is a deterministic, O(log(kN) log log(kN/ε))-space algorithm that given an Eulerian
digraph G, two vertices s, t, and a positive integer k, outputs the probability that a k-step random walk in
G started at s ends at t, to within additive error of ε, where N is the length of the input.

The proof builds on the recent work of Cohen, Kelner, Kyng, Peebles, Peng, Rao and Sidford [CKKPPRS18]
who extended Laplacian solvers machinery of Spielman and Teng [ST14] to Eulerian directed graphs. Namely,
they showed that many questions related to random walks such as escape time, hitting time, etc can be solved
in near linear time if the underlying directed graph is Eulerian or if it has a polynomial mixing. The work
[AKMPSV20] managed to combine ideas from [CKKPPRS18] with classical works of [Rei08] to get the
above theorem. However, a big open problem is that if the above theorem can be extended to the setting
of directed graphs with polynomial mixing. The tantalizing questions is whether one can extend ideas from
[CKKPPRS18] to the setting of small space algorithms.

15.1 Spectral Approximation of Directed Matrices

Adjacency Matrix of Digraphs The adjacency matrix of a directed graph G on n vertices is the matrix
A ∈ Rn×n where Au,v is the number of edges from vertex u to vertex v in G. Let the degree matrix D be
the diagonal matrix containing the out-degrees of the vertices in G. The simple random walk matrix on G
is defined as P = D−1A, namely, for any function f :∈ RV ,

Pf(u) = E(u,v)|uf(v).

We write I − P for the corresponding (normalized) Laplacian matrix.

Proof Plan: We first sketch the proof strategy of [AKMPSV20]: First we will find a rough approximation
of P k in small space. We use that to get a rough approximation of (I − P )† (pseudo-inverse of Laplacian).
Then, we use a technique called Richardson iteration to get a very good approximation of (I − P )†. Finally
we carry over that to approximate entries of P k. As we will see the majority of new ideas is just for the first
step.

Since we are looking for approximating high powers of random walk matrix, P , it is fundamental to look for
notions of matrix approximations which are robust under taking powers: More specifically, say we (spectrally)

approximate the Laplacian matrix I−P with I− !P . Under what circumstances can we say that I− !P k is also
a good approximation I − P k for (all or some) large integer k with the same quality of approximation? We
address several notions of spectral approximation and we see that only the last one, called circular spectral
approximation satisfies this property.

Definition 15.2. For symmetric matrices W,"W ∈ RV×V we say "W is an ε-approximation of W , "W ≈e εW
for short, if for all x ∈ RV ,

(1− ε)x⊤(I −W )x ≤ x⊤(I − "W )x ≤ (1 + ε)xT (I −W )x

or equivalently,
|x⊤(W − "W )x| ≤ εx⊤(I −W )x = ε · (‖x‖2 − x⊤Wx)

Unless otherwise specified, we assume ε < 1. Furthermore, for the above definition to have a solution we
need x⊤Wx ≤ ‖x‖ for all x ∈ Rn, i.e., that λmax(W ) ≤ 1. This notion is perhaps the most well-known
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notion of spectral approximation. It was originally proposed by Spielman and Teng in their construction of
spectral sparsifiers [ST11].

The above definition naturally extends to directed matrices as follows:

Definition 15.3 (Directed Spectral Approximation). For (possibly asymmetric) matrices W,"W ∈ Rn×n we

say "W ≈ε W if ∀x, y ∈ Rn:

|x⊤(W − "W )y| ≤ ε

2
· (x⊤(I −W )x+ y⊤(I −W )y|

=
ε

2
· (‖x‖2 + ‖y‖2 − x⊤Wx− y⊤Wy)

=
ε

2
· (‖x‖2 + ‖y‖2 − x⊤UWx− y⊤UW y).

where UW = W+W∗

2

Note that it is crucial to use two different vectors x, y for asymmetric matrices. In particular if x = y, then
x⊤Wx = x⊤W⊤x, so without loss of generality we can assume W is symmetric.

The reason we use the same notation for (directed) spectral approximation when the underlying matrix is
symmetric is that the above two definitions are equivalent for symmetric matrices.

Lemma 15.4. For (possibly asymmetric) matrices W,"W ∈ Rn×n, "W ≈ε W iff

• ker(UW ) ⊆ ker("W −W ) ∩ ker(("W −W )⊤).

•
###U†/2

W ("W −W )U
†/2
W

### ≤ ε.

where for a matrix M ∈ Rn×n we write ‖M‖ to denote the spectral norm of M , i.e., its largest singular

value, namely ‖M‖ = maxx∈Rn
‖Mx‖
‖x‖ .

Before we move forward let us explain a weakness of the above definitions: Suppose W =
$
a
%
and say

"W =
$
b
%
. Then, above definitions are equivalent to |a − b| ≤ ε(1 − a). Notice when a = 1 then we must

have b = 1; however if a = −1 then it is enough to have b = −1 + ε. It is not hard to see that in such a case
indeed 1 − b2 = 1 − (−1 + ε)2 = 2ε − ε2 is only a 2ε approximation of 1 − a2 = 0. The situation becomes
worse as we look at 1− bk which only gives a kε approximation of 1− ak.

To put it in context, the spectral approximation defined above acts very poorly in bipartite graph. If W
correspond to a random walk matrix of a disconnected graph "W must have exactly the same connected
components. However, if W is bipartite "W does not have to be bipartite. This error becomes significant as
we look at high (even) powers of the RW in which case W 2k is periodic, namely it never jumps from one

side to the other whereas "W 2k is not necessarily periodic. So although we may have "W ≈ε W we can only
hope "W k ≈kε W .

Motivated by this, one can suggest that "W is a good approximation of W if, in addition, for every x ∈ Rn,
we have

x⊤(I +W )x ≤ x⊤(I + "W )x ≤ (1 + ε)x⊤(I +W )x.

It turns out that such an extension is enough for symmetric matrices. But when the matrix is not symmetric
we need more conditions:

Definition 15.5 (Unit-circle Spectral Approximation). Let W,"W ∈ Cn×n be possible asymmetric matrices.

We say "W is a unit-circle ε-approximation of W ("W ◦≈ε W ) if for all x, y ∈ Cn,

|x∗(W − "W )y| ≤ ε

2
· (‖x‖2 + ‖y‖2 − |x∗Wx+ y∗Wy|).
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To understand what we gain from this, suppose x = y is an eigenvector of W with eigenvalue λ where |λ| = 1.

Then, the RHS of the inequality is 0 so the LHS must also be 0, i.e., we must have x∗Wx = x∗"Wx.

Note that for the above definition to make sense we need that x∗Wx ≤ ‖x‖ for all x ∈ Cn. Such a condition
holds for example when W is a stochastic matrix, ‖W‖1 ≤ 1.

We leave the proof of the following lemma as an exercise.

Lemma 15.6. Let W,"W ∈ Cn×n be (possibly asymmetric) matrices. Then, the following are equivalent:

1. "W ◦≈ε W ,

2. For all z ∈ C with |z| = 1, z · "W ≈ε z ·W .

3. For all z ∈ C with |z| = 1,

• ker(UI−zW ) ⊆ ker("W −W ) ∩ ker(("W −W )⊤) and

•
###U†/2

I−zW ("W −W )U
†/2
I−zW

### ≤ ε.

We note that equivalent of 1 and 2 is kind of immediate from the above discussions. Basically the main
difficulty in unit-circle approximation is that the approximation should get tight as we get close to the unit
circle in the complex plain. Such a statement is obviously invariant under rotation. Another consequence of

the above lemma is that if "W ◦≈ε W then for any z ∈ C with |z| = 1 we have z · "W ◦≈ε z ·W .

To see equivalence to (3) one can use the following lemma with M = N = UI−zW = I − (zW + zW∗)/2:

Lemma 15.7. For all matrices A ∈ Cn×n and Hermitian PSD M,N ∈ Cn×n the following are equivalent:

1. For all x, y ∈ Cn,

|x∗Ay| ≤ ε

2
(x∗Mx+ y∗Ny)

2.
##M†/2AN†/2

## ≤ ε and ker(M) ⊆ ker(A∗) and ker(N) ⊆ ker(A).

15.2 Approximating Cycle-Lifted Graphs and Powers

We start with the following simple example:

Lemma 15.8. For all rational 0 < ε < 1 there exists regular digraphs with transition matrices "W,W such
that "W ≈ε W and −"W ≈ε −W but "W 4 ∕≈c W

4 for any finite c.

Proof. Let C4 be the transition matrix of a directed 4-cycle. Fix ε and define !C = (1 − ε/2)C4 + (ε/2)C⊤
4 ,

namely !C is the directed 4-cycle with an ε/2 probability of traversing backwards. We claim that !C ≈ε C4

and − !C ≈ε −C4 but !C4 does not approximate C4
4 .

We just argue the latter and leave the formers as exercises: The point is C4
4 has 4 connected components

(all of the vertices become isolated with self-loops) while !C4 has only two connected components. Therefore

eigenvalue of 1 have different multiplicites in C4
4 and !C4 and that implies that !C4 is not a unit-circle

approximation of C4.
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Definition 15.9 (Cycle-Shifted Graphs). Let Ck denote the transition probability matrix of the k-vertex
directed cycle. Given a graph G = (V,E) on n vertices with transition matrix P , the cycle lifted graph of
length k, Ck(G) is a layered graph with k layeres of n vertices each, where for every i ∈ [k] there is an
edge from vertex u in layer i to vertex v in layer i + 1 mod k iff (u, v) exits in G. To put it differenlty,
Ck(G) = Ck ⊗ P .

Theorem 15.10. Fix W,"W ∈ Cn×n. Then, Ck ⊗"W ≈ε Ck ⊗W iff for all z ∈ C such that zk = 1, we have
z · "W ≈ε z ·W .

We do not prove the above theorem; instead, let us give a little bit of intuition: First recall that eigenvalues
of Ck are the k-th roots of unity: In particular, let z ∈ C such that zk = 1 and define χz = [1, z, z2, . . . , zk−1].
Then, observe

Ckχz = z · χz.

In addition, for any two (square) matrices A,B it is well known that eigenvalues of A ⊗ B are exactly the
product of all pairs of eigenvalues of A,B, namely for an pair of eigenvalues λA,λB of A,B respectively,
λA · λB is an eigenvalue of A⊗B.

Corollary 15.11. If "W ◦≈ε W then for all integers k, Ck ⊗ "W ◦≈ε Ck ⊗W .

Proof. By Lemma 15.6 for any ω ∈ C with |ω| = 1 and z ∈ C : zk = 1 we have z · ω · "W ◦≈ε z · ω · W .

Therefore, by above theorem, Ck ⊗ ω · "W ≈ε Ck ⊗ ω · W . Finally, the statement follows by the fact that
Ck ⊗ ω · "W = ω · (Ck ⊗ "W ).

Having that, let us justify that for Ck ⊗ "W ≈ε Ck ⊗W a necessary condition is that z · "W ≈ε z ·W for all
k-th roots of unity z. This is because, as alluded to above, "W ≈ε W only enforces tight condition around
eigenvalues of W which are very close to 1. In particular, if W has an eigenvalues z for some z ∈ C that
is a k-th root of unity, "W may not have z as an eigenvalue. It suffices that "W has an eigenvalue z′ with
|z′ − z| ≤ ε. But then, z−1"W ∕≈ε z−1W . This is W has an eigenvalue of 1 but "W does not. Finally, since

z−1 is an eigenvalue of Ck, we get that Ck ⊗ "W ∕≈ε Ck ⊗W .

The following is the main theorem of this section:

Theorem 15.12. Let W,"W be transition probability matrices of graphs G, !G such that "W ◦≈ε W then for

all integers k ≥ 1, "W k ◦≈ε/(1−3ε/2) W
k.

To prove the above theorem we need to express the k-th power of a matrix in terms of the Schur complement
of its cycle-lifted graph of length k. First, we define the Schur complement.

Definition 15.13 (Schur Complement). For a matrix A ∈ Cn×n and sets S, T ⊆ [n], let AS,T denote the
sub-matrix corresponding to the rows in S and columns in T . If S, T partition [n] and AT,T is invertible,
then we denote the Schur complement of A onto the set S by

Sc(A,S) = AS,S −AS,TA
−1
T,TAT,S .

For our application consider the case that A = I − P is a (normalized) Laplacian matrix. Then,

IS − Sc(I − P, S) = PS,S − PS,S(I − PS,S)
−1PS,S = PS,S − PS,S

& ∞'

i=0

P i
S,S

(
PS,S
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Note that if I − PS,S is invertible, then
###PS,S

### < 1 so the sum in RHS is convergent. The RHS can be

seen as a shortcut graph: If when we jump out of S we shortcut the walk and jump back what would the
corresponding transition probability matrix only restricted to S.

The following lemma shows that if "W ≈ε W then so does any restriction of "W to a subset S.

Lemma 15.14. Let W,"W ∈ Cn×n such that "W ≈ε W for some ε < 2/3. Let T ⊆ [n] such that IT −WT,T

is invertible. Let S = [n]− T . Then,

IS − Sc(I − "W,S) ≈ε/(1−3ε/2) IS − Sc(I −W,S).

Proof of Theorem 15.12. Fix an arbitrary z ∈ C with |z| = 1. We need to show that z ·"W k ≈ε/(1−3ε/2) z ·W k.

Let ω ∈ C such that ωk = z. Since "W ◦≈ε W , we have ω·"W ◦≈ε ω·W . Let "M := Ck⊗ω·"W andM = Ck⊗ω·W .

Therefore, by Corollary 15.11, we have that "M ◦≈ε M . Note that M can be thought of as the transition
probability matrix of the cycle-lifted graph. Define S to be the set of vertices in the first layer of these
cycle-lifted graphs. Let S be the rest of the vertices. Then,

IS − Sc(I −M,S) = MS,S +MS,S(I −MS,S)
−1MS,S =

∞'

i=0

MS,SM
i
S,S

MS,S = (ωW )kS,S = (z ·W k)S,S .

This is simply because MS,S = 0 and terms inside the sum are non-zero only when i = k − 1. Similarly, we

have IS − Sc(I −M,S) = (z · "W k)S,S . Therefore, by Lemma 15.14 z · "W k ≈ε/(1−3ε/2) z ·W k. Since z was

arbitrary we get that "W k ◦≈ε W
k as desired.

15.3 Derandomized Squaring with respect to Circular Approxi-
maiton

Definition 15.15 (Two-way Labelling and Rotation Maps). Let G be a d-regular directed multigraph on n
vertices, namely every vertex has in-degree and out-degree d.

A two-way labeling of G is a labeling of the edges in G such that

1. Every edge (u, v) has two labels in [d], one as an out-edge of u and one as an in-comming edge of v,

2. All in-comming edges of every vertex v has distinct labels and so are the out-going edges.

The rotation map RotG : [n]× [d] → [n]× [d] is defined as follows: RotG(v, i) = (w, j) if the i-th edge leaving
vertex v leads to vertex w and this edge has label j as an in-comming edge of w.

The main non-trivial part of the de-randomized construction is the following definition of a derandomized
square of a graph. Namely, given a random walk P we want to construct a matrix !P that approximates P 2.

Definition 15.16 (Derandomized Square). Let G be a d-regular directed graph on n vertices with a two-way
labeling. Let H be a c-regular (undirected) graph with d vertices. The derandomized square GⓈH is a
c · d-regular graph on n vertices with rotation map RotGⓈH defined as follows: For a vertex v0 ∈ [n], i0 ∈ [d],
and j0 ∈ [c], we compute RotGⓈH(v0, (i0, j0)) as

1) Let (v1, i1) = RotG(v0, i0)
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2) Let (i2, j1) = RotH(i1, j0)

3) Let (v2, i3) = RotG(v1, i2)

4) Output (v2, (i3, j1))

In the application we think of c as a fixed constant whereas d can be (polynomially) large in n.

In the square of a directed graph, for each vertex v, there exists a complete, uni-directional bipartite graph
from the in-coming edges of v, to it’s out-going edges. This corresponds to a directed edge for every two-step
walk that has v in the middle of it. A useful way to view the derandomized square is that it replaces each of
these complete bipartite graphs with a uni-directional bipartite expander. The following is the main theorem
that we prove in this section.

Theorem 15.17. Let G be a d-regular directed multigraph with random walk matrix P . Let H be a c-regular
expander with λ(H) ≤ ε and let !P be the random walk matrix of GⓈH. Then

!P ◦≈2ε P
2.

Lemma 15.18. Let P ∈ Rn×n be the transition matrix of a regular (undirected) graph H with λ∗(H) ≤ ε,
where λ∗ = max{λ2, |λn|} is the second largest eigenvalue in absolute value. Let J be the n× n matrix with
1/n in every entry. Then we have )

0 0
P 0

*
◦≈ε

)
0 0
J 0

*

Proof. Let x, y ∈ C2n. Indeed we prove a stronger claim:

++++x
∗
)

0 0
P − J 0

*
y

++++ ≤
ε

2

,
‖x‖2 + ‖y‖2 − 2

++++x
∗
)
0 0
J 0

*
x+ y∗

)
0 0
J 0

*
y

++++

-

For a vector v ∈ C2n, write v1 for the first n coordinates of v and v2 for the last n coordinates. Then, it is
enough to show

|x∗
2(P − J)y1| ≤

ε

2
(‖x‖2 + ‖y‖2 − 2

n
|〈x1,1〉〈1, x2〉|−

2

n
|〈y1,1〉〈1, y2〉|)

Let αx = |〈x1,1/
√
n〉|,βx = |〈x2,1〉| and let x⊥ be the vector x projected onto the space orthogonal

to vectors span(1) on the first n coordinates and span(1) on the second n coordinates. It follows that

‖x‖ = α2
x +β2

x +
##x⊥

##2. Since α2
x +β2

x ≥ 2αxβx (and similarly for the y vector) the RHS is minimized when
αx = αy = βx = βy = 0. So without loss of generality we assume 〈x1,1〉 = 0 and 〈1, x2〉 = 0 (and so for y).
Then, it is enough to show

|x∗
2(P − J)y1| = |x∗

2Py1| ≤
Cauchy

‖x2‖ · ‖Wy1‖ ≤
λ∗(H)≤ε

ε ‖x2‖ ‖y1‖ ≤
AM-GM

ε

2
(‖x2‖2 + ‖y1‖2) ≤

ε

2
(‖x‖2 + ‖y‖2)

as desired.

Fact 15.19. Let G be a d-regular directed multigraph on n vertices with a two-way labeling and transition
matrix P . Let H be a c-regular undirected graph on d vertices with a two-way labeling and transition matrix
PH . Let J be the d× d matrix with 1/d in every entry and let !P be the transition matrix of GⓈH. Define
the 2d× 2d matrices

M =

)
0 0
J 0

*
, "M =

)
0 0
PH 0

*
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Furthermore, for each vertex u ∈ [n] define, 2d× n matrix T (u) as follow

T
(u)
i,v =

.
1 if i-th edge leaving u is to v

0 o.w.
∀i ∈ [d], v ∈ [n],

T
(u)
d+i,v =

.
1 if i-th edge entering u is from v

0 o.w.
∀i ∈ [d], v ∈ [n],

Then,

P 2 =
1

d

'

u

P (u), !P =
1

d

'

u

!P (u)

where P (u) := (T (u))⊤MT (u) and !P (u) := (T (u))⊤"MT (u).

We don’t go over the details but the main observation is that for any vertex u, P (u) is exactly the transition
matrix of the uni-directional bipartite complete graph from the in-neighbors of vertex u to its out-neighbors
in P 2 (with all vertices that are not neighbors of u isolated). Likewise !P (u) is the transition matrix of the uni-
directional bipartite expander from the in-neighbors of u to its out-neighbors in GⓈH (with non-neighbors
of u isolated). The factor 1

d comes from the fact that every vertex has out-degree d.

Proof of Theorem 15.17. First, by Lemma 15.18, we can write, "M ◦≈ε M . For arbitrary x, y ∈ Cn write
x̃ = (T (u))⊤x and ỹ = (T (u))⊤y

|x∗( !P (u) − P (u))y| = |x̃("M −M)ỹ|
≤

Lemma 15.18
(‖x̃‖2 + ‖ỹ‖2 − 2|x̃∗Mx̃+ ỹ∗Mỹ|)

=
/
x∗(T (u))⊤T (u)x+ y∗(T (u))T (u)y − 2|x∗P (u)x+ y∗P (u)y

0

Note that the above inequality follows from the proof of Lemma 15.18 (not the specific lemma’s statement).
Summing up both sides over all vertex u we have

'

u∈V

|x∗( !P (u) − P (u))y| ≤ ε

2

'

u∈V

/
x∗(T (u))⊤T (u)x+ y∗(T (u))T (u)y − 2|x∗P (u)x+ y∗P (u)y|

0

Now, by the triangle inequality, the LHS is at least d · |x∗( !P − P 2)y| and the RHS is at most

ε

2

&
x∗

'

u

(T (u))⊤T (u)x+ y∗
'

u

(T (u))⊤T (u)y − 2d · |x∗P 2x+ y∗P 2y|
(

Lastly, observe that '

u

(T (u))⊤T (u) = 2d · I.

The reason is that (T (u))⊤ has only one non-zero entry in every column, therefore (T (u))⊤T (u) has non-zero
entries only on its diagonal. In particular, it has the sum of the in-degree and out-degree of vertex u on the
diagonal. Since G is d-regular, the sum is 2d · I. Putting these together we get

d · |x∗( !P − P 2)y| ≤ 2d · ε
2

/
‖x‖2 + ‖y‖2 − |x∗P 2x+ y∗P 2y|

0

as desired.
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15.4 Approximating Inverse Laplacian

The following fact is immediate:

Fact 15.20. Let G0 be a regular directed graph on n vertices with a two-way labeling and let H1, . . . , Hk be
c-regular undirected graphs with two-way labelings where for each i ∈ [k], Hi has d · ci−1 vertices. For each
i ∈ [k] let Gi = Gi−1ⓈHi.

Then, given v ∈ [n], i0 ∈ [d · ci−1], j0 ∈ [c], RotGi(v, (i0, j0)) can be computed in space O(log(nd) + k · log c)
with oracle queries to RotH1 , . . . ,RotHk

.

Running this procedure, we will get a matrix !P which approximates P 2k . So, in particular, we can compute
any entry (s, t) of this matrix by counting the fraction RotGk

(s, (i0, j)) = t.

So, combining with statements in previous section, given transition probability matrix P of G, we can find

P1 such that P1
◦≈ε P

2 and consequntly P k
1

◦≈ε P
2k for all k. Then, we find P2

◦≈ε P
2
1 . Note that the unit

circle approximation is not transitive; so we do not immediately get, P2
◦≈ε P

4. The method given below is
a detour to improve the quality of approximation.

Let Pk be the transition probability matrix of a path of length k. First, they observe that for L = I−Pk⊗P
we have

L−1 =

1

223

I P P 2 P 3

0 I P P 2

0 0 I P
0 0 0 I.

4

556

So, in particular, if we can compute the inverse if I−Pk ⊗P exactly, then we can read off P k−1 from entries
of that matrix. Unfortunately, even if P is transition probability matrix of an Eulerian graph, Pk ⊗P is not
Eulerian. Because of that they compute the inverse of the Laplacian of a cycle lifted graph, Ck ⊗P and use
that to estimate entries of P k−1 by approximating escape probabilities of the random walks.

For a random walk matrix P , rather than directly approximation inverse of I − P , they approximate the
inverse of the Laplacian of the cycle lifted graph I2kn −C2k ⊗ P for k chosen larger than the mixing time of
P . The point is that pseudo-inverse of I−P can then be well-approximated by projection the pseudo-inverse
of I2kn − C2k ⊗ P . The approximate inverse of I2kn − C2k ⊗ P , they exploit techniques from recent works
on fast Laplacian solvers [CKKPPRS18]. The point is they compute a coarse approximation of the together
with a Cholesky decomposition. Say we have a matrix M ∈ Rn×n and let S, T be a partition of [n]. We can
write a LU factorization of M as follows:

M =

)
MT,T MT,S

MS,T MS,S

*
=

)
I 0

MS,TM
−1
T,T I

* )
MT,T 0
0 MS,S −MS,TM

−1
T,TMT,S

* )
I M−1

T,TMT,S

0 I

*

Recall that MS,S −MS,TM
−1
T,TMT,S = Sc(M,S) is the Schur complement of M with respect to S. Having

that it is straightforward to write the inverse of M :

M−1 =

)
I −M−1

T,TMT,S

0 I

* )
M−1

T,T 0

0 Sc(M,S)−1

* )
I 0

−MS,TM
−1
T,T I

*

In other words, we just need to (recursively) compute the inverse of MT,T and Sc(M,S).

Now, let us tailor this technique to our Laplacian matrix of a cycle shifted graph. Consider a cycle of length
2k, C2k and arrange its rows and columns inductively such that

C2k =

)
0 C2k−1

I2k−1 0

*
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Let S = {2k−1n+ 1, . . . , 2kn} be the second half of the coordinates and let T be the (interval) coordinates.
Observe that by above definition C2k alternates between S and T . It follows that

Sc(I2kn − C2k ⊗ P, S) = I2k−1n − C2k−1 ⊗ P 2

So, we can write,

L =

)
I2k−1n 0

−I2k−1 ⊗ P I2k−1n

* )
I2k−1n 0

0 I2k−1n − C2k−1 ⊗ P 2

* )
I2k−1n −C2k−1 ⊗ P

0 I2k−1n

*

Now, to invert the above matrix it is enough to compute the inverse of the I2k−1n−C2k−1⊗P 2. This is exactly
the Laplacian of the cycle-lifted graph with a cycle of length 2k−1 and transition probability matrix P 2. So,
we can approximate P 2 using the derandomized squaring. Furthermore, since unit circle approximation is
preserved under cycle lifts, we can well approximate C2k−1 ⊗P 2. Recursively, we compute the inverse of the
latter matrix. We just need to choose k big enough such that the random walk mixes by time 2k. In such a

case we case P 2k ≈ J so we can easily approximate (I − P 2k)−1.

Having a course approximation, finally, to boost the quality of approximation the use the following lemma:

Lemma 15.21. Given matrices A,B ∈ Rn×n such that ‖I −BA‖ ≤ α for some α > 0. Let Pm =7m
i=0(I −BA)iB. Then,

‖I − PmA‖ ≤ αm+1.

Proof. The proof simply follows from the fact that I − PMA = (I −BA)m+1.

To invoke the above lemma we let A be I2kn − C2k ⊗ P and B be our coarse approximation of it.
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