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Let U be a ground set of elements and n ≥ 1 be an integer. Given a weight function w :
(
U
n+1

)
→ R≥0 we

consider the following tasks:

• Sample a set S ∈
(
U
n+1

)
with probability proportional to w(S)

• Compute the “normalizing constant” of this distribution, namely
∑
S∈( U

n+1)
w(S).

It follows by a classic result of Jerrum, Valiant and Vazirani [JVV86] that the above two problems are
equivalent for most interesting probability distributions and more generally even the approximate versions
of these problems are equivalent.

So, here, we will mainly address the sampling problem. Broder [Bro86] in his influential paper proposed to

design a Markov chain with stationary distribution πn(S) := w(S)∑
T∈( U

n+1)
w(T ) and then bound the mixing time

of the chain. Recall that the L1 mixing time for a Markov chain with transition probability matrix P is

τ1,ε = max
S∈( U

n+1)
min

{
t :

∥∥∥∥P t(S, .)πn(.)
− 1

∥∥∥∥
1

≤ ε
}
,

where P t(S, .) is the distribution of the chain started at S after t steps. Here, we will study the following
Markov chain to sample from πn: Given a state S, first we delete a uniformly random element from S, say
i and we go to S − {i}. Then, from all the sets T that contain S − {i} we choose one with probability
proportional to πn(T ). In other words, consider a weighted bipartite graph G = (

(
U
n+1

)
,
(
U
n

)
, E) where a

set S ∈
(
U
n+1

)
is connected to T ∈

(
U
n

)
iff T ⊆ S and the weight of that edge is equal to πn(S)

n+1 . The
aforementioned chain is the same as running a simple random walk on this bipartite graph where from each
vertex we jump to a neighbor with probability proportional to the weight of the edge connecting to the
neighbor. Since the (weighted) degree of every vertex S ∈

(
U
n+1

)
is exactly πn(S), the stationary distribution

on the top vertices is exactly πn(.). See the following diagram for an example. This walk is known as
the down-up walk in the high-dimensional expander language [KM17], the Glauber dynamics in statistical
physics and basis exchange walk in the matroid language. For a concerete example, let G = (V,E) be a

S = {1, . . . , n}

πn(S)
n+1

S − 1

πn(S)
n+1

S − 2

(
U
n+1

)
(
U
n

) πn(S)
n+1

S − {n + 1}

Figure 11.1: An illustration of the Down-Up Walk

graph with n + 1 := |V | vertices that we want to uniformly randomly color with q colors. We define U to
be the set of all vertex-color pairs, (v, c), v ∈ V, c ∈ [q]. A set S ∈

(
U
n+1

)
is in support if πn if it corresponds

11-1
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to a valid proper color of G and πn is simply the uniform distribution over all such sets. In such a case the
down-up walk corresponds to first choosing a u.r. vertex of G, v; then “un-color” v. Finally, among all valid
colors we can assign to v, choose one u.a.r.

Classical Techniques: Classically there are two well-known methods to study mixing time of random
walks.

Canonical Path Method This method was proposed in the influential work of Jerrum and Sinclair [JS89].
The high-level idea is to construct a multi-commodity flow on the graph of the Markov chain between
each pair of states and then use the connection to the sparsest cut problem to bound the spectral gap
of the chain. This method is most famously used to sample a uniformly random perfect matching from
a bipartite graph [JSV04]. Unfortunatley, most applications of this method is limited to problems
related to matchings.

Path Coupling In this method, one would directly bound the mixing time by designing a “Markovian
coupling” between the distribution of the chain and the stationary distribution. This method is widely
used in theory but often it does not give the optimal result.

11.1 Spectral Independence and the Local to Global Theorem

Write P∨n to denote the transition probability matrix of the down-up walk we defined above. In these notes we
explain a new technique to analyze the mixing time of these family of walks called the spectral independence.

Definition 11.1 (Spectral Independence). Given a probability distribution πn on
(
U
n+1

)
, define a matrix

Ψ ∈ RU×U where for any i 6= j ∈ U ,

Ψπn(i, j) = PS∼πn [j ∈ S|i ∈ S]− PS∼πn [j ∈ S] .

If i = j we simply let Ψπn(i, i) = −P [i ∈ S]. We say πn is η-spectrally independent if λmax(Ψπn) ≤ η. We say
πn is η∗-spectrally independent if for any sequence i1, . . . , in−1 ∈ U , (πn), (πn|i1), (πn|i1, i2), . . . , (πn|i1, . . . , in−1)
are η-spectrally independent.

Independent Case. For example, suppose πn is a product distribution. In that case for any i, j ∈ U ,
P [j|i] = P [j]. Therefore, all off-diagonal entries of Ψπn are zero; since the diagonal entries are non-positive,
πn is 0-spectrally independent.

Negatively Correlated Case. For another example, suppose πn is a negatively correlated distribution,
namely for any i, j ∈ U , P [j|i] ≤ P [j]. One simple upper-bound on λmax(Ψ) is maxi

∑
j |Ψ(i, j)|. In our

example, all off-diagonal entries of Ψπn are non-positive; therefore (using the homogeneity of πn),

|Pi|+
∑
j 6=i

|P [j|i]− P [j] | =
∑
j 6=i

P [j]− P [j|i] + |P [i] | = 2(1− P [i]) = 1

So, πn is 1-spectrally independent.

Positively Correlated Case. For a bad example, suppose there are only two sets in the support of πn;
namely πn({1, . . . , n + 1}) = πn({n + 2, . . . , 2n + 2} = 1/2. In this case the distribution is very positively
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correlated (and in fact the down-up walk explained before is not even connected). It follows that Ψπn =

1
2

(
Jn+1 −Jn+1

−Jn+1 Jn+1

)
. So, πn is n+ 1-spectrally independent.

The following “local-to-global” theorem follows from a long line of works in theory of high dimensional
expanders and extensions to the field of analysis of random walks:

Theorem 11.2 ([AL20; DK17; KO20; ALO21a]). If πn is η∗ spectrally independent then the down-up walk
P∨n has spectral gap at least 1

O(n1+η) and thus it mixes in polynomial time, assuming η ≤ O(1).

In other words, the above theorem shows that even if πn is positively correlated, but the positive correlations
are “limited” then still the simple down-up walk mixes rapidly.

11.2 Background on Simplicial Complexes

Similar to lectures on locally testable code, we use X to denote a simplical complex. We use X(0) to denote,
vertices, or faces of dimension 0; X(1) to denote edges. In our case we let X contain all subsets S in the
support of πn and all of their subsets. Note that, by definition, X is a simplicial complex if it is downward
closed, namely for any S ∈ X, and T ⊆ S we have T ∈ X.

For a face σ ∈ X, we write dim(σ) = |σ| − 1 to denote the dimension of σ and we write dim(X) :=
maxσ∈X dim(σ). So, if X is defined based on πn as above, it will be an n-dimensional complex.

We equip this complex with a probability distribution over its maximal faces (namely sets in the support of
πn. So, we use πn to denote the distribution over X(n). Now, we can naturally extend this distribution to
πi for any 0 ≤ i < n. Say we have defined πi, to define πi−1 we choose τ ∼ πi randomly and we delete a
uniformly random element of τ . So, for any σ ∈ X(i− 1) we have

πi−1(σ) =
∑

τ∈X(i):σ⊆τ

πi(τ)

i+ 1

This is a natural extension of the π1 to π0 definition we had in the first lecture. Similarly, we can go from
πi−1 to πi as follows: First we sample σ ∼ πi−1 then we sample τ ∼ πi|σ. Pictorially, these two conditionals
is the same as moving down/up in the bipartite graph illustrated in Figure 11.1.

Links. For the complex X and a face σ define the link Xσ as the local view of σ:

Xσ = {τ : σ ∩ τ = ∅, σ ∪ τ ∈ X}.

In the special case that X is a 1-dimensional complex, namely a graph G, for any vertex v ∈ X(0), Xv is the
set of neighbors of v in G. For another example, see the use of links in the construction of locally testable
codes.

Observe that for any σ ∈ X, Xσ is also a simplicial complex. Furthermore, given a distribution πn (on top
faces of X) it natural extends to a distribution on top faces of Xσ. Say, Xσ is k-dimensional; then for any
τ ∈ Xσ(k) we have

πσ,k(τ) :=
πn(τ ∪ σ)∑

τ ′∈Xσ(k) πn(τ ′ ∪ σ)
= PX∼πn [X = σ ∪ τ |σ ⊂ X] .

Given πσ,k naturally, we extend this to distributions πσ,i for all 0 ≤ i < k.
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For a concrete example, suppose π2({1, 3, 4}) = 1/2, π2({1, 2, 4}) = 1/4 and π2({2, 3, 4} = 1/4. Then,

X1 = {{3, 4}, {2, 4}, {2}, {3}, {4}}.

So it has dimension 1. Then, π{1},1({3, 4}) = 2/3 and π{1},1({2, 4}) = 1/3. So,

π{1},0(4) = 1/2, π{1},0(2) = π{1},0(2) = 1/4.

Inner Products Having defined πi’s, we define an inner-product, i.e., a Hilbert space, for functions on
RX(i). Namely, for f, g ∈ RX(i), define

〈f, g〉πi = Eσ∼πif(σ)g(σ).

For any σ ∈ Xτ , define
fτ (σ) = f(τ ∪ σ)

to denote the restriction of a function to Xτ . The following fact is fundamental to our analysis:

Fact 11.3 (Garland’s Method). For any two functions f, g ∈ RX(i), and k < i,

〈f, g〉πi = Eσ∼πif(σ)g(σ) = Eτ∼πkEσ∼πi|τf(σ)g(σ)

= Eτ∼πkEσ∼πτ,i−k−1
f(σ ∪ τ)g(σ∪τ ) = Eτ∼πk〈fτ , gτ 〉πτ,i−k−1

.

Down and Up Operators. We define P ↓i→i−1 as follow: For f ∈ RX(i) and any σ ∈ X(i− 1),

P ↓i→i−1f(σ) = Ei∼πσ,0f(σ + i).

It turns out that the up-operator P ↑i−1→i is the adjoint of P ↓i→i−1 with respect to these inner products:

Namely for any f ∈ RX(i), g ∈ RX(i−1),

〈P ↓i→i−1f, g〉πi−1
= 〈f, P ↑i−1→ig〉πi .

More formally, the up-operator is defined as follows: For any f ∈ RX(i−1) and σ ∈ X(i) we have

P ↑i−1→if(σ) =
∑
i∈σ

f(σ − i)
|σ + 1|

.

If we think of these operators as a matrix, (so we allow for left multiplication), then we can write

πi−1 = πTi P
↑
i−1→i and πi = πTi−1P

↓
i→i−1.

11.3 Proof of the Local to Global Theorem

Recall that for a function f ∈ RX(n),

Varπn(f) = Eσ∼πnf(σ)2 − (Ef)2.

Having this, let f (n) ∈ RX(n); to prove the claim it is enough to show that

Var(P∨f (n)) ≤ (1− ε) Var(f (n))



Lecture 11: Approximate Sampling and High Dimensional Complexes 11-5

for some ε ≥ 1
O(n1+η . Let

f (n−1) = P ↓n→n−1f
(n)

And, similarly, we write f (i) for every i ≤ n− 1 where f (i) = P ↓i+1→if
(i+1).

To upper bound variance of P∨f (n) it is enough to show that

Var(P∨f (n)) = Var(P ↑n−1→nP
↓
n→n−1f

(n)) = Var(P ↑n−1→nf
(n−1)) ≤ Varπn−1(f (n−1))≤

?
(1− ε) Varπn(f (n)).

(11.1)
To see the first inequality notice that for any f ∈ RX(n−1),

Varπn(P ↑n−1→nf) =
∥∥∥P ↑n−1→nf

∥∥∥2

πn
− 〈P ↑n−1→nf,1〉πn ≤ ‖f‖

2
πn−1

− 〈f,1〉πn = Varπn(f).

where we leave it an exercise to prove the inequality.

The main tool that we used in the proof of inequality (11.1) is the following version of the law of total
variance.

Lemma 11.4 (Law of Total Variance). For any 1 ≤ i ≤ n− 1, and f i ∈ RX(i), we have

Varπi(f
(i)) = Varπi−1

(f (i−1)) + Eτ∼πi−1
Varπτ,0(f (i)

τ )

Proof. By Garland’s method Fact 11.3, we can write,

Varπi(f
(i)) = Eσ∼πif (i)(σ)2 − (Ef (i))2

= Eτ∼πi−1
〈f (i)
τ , f (i)

τ 〉 − Eτ∼πi−1

(
Eπτ,0f (i)

τ

)2

+ Eτ∼πi−1

(
Eπτ,0f (i)

τ

)2

−
(
Ef (i)

)2

= Eτ∼πi−1 Var(f (i)
τ ) + Eτ∼πi−1f

(i−1)(τ)2 − (Ef (i−1))2

as desired.

The following lemma is the second important tool of the proof.

Lemma 11.5. Let f (k+2) ∈ RX(k+2). For every τ ∈ X(k), If πτ is η-spectrally independent, then we have

Varπτ,0(f (k+1)
τ ) ≤

(
1 +

2η

n− |τ |

)
Ei∼πτ,0 Var(f

(k+2)
τ+i ).

Proof. We prove the lemma for the special case that τ = ∅, and it naturally generalizes to all τ ’s. Construct
a weighted (complete) graph G with vertices U such that for any i, j ∈ U , w({i, j}) = PS∼πn [i, j ∈ S]. Let
P be transition probability operator of this walk and notice that its at stationarity i has probability∑

j P [i, j]∑
k∈U

∑
j P [k, j]

=
nP [i]∑
k∈U nP [k]

=
P [i]

n+ 1

Call this stationary vector µ, i.e., µ(i) = P[i]
n+1 . The observation is that

Ψπn = n(P − n+ 1

n
1Tµ).

Since λmax(Ψπn) ≤ η we have that λ2(P ) ≤ η/n.
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Therefore, ∥∥∥f (0)
∥∥∥2

π0

=
∥∥∥P ↓1→0f

(1)
∥∥∥2

π0

= 〈P∨1 f (1), f (1)〉π1 ≤ λ2(P∨1 )
∥∥∥f (1)

∥∥∥2

= λ2(P∧0 )
∥∥∥f (1)

∥∥∥2

= (1 + λ2(P ))/2
∥∥∥f (1)

∥∥∥2

≤ η/n+ 1

2

∥∥∥f (1)
∥∥∥2

.

The second to last equality uses that non-zero eigenvalues of P∧1 = P ↓1→0P
↑
0→1 are the same as the non-zero

eigenvalues of P∨1 = P ↓1→0P
↑
0→1. The last equality uses that P0∧ is simply a (half)-lazy version of P . This is

because from a vertex i we choose an edge {i, j} proportional to its weight and we delete one endpoint, so
with probability 1/2 we stay at i. So, by the law of total variance we get

Var(f (0)) ≤ η/n+ 1

2
Var(f (1)) =

η/n+ 1

2

(
Var(f (0)) + Ei∼π0 Var(f

(1)
i )
)
≤ .

Switching around we get

Var(f (0)) ≤ 1 + η/n

1− η/n
Ei∼π0 Var(f

(1)
i ) ≈ (1 + 2η/n)Ei∼π0 Var(f

(1)
i )

as desired.

First, using repeated application of Lemma 11.5, for any k ≤ n− 1 we have

Eτ∼πk Varπτ,0(f (k+1)
τ ) ≤

(
1 +

2η

n− (k + 1)

)
Eτ∼πk+1

Varπτ,0(f (k+2)
τ ) ≤ . . .

≤
n−2∏
i=k

(
1 +

2η

n− i+ 1

)
︸ ︷︷ ︸

≈n2η

Eτ∼πn−1 Varπτ,0(f (n)
τ )

On the other hand, using repeated applications of the law of total variance we can write,

Var(f (n−1)) =

n−2∑
j=0

Eτ∼πj Varπτ,0(f (j+1)
τ ) ≤

∑
j

n2η

︸ ︷︷ ︸
n2η+1

Eτ∼πn−1 Var(f (n)
τ ). (11.2)

So, to put it differently,
1

n2η+1
Var(f (n−1)) ≤ Eτ∼πn−1

Var(f (n)
τ )

Adding Var(f (n−1)) to both sides, by law of total variance, we get

(1 +
1

n2η+1
) Var(f (n−1)) ≤ Var(f (n))⇒ Var(f (n−1)) ≤ (1− 1

n2η+1
) Var(f (n−1))

This finishes the proof of (11.1) and Theorem 11.2.

Remarks Here are some remarks about this proof: The spectral independence technique have found nu-
merous applications in approximate counting and sampling since its introduction in [ALO21b]. It can be
seen as (perhaps) the strongest technique to bound the mixing time as it is shown that any approximate
counting/sampling algorithm based on the polynomial interpolation technique, correlation decay or path
coupling leads to a bound on the spectral independence of the natural Markov chain. One of the most
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important open problems in this regard is to relate the Canonical path method which is famously used by
Jerrum, Sinclair and Vigoda [JSV04] to sample perfect matchings in a bipartite graph to spectral indepen-
dence. Unfortunately, it can be seen that the chain on perfect and near perfect matchings defined in [JSV04]
is not spectrally independent when the underlying graph is a cycle. So, a fascinating question is to prove an
“average” variant of the above local to global theorem and use it to sampling matchings from bipartite or
general graphs.

Another active area of research is to obtain optimal (near linear) mixing time for the up-down chain. To
do that, one needs to study how the entropy of the distribution changes when running a down/up step (as
opposed to tracking down the Variance). See [CLV21; AJKPV21] and references therein.

11.4 Application of Local to Global Theorem to the Hardcore
Model

Building on the above theorem over the last couple of years it was shown that a number of well-known
probability distributions are indeed spectrally independent; this has lead to the resolution of several long
standing open problems.

The focus of these lectures is application to the hard-core model: Given a graph G = (V,E) with n+1 = |V |
vertices, define U = {{v, in}, {v, out} : v ∈ V }. For S ∈

(
U
n+1

)
, S is in the support of πn if for every

v ∈ V either v is in or out, i.e., exactly one of {v, in}, {v, out} are in S; furthermore, the in-vertices form an
independent set in G. In such a case, we define w(S) := λ#in vertices and we define

πn(S) :=
w(S)∑

T∈( U
n+1)

w(T )
.

This probability distribution is called the hardcore model. Originally it is rooted in statistical physics and it
used to model the arrangement of gas molecules. The activity parameter λ corresponds to an inverse of the
ambient temperature in the environment.

Having that the down-up walk will correspond to the following natural Glauber dynamics: Given an inde-
pendent set corresponding to S, choose a vertex v ∈ V uniformly at random and forget whether it is in or
out. If any of v’s neighbor are in, set it to out. Otherwise, set it in with probability λ/(1 + λ) and out
otherwise. The main goal of these lectures is to use the spectral independence technique to show that the
Glauber dynamics mixes rapidly up to the tree uniqueness threshold, λc(∆) ≈ e

∆ . The latter is a threshold
above which it is provably NP-hard to sample from the hardcore model in graphs of maximum degree ∆.

Theorem 11.6 ([ALO21b; CLV20; CLV21; AJKPV21]). If λ ≤ (1 − δ)λc(∆) then the Glauber dynamics
mixes in time nOδ,∆(1).

To use the spectral independence technique for the hardcore model, we need to show πn and all conditionals
of πn are η-spectrally independent (assuming λ < λc(∆)). First observe that any conditional of πn|{v, in}
or πn|{v, out} is another instance of the hard-core model: In particular, if we condition v to be in, then all
neighbors of v are out so we can delete v and all of its neighbors and study the spectral independence in
the resulting graph and similarly, if v is in, then we can simply delete it and study spectral independence
of the resulting graph. Furthermore, if we start with a graph of max-degree ∆, its maximum degree remain
at most ∆ after these deletions. So, this makes our job significantly easier: instead of bounding max-
eigenvalue of exponentially many matrices as suggested in Theorem 11.2 all we need to prove is to show that
λmax(Ψπn) ≤ Oδ(1) assuming λ ≤ (1− δ)λc(∆) where Oδ(1) hides constants depending on δ.
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Now, define a new matrix I ∈ RV×V , called the influence matrix, where

I(u, v) := IG(u→ v) := P [v|u]− P [v|u] .

Lemma 11.7. The non-zero eigenvalues of I are the same as the non-zero eigenvalues of Ψπn .

Proof. Define A,B ∈ RV×V where for any u 6= v,

A(u, v) = (P [v|u]− P [v])I [u 6= v] B(u, v) = (P [v|u]− P [v])I [u 6= v] ,

and we let A(u, u) = B(u, u) = −P [u]. Then, notice that

I = A−B

On the other hand, we claim that

Ψπn =

[
A −A
B −B

]
Here we are assuming that rows/columns of Ψn are arranged such that the first n+1 columns are for vertices
to be in and the next n+ 1 columns are for vertices to be out. Now notice that

Ψπn(u, v) = P [v|u]− P [v] = (1− P [v|u])− (1− P [v]) = −A(u, v).

Similarly,
Ψ(u, v) = P [v|u]− P [v] = B(u, v)

The rest can be checked similarly.

Now, we write the characteristic polynomial of Ψπn .

det(xI −Ψπn) = det

[
xI −A −A
B xI +B

]
= det((xI −A)(xI +B) +AB)

= det(x2I − xA+ xB)

= xn det(xI − (A−B)).

So, the A−B matrix has n extra zero eigenvalues.

Using the above lemma together with Theorem 11.2, to prove Theorem 11.6 it is enough to prove the following
theorem.

Theorem 11.8. If λ < (1− δ)λc(∆) then for any vertex r,∑
v 6=r

|I(r → v)| ≤ Oδ(1).

This will be our focus for the rest of these lectures. The proof will be mostly based on [CLV20].

11.5 Self-avoiding Walk Tree

The main fundamental step in proving Theorem 11.8 is to reduce the theorem from arbitrary graphs G (with
maximum degree ∆) to trees (with maximum degree ∆) in which we want to bound the maximum influence
of the root to the rest of the vertices. This builds on Weitz’s influential correlation decay technique [Wei06]
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We start by defining the self-avoiding walk trees. Given a connected graph G = (V,E) be a connected graph,
and a specific vertex r ∈ V , and a total ordering of the vertex set V , the self-avoiding walk (SAW) tree
rooted at r, TSAW (G, r) is defined as follows: It is a tree rooted at r of all paths starting at r in G except
that whenever a path closes a cycle, say r = v0, v1, . . . , vk, vi where 0 ≤ i ≤ k− 1, the copy (in the tree) of of
vi (in G) is fixed to be occupied if vi+1 < vk in the total order and un-occupied otherwise. See the following
picture for an example. So, observe that there are multiple copies of every vertex of G in the tree. For each
v ∈ V we denote the set of all unfixed copies of v in TSAW (G, r) by Cv.

r w

vu

r

u v w

w

r

v

r

For the sake of the proof we assume that every vertex v has a distinct activity parameter, λv. In that case,
all copies of v from Cv will have the same activity parameter λv in the SAW tree. As alluded to above, we
will show that for any vertex v 6= r, IG(r → v) =

∑
v̂∈Cv IT (r → v̂).

To establish that, the idea is to look the generating polynomial of the hardcore model as a multivariate
polynomial in terms of vertex activities {λv}v∈V and relate the generating polynomial of G to the generating
polynomial of T . Let λ = {λv}v∈V denote the vector of vertex activities. We define the partition function,

g(λ) =
∑

I independent set

∏
v∈I

λv

Theorem 11.9. Let G = (V,E) be a connected graph, r ∈ V be a vertex such that G is connected. Let
T = TSAW (G, r) be the self-avoiding walk tree of G rooted at r. Then, gG(λ) divides gT (λ). More precisely,
there exists a polynomial pG(r) = pG(r)(λ−r) such that

gT = gG · pG(r)

For a vertex u we write gG,u to denote the generating polynomial of all independent sets that contain u and
similarly we write gG,u to denote the polynomial that u is out. First, we use the above theorem to prove the
following lemma.

Lemma 11.10. For any vertex v 6= r, IG(r → v) =
∑
v̂∈Cv IT (r → v̂)

Proof. First, notice

λv∂λv log
gG,r(λ)

gG,r(λ)
=
gG,r(λ)

gG,r(λ)
· λv∂λv

gG,r(λ)

gG,r(λ)

=
gG,r,v(λ)gG,r(λ)− gG,r,v(λ) · gG,r(λ)

gG,r(λ) · gG,r(λ)

= P [v|r]− P [v|r] = IG(r → v). (11.3)

In other words, the above calculations follows by a simple fact that if g(z1, . . . , zn) is a generating polynomial
of a probability distribution over n items, then for any i, the marginal of i is exactly equal to zi∂zi log g.
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On the other hand, recall that for the SAW tree T , every free copy v̂ of v has the same activity λv̂ = λv.
So, by the above theorem,

λv∂λv log
gG,r(λ)

gG,r(λ)
= λv∂λv log

gT,r(λ)

gT,r(λ)
(Theorem 11.9)

=
∑
v̂∈Cv

λv̂∂λv̂ log
gT,r(λ)

gT,r(λ)
· ∂λv̂
∂λv

λv̂(λv) (Chain Rule)

=
∑
v̂∈Cv

IT (r → v̂)

This completes the proof of the lemma.

11.6 Reduction to Self Avoiding Walk Tree

In this section we prove Theorem 11.9. The proof is an inductive argument in which we condition on
additional vertices of the graph G to be in/out. Therefore, we will need a stronger inductive hypothesis. For
Λ ⊆ V and a partial configuration σΛ ∈ {0, 1}Λ, we define the SAW tree with conditioning σΛ by assigning
the configuring σv to every copy v̂ of v from Cv and removing all descendants of v̂ (from the tree), for each
v ∈ Λ. Recall that in general, different copies of v from Cv can receive different in/out assignments. We define
the generating polynomial gσΛ(.) to denote the generating polynomial of all independent sets consistent with
the status of the set Λ of vertices.

We inductively prove that, there is a polynomial pσΛ

G(r)(λ) (that is independent of λr such that

gσΛ

T,r = gσΛ

G,r · p
σΛ

G(r) and gσΛ

T,r = gσΛ

G,r · p
σΛ

G(r)

We induct on the number of edges with (at least) one endpoint in the set V \ Λ.

Suppose that the root r has d neighbors v1, . . . , vd in G. Define G′ to be the graph obtained by replacing the
vertex r with d vertices r1, . . . , rd and then connecting {ri, di} for 1 ≤ i ≤ d. For simplicity, we assume that
(G \ {r}) \ Λ is still connected. For each i, let Gi = G′ − ri. Consider the hardcore model on GσΛ

i together
with an additional conditioning that the vertices r1, . . . , ri−1 are fixed to be out while ri+1, . . . , rd are fixed
to be in; we denote this conditioning by σUi with Ui := {v1, . . . , vd} \ {vi}. Then, T = TSAW (G, r) can be
generated by the following recursive procedure.

Step 1) For each i, let Ti = TSAW (Gi, vi) plus the conditioning σUi ;

Step 2) Let T = TSAW (G, r) be the union of r and T1, . . . , Td by connecting {r, vi} for 1 ≤ i ≤ d; output T .

Observe that this algorithm exactly corresponds to the definition of the self-avoiding walk tree we gave in
the previous section.

For the purpose of the proof we set λri = 1 for all 1 ≤ i ≤ d instead of λr (this is basically how we will avoid
λr in as a parameter of pσΛ

G,r). Observe that by definition

gσΛ

G,r = λrg
σΛ

G′,r1,...,rd
gσΛ

G,r = gσΛ

G′,r1,...,rd
(11.4)

The main observation is that the graph Gi has one edge less than G, so by induction hypothesis, its generating
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polynomial divides the generating polynomial of a tree. Define Λi = Λ ∪ Ui. We write

gσΛ

T,r = λr

d∏
i=1

g
σΛi

Ti,vi
(recursion of a tree)

= λr

d∏
i=1

g
σΛi

Gi,vi
· pσΛi

Gi(vi)
(Induction Hypothesis)

= λr

d∏
i=1

gσΛ

G′,r1,...,ri−1,ri,...,rd
·
d∏
i=1

p
σΛi

Gi(vi)

= gσΛ

G,r

d∏
i=2

gσΛ

G′,r1,...,ri−1,ri,...,rd
·
d∏
i=1

p
σΛi

Gi(vi)
(by (11.4))

Similarly, we can write

gσΛ

T,r =

d∏
i=1

(g
σΛi

Ti,vi
+ g

σΛi

Ti,vi
) =

d∏
i=1

(g
σΛi

Gi,vi
· pσΛi

Gi(vi)
+ g

σΛi

Ti,vi
· pσΛi

Gi(vi)
)

=

d∏
i=1

gσΛ

G′,r1,...,ri,ri+1,...,rd
·
d∏
i=1

p
σΛi

Gi(vi)
= gσΛ

G,r

d−1∏
i=1

gσΛ

G′,r1,...,ri,ri+1,...,rd
·
d∏
i=1

p
σΛi

Gi(vi)

The inductive step simply follows by letting gσΛ

G(r) =
∏d
i=2 g

σΛ

G′,r1,...,ri,ri+1,...,rd
·
∏d
i=1 p

σΛi

Gi(vi)

This completes the proof of Theorem 11.9. Using Theorem 11.9 and Lemma 11.10 to prove Theorem 11.8 it
is enough to prove the following theorem:

Theorem 11.11. For any ∆-ary tree T rooted at a vertex r and any λ ≤ (1− δ)λc(∆), we have∑
v

I(r → v) ≤ Oδ(1).

11.7 Bounding Influences on a Tree

Given a tree T (where every vertex has at most ∆ − 1 many children (note that root can really have ∆
children but we ignore that for simplicity let Lr(k) be the number of vertices at distance k of the root.
[CLV20] proved that if the activity parameter λ ≤ (1− δ)λc(∆), then we have the following bound: For any
k ≥ 1, ∑

v∈Lr(k)

I(r → v) ≤ 4(1− δ/2)k−1

Summing this up for k = 1→∞, even if T has infinitely many vertices, we get∑
v

I(r → v) ≤ 8/δ.

Next, we will explain the main ideas to prove the above bound. First, for a vertex v ∈ T , let Tv be the

sub-tree of T rooted at v; thus Tr = T . Let Rv :=
gTv,v(λ)
gTv,v(λ) = P[v in]

P[v out] . Say a vertex u has d children v1, . . . , vd
in the tree; the tree recursion is a formula that computes Ru given Rv1 , . . . , Rvd due to the independence of
Tvi ’s. More specifically, there is a function Fd : [0,∞]d → [0,∞] such that

Ru = Fd(Rv1
, . . . , Rvd) := λ

d∏
i=1

1

Rvi + 1
.
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We leave it as an exercise to verify the above formula.

Recall that by equation (11.3), the influence of r to a vertex u is the derivative of logRr with respect to the
external field at u. So, it is natural to define an analogue of the Fd function for the log ratio quantity. More
specifically, let Hd := [−∞,+∞]d → [−∞,+∞] defined as follows:

logRu = Hd(logRv1
, . . . , logRvd) := log λ+

d∑
i=1

log
1

1 + elogRvi

To put it differently, Hd = log ◦Fd ◦ exp.

The following lemma’s are simple observations that we leave as an exercise. The first lemma follows from
the fact that we are analyzing influences in a tree.

Lemma 11.12. Suppose that u, v, w ∈ T are three distinct vertices such that u is on the unique path from
v to w. Then

I(v → w) = I(v → u) · I(u→ w)

For the second lemma we need another notation: For y ∈ [−∞,∞] define

h(y) := − ey

1 + ey
=

∂

∂y
Hd(y1, . . . , yi−1, y, yi+1, . . . , yd). (11.5)

It follows by (11.3) that

Lemma 11.13. For any vertex v ∈ T and andy child u of v we have

I(v → u) = h(logRu).

Having the above two lemmas we can simply write the influence of r to vertices in Lk(r) inductively. Now,

the main issue is that the straightforward recursion gives us terms of the form
∏k−1
i=0 h(logRui) for any path

r = u0, . . . , uk−1, uk. And, in principal we can have as many as (∆− 1)k many such paths. A direct upper
bound on such a product does not give a tight bound on the influence (that is independent of ∆) as we have
to multiply the upper-bound by (∆− 1)k.

The trick is to use a method called the potential method: Instead of tracking log ratios in the tree recursion
we apply a potential function Ψ and study how Ψ(logRu) evolves in the tree. We also let ψ := Ψ′ be the
derivative of the potential. More precisely define

HΨ
d := Ψ ◦Hd ◦Ψ−1.

We prove inductively that for any vertex u ∈ T ,∑
v∈Lu(k)

ψ(logRu)|I(u→ v)| ≤ max
v∈Lu(k)

{ψ(logRv)} · (1− α)k

where Lu(k) is the set of vertices at distance k of u and α is a parameter that we choose later. The base
case can be checked easily. Now, suppose the claim is checked for k − 1. Say u has d children w1, . . . , wd.
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We write,

∑
v∈Lu(k)

ψ(logRu)|I(u→ v) =

d∑
i=1

ψ(logRu)|I(u→ wi)|
∑

v∈Lwi (k−1)

|I(wi → v)| (Lemma 11.12)

=

d∑
i=1

ψ(logRu)

ψ(logRwi)
|h(logRwi)|

∑
v∈Lwi (k−1)

ψ(logRwi)I(wi → v)| (Lemma 11.13)

≤
d∑
i=1

ψ(logRu)

ψ(logRwi)
|h(logRwi)| max

v∈Lwi (k−1)
ψ(logRv) · (1− α)k−1 (IH)

≤ max
v∈Lu(k)

ψ(logRv)(1− α)k−1 ·
d∑
i=1

ψ(logRu)

ψ(logRwi)
|h(logRwi)|

Finally, the last observation is that the quantity in the sum is exactly
∥∥∇HΨ

d (Ψ(logRw1), . . . ,Ψ(logRwd))
∥∥+

1. So, the main property of the potential function is that for any y1, . . . , yd in the range of Ψ we have∥∥∇HΨ
d (y1, . . . , yd)

∥∥
1
≤ 1− α.

It turns out that this can be achieved for ψ(y) =
√
|h(y)| and Ψ defined accordingly and for α ≥ δ/2. In

particular, we can write

d∑
i=1

ψ(logRu)

ψ(logRwi)
|h(logRwi)| =

d∑
i=1

√
h(logRu)√
|h(logRwi)

|h(logRwi)|

=

d∑
i=1

√√√√√ λ
∏d
j=1

1
1+Rwj

1 + λ
∏d
j=1

1
1+Rwj

√
Rwi

1 +Rwi

We leave it as an exercise to bound the RHS by 1− δ/2 assuming λ ≤ (1− δ)λc(∆). Note that d ≤ ∆− 1.
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