Modern Spectral Graph Theory Winter 2022

Lecture 1: Random Walks
Lecturer: Shayan Oveis Gharan 01/04/22

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this note we study random walks and mixing time in weighted undirected non-regular graphs G. The
notation that we define here will be used later to study high dimensional random walks on simplicial com-
plexes.

Given an undirected (weighted) graph G = (V, E)) with weight function w : E — Rsq, let A € RLXY be the
adjacency matrix of G. B

Consider a natural probability distribution on edges of G where for any edge {u,v}

_ w{u,v})
Wl({uvv}) = Ze w(e) :

This distribution naturally induces a distribution on vertices; given a random edge e, we randomly drop one
of the endpoints of e:

mo(v) = Pr, [ Plofe] = > %m(e) _ Zu%gzvu(({;;,v}) _ Zdwd(zgu)'

ewee

Conversely, suppose we want to sample an edge e = {u,v} ~ m1. One way is to first sample a vertex v ~ mg
and then sample an edge e|v, i.e., among all edge incident to v choose one proportional to its weight.

P [{u, v}u}] := %

We claim this process chooses e with probability 7 (e), because,

Ple] = Pr, [v] P[e]v] + Pr, [u] P [e]u]

= Tro\V 77(1 (e) TolUu 77‘—1(6)

a 0( )Zf,\,vﬂ'l(f) N 0( )wauﬂ'l(f)

= Tio\V 710(6) TolUu 710(6)

=m0 w TS, )
=)y o g = T+ T =

Fact 1.1. Summarizing the above observations,

e To choose v ~ my, we can first choose e ~ mw, and then drop one endpoint.

e To choose e ~ 1, we can first choose v ~ wy and then choose e|v.
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1.1 Random Walk Operator
We can look at the simple random walk operator on G that says if I am at vertex u, I choose an edge incident
to u with probability proportional to its weight. Let

Plu— o] = P{u,o}|u}].

For a function f: V — R, we have

Pf(0) = Equuyo [f@)] =D Plv— u] f(u).

The following reversibility property will also be used crucially.

P(u, v)mo(u) = mo(u)P [{u, v}u] = m ({u, v})P[u{u, v}] = m ({u, v})P [v{u, v}] = P(v,u)mo(v)  (1.1)
We equip the linear space RV with the following inner product: For two vectors f,g:V — R,

(f.9) = Bonmo f(0)g(v) = Y mo(v) f(v)g(v).

This naturally defines a norm, where for any such function f, || f|| = +/(f, f)-

Using the above fact, it follows that P is self-adjoint with respect to the above inner product, i.e., for any
two f,g:V = R,

(f,Pg) = Eypmr, [f(v) Pg(v)]
= E’UNTFD [f(U)E{u,v}h} [g(u)]]
= E{u,v}wﬂlEv|{u,v}f(v)g(u) = ]E{U,U}NTHEv\{u,v}f(u)g(v>

Similarly, we can show that (Pf, g) is also equal to the RHS.

Fact 1.2. A\ =1 and \,, > —1.

Proof. First, observe that the all-ones function 1 is an eigenfunction,
P1=1.

Second, we show \; < 1 for all i. For any eigenfunction f : V — R, with eigenvalue A, i.e., Pf = Af, we
claim that A < 1. Say u = argmax,, |f(v)|. Then,

Af(uw) = Pf(u) = Eqyoyjuf(v) < Eguoyjul f(0)] < Equoyjulf(w)] = [f(w)].

In the second inequality we used |f(v)| < |f(u)] for all v € V. So, we have A < 1 as desired. Also, observe
from the same inequality that |A\| <1 as desired. O

Fact 1.3. The matriz P has n-real eigenvalues with n-orthonormal eigefunctions.
Proof. The proof is fairly general and holds for any self-adjoint matrix with respect to an inner-product.

First, Suppose Pf = A\f for f € C™ and A € C. And, recall for any function f, (f, f) = E,f(u)f(u) € R.
Then,

IPfI” = (Pf.Pf) = (P2f, f) = | f|”
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So, A2 € R.

On the other hand, suppose P has two eigenfunctions f,g € R™ with eigenvalues Ay < Ag; then,
(Arf.g) = (Pf.g) = (f,Pg) = ([, Xg9)-
Therefore, since Ay # Ay we must have (f, g) = 0. O

It follows by the spectral theorem that P has n = |V| eigenvalues Ay > --- > ), with corresponding
orthonormal eigenfunctions f1,..., f, such that for any 1 <1i < j <n,

<fl7f_]> =0,
and for any ¢, || f;|] = 1.

1.2 Mixing

Theorem 1.4. For a weighted graph with eigenvalues \y > --- > A, if max{| A2, | \n|} < 1, then for any
vertexr u,
lim P'f(u) = Ef.

t—o0

Letting f(v) = 1,, we have Ef = mo(v). So, the above theorem shows that as t — oo, the distribution of the
walk converges to my. In other words, 7y is the stationary distribution of the simple random walk on G.

The mixing time of a random walk is defined as
Tmax = min{ ¢ : |[Pt(u,.) — ooy = lz |P'1,(u) — mo(v)| < Yvuev (1.2)
) 2 - —_ 45

where Tix is the first time that the total variation distance of the distribution of the walk started at u, from
the stationary distribution is at most a constant.

For a function f: V — R define
1711, = (Bx )17,

More generally, we define the L, mixing time of the walk as

Pt(u,.
Tmix,p ‘= Min {t : H(u’ ) _ 1

s
p

1

Note that by Cauchy-Schwarz inequality

-1

ST 1P (u,v) - 7(0)] = Eal P, ) 7 — 1] < VL[ PP u, ) Jm — 1P = HP(W’

2

So, the Lo-mixing of a chain implies Ly mixing (but not vice versa). And similarly, for any p > 1, L, mixing
implies L1 mixing.

Theorem 1.5. Let G be a weighted graph with eigenvalues Ay > -+ > Ay, such that \* := max{|Az|, |\n|} <

1. For any € > 0, any function f € V - R and t > fig;*

[P f —Ef|| <ellfll.
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Proof. Let f1,..., fn be the orthonormal eigenfunctions of P with corresponding eigenvalues Ay > --- > \,.
Recall \; = 1 and f; = 1. Also note that P! have exactly the same eigenfunctions with eigenvalues A, ... \L.
Therefore, we can write f = Y .(f, fi) fi. First, by (77),

P'f—Ef=P' <Z<f, fi>fz-> —(f, 11
i=1

:Zkifi<f,fi>—<f,1>1: NAf, i) fi

i=1 =2

Therefore, using the orthonormality of f;’s,

|Ptf—Ef|* = <Z MINODIPHIE fj>>
i J
= NS
=2

< N£)17

where in the last inequality we used |\;| < A* for all ¢ > 1. By the above inequality, for ¢ > f‘ig;* we have

[P f(u) —Ef| < Xl = (1= Q=X ) IfI < e 0 f) = ell £l
where in the second inequality we used 1 —x < e™". O
Corollary 1.6. Suppose for any function f:V — R, e >0 and t > logs HPtf Ef|l < ellf]l then,

1 1

loge tm(u)~
Tmiz,1 <7 mix,2 < HIELX W

Note that in particular, if we want to bound the mixing time starting at a given vertex u, we don’t need the
max on the right hand side.

Proof. Fix a vertex u € V and let f :=1,/m(u). Then, Ef = 1.
[Pt =B = [lP's = @) = [P -

On the other hand,

IP'FI* = (P'f.P'f) = EuP' f(0) - P! f(0)
B E P'(v,u) P'(v,u)
Fw)20ywzu 0 m(u) 7(u)

(Pt(u,v))2

= EUNTI'Q

(1.1) 7(v)

Putting these together, |Ptf — Ef||” = HM - 1” Finally, since | f||> = Tr(u),

em(u) proves the claim. O

letting € of Theorem 1.5
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Theorem 1.5 allows us to estimate the probability of any event. Say A C V and we want to estimate 7 (A).
For f =14 we have Ef = mo(A) and (f, f) < mo(A) < 1. So, we can use P!f(u), for a vertex u € V, as an
estimate of Ef. By Cauchy-Scwharz inequality,

E,|P'f(v) —Ef| < /E.[P'f(u) —Ef]> = | P'f —Ef]|.

loge "1 !
So, for ¢ = eac _loamlu)

P~ Fl < — B JP'@)~F| < c|f]

0 (u) Theorem 1.5

Having this, we can simply estimate m(A) within an additive error of e (with probability 1 —4§) by averaging
k independent f(X;), where X, is the ¢-th state that the simple random walk started at u lands on. Here,
k= O(%logd) and ¢ is as defined above.
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