
Modern Spectral Graph Theory Winter 2022

Lecture 1: Random Walks
Lecturer: Shayan Oveis Gharan 01/04/22

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this note we study random walks and mixing time in weighted undirected non-regular graphs G. The
notation that we define here will be used later to study high dimensional random walks on simplicial com-
plexes.

Given an undirected (weighted) graph G = (V,E) with weight function w : E → R≥0, let A ∈ RV×V≥0 be the
adjacency matrix of G.

Consider a natural probability distribution on edges of G where for any edge {u, v}

π1({u, v}) =
w({u, v})∑

e w(e)
.

This distribution naturally induces a distribution on vertices; given a random edge e, we randomly drop one
of the endpoints of e:

π0(v) =
∑
e

Pπ1
[e]P [v|e] =

∑
e:v∈e

1

2
π1(e) =

∑
u∼v

1
2w({u, v})∑
e w(e)

=
dw(v)∑
u dw(u)

.

Conversely, suppose we want to sample an edge e = {u, v} ∼ π1. One way is to first sample a vertex v ∼ π0
and then sample an edge e|v, i.e., among all edge incident to v choose one proportional to its weight.

P [{u, v}|u}] :=
π1{u, v}∑
x∼u π1{u, x}

We claim this process chooses e with probability π1(e), because,

P [e] = Pπ0
[v]P [e|v] + Pπ0

[u]P [e|u]

= π0(v)
π1(e)∑
f∼v π1(f)

+ π0(u)
π1(e)∑
f∼u π1(f)

= π0(v)
w(e)∑
f∼v w(f)

+ π0(u)
w(e)∑
f∼u w(f)

= π0(v)
w(e)

dw(v)
+ π0(u)

w(e)

dw(u)
=
π(e)

2
+
π(e)

2
= π(e).

Fact 1.1. Summarizing the above observations,

• To choose v ∼ π0, we can first choose e ∼ π1 and then drop one endpoint.

• To choose e ∼ π1, we can first choose v ∼ π0 and then choose e|v.
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1.1 Random Walk Operator

We can look at the simple random walk operator on G that says if I am at vertex u, I choose an edge incident
to u with probability proportional to its weight. Let

P [u→ v] = P [{u, v}|u}] .

For a function f : V → R, we have

Pf(v) := E{u,v}|v [f(u)] =
∑
u

P [v → u] f(u).

The following reversibility property will also be used crucially.

P (u, v)π0(u) = π0(u)P [{u, v}|u] = π1({u, v})P [u|{u, v}] = π1({u, v})P [v|{u, v}] = P (v, u)π0(v) (1.1)

We equip the linear space RV with the following inner product: For two vectors f, g : V → R,

〈f, g〉 = Ev∼π0
f(v)g(v) =

∑
v

π0(v)f(v)g(v).

This naturally defines a norm, where for any such function f , ‖f‖ =
√
〈f, f〉.

Using the above fact, it follows that P is self-adjoint with respect to the above inner product, i.e., for any
two f, g : V → R,

〈f, Pg〉 = Ev∼π0
[f(v)Pg(v)]

= Ev∼π0

[
f(v)E{u,v}|v [g(u)]

]
= E{u,v}∼π1

Ev|{u,v}f(v)g(u) = E{u,v}∼π1
Ev|{u,v}f(u)g(v)

Similarly, we can show that 〈Pf, g〉 is also equal to the RHS.

Fact 1.2. λ1 = 1 and λn ≥ −1.

Proof. First, observe that the all-ones function 1 is an eigenfunction,

P1 = 1.

Second, we show λi ≤ 1 for all i. For any eigenfunction f : V → R, with eigenvalue λ, i.e., Pf = λf , we
claim that λ ≤ 1. Say u = argmaxv |f(v)|. Then,

λf(u) = Pf(u) = E{u,v}|uf(v) ≤ E{u,v}|u|f(v)| ≤ E{u,v}|u|f(u)| = |f(u)|.

In the second inequality we used |f(v)| ≤ |f(u)| for all v ∈ V . So, we have λ ≤ 1 as desired. Also, observe
from the same inequality that |λ| ≤ 1 as desired.

Fact 1.3. The matrix P has n-real eigenvalues with n-orthonormal eigefunctions.

Proof. The proof is fairly general and holds for any self-adjoint matrix with respect to an inner-product.
First, Suppose Pf = λf for f ∈ Cn and λ ∈ C. And, recall for any function f , 〈f, f〉 = Euf(u)f(u) ∈ R.
Then,

‖Pf‖2 = 〈Pf, Pf〉 = 〈P 2f, f〉 = λ2 ‖f‖2 .
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So, λ2 ∈ R.

On the other hand, suppose P has two eigenfunctions f, g ∈ Rn with eigenvalues λf ≤ λg; then,

〈λff, g〉 = 〈Pf, g〉 = 〈f, Pg〉 = 〈f, λgg〉.

Therefore, since λf 6= λg we must have 〈f, g〉 = 0.

It follows by the spectral theorem that P has n = |V | eigenvalues λ1 ≥ · · · ≥ λn with corresponding
orthonormal eigenfunctions f1, . . . , fn such that for any 1 ≤ i < j ≤ n,

〈fi, fj〉 = 0,

and for any i, ‖fi‖ = 1.

1.2 Mixing

Theorem 1.4. For a weighted graph with eigenvalues λ1 ≥ · · · ≥ λn, if max{|λ2|, |λn|} < 1, then for any
vertex u,

lim
t→∞

P tf(u) = Ef.

Letting f(v) = 1v, we have Ef = π0(v). So, the above theorem shows that as t→∞, the distribution of the
walk converges to π0. In other words, π0 is the stationary distribution of the simple random walk on G.

The mixing time of a random walk is defined as

τmax = min

{
t : ‖P t(u, .)− π0‖TV =

1

2

∑
v

|P t1v(u)− π0(v)| ≤ 1

4
,∀u ∈ V

}
(1.2)

where τmix is the first time that the total variation distance of the distribution of the walk started at u, from
the stationary distribution is at most a constant.

For a function f : V → R define
‖f‖p = (Eπfp)1/p.

More generally, we define the Lp mixing time of the walk as

τmix,p := min

{
t :

∥∥∥∥P t(u, .)π
− 1

∥∥∥∥
p

≤ 1

4
,∀u ∈ V

}

Note that by Cauchy-Schwarz inequality∑
v

|P t(u, v)− π(v)| = Eπ|P t(u, .)/π − 1| ≤
√
Eπ|P t(u, .)/π − 1|2 =

∥∥∥∥P t(u, .)π
− 1

∥∥∥∥
2

So, the L2-mixing of a chain implies L1 mixing (but not vice versa). And similarly, for any p > 1, Lp mixing
implies L1 mixing.

Theorem 1.5. Let G be a weighted graph with eigenvalues λ1 ≥ · · · ≥ λn, such that λ∗ := max{|λ2|, |λn|} <
1. For any ε > 0, any function f ∈ V → R and t ≥ log ε

1−λ∗∥∥P tf − Ef
∥∥ ≤ ε ‖f‖ .
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Proof. Let f1, . . . , fn be the orthonormal eigenfunctions of P with corresponding eigenvalues λ1 ≥ · · · ≥ λn.
Recall λ1 = 1 and f1 = 1. Also note that P t have exactly the same eigenfunctions with eigenvalues λt1, . . . , λ

t
n.

Therefore, we can write f =
∑
i〈f, fi〉fi. First, by (??),

P tf − Ef = P t

(
n∑
i=1

〈f, fi〉fi

)
− 〈f,1〉1

=

n∑
i=1

λtifi〈f, fi〉 − 〈f,1〉1 =

n∑
i=2

λti〈f, fi〉fi

Therefore, using the orthonormality of fi’s,

∥∥P tf − Ef
∥∥2 =

〈∑
i

λti〈f, fi〉,
∑
j

λti〈f, fj〉

〉

=

n∑
i=2

λ2ti 〈f, fi〉2

≤ λ∗2t ‖f‖2

where in the last inequality we used |λi| ≤ λ∗ for all i > 1. By the above inequality, for t ≥ log ε
1−λ∗ we have∥∥P tf(u)− Ef

∥∥ ≤ λ∗t ‖f‖ = (1− (1− λ∗))t ‖f‖ ≤ e−(1−λ
∗)t ‖f‖ = ε ‖f‖

where in the second inequality we used 1− x ≤ e−x.

Corollary 1.6. Suppose for any function f : V → R, ε > 0 and t ≥ log ε−1

1−λ∗ ‖P tf − Ef‖ ≤ ε ‖f‖ then,

τmix,1 ≤ τmix,2 ≤ max
u

log ε−1π(u)−1

1− λ∗

Note that in particular, if we want to bound the mixing time starting at a given vertex u, we don’t need the
max on the right hand side.

Proof. Fix a vertex u ∈ V and let f := 1u/π0(u). Then, Ef = 1.∥∥P tf − Ef
∥∥2 =

∥∥P tf − (Ef)1
∥∥ =

∥∥P tf∥∥2 − 1.

On the other hand, ∥∥P tf∥∥2 = 〈P tf, P tf〉 = EvP tf(v) · P tf(v)

=
f(w)6=0,∀w 6=u

Ev∼π0

P t(v, u)

π(u)
· P

t(v, u)

π(u)

=
(1.1)

Ev∼π0

(
P t(u, v)

π(v)

)2

Putting these together, ‖P tf − Ef‖2 =
∥∥∥P t(u,.)

π(.) − 1
∥∥∥2. Finally, since ‖f‖2 = 1

π(u) , letting ε of Theorem 1.5

επ(u) proves the claim.
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Theorem 1.5 allows us to estimate the probability of any event. Say A ⊆ V and we want to estimate π0(A).
For f = 1A we have Ef = π0(A) and 〈f, f〉 ≤ π0(A) < 1. So, we can use P tf(u), for a vertex u ∈ V , as an
estimate of Ef . By Cauchy-Scwharz inequality,

Ev|P tf(v)− Ef | ≤
√
Eu|P tf(u)− Ef |2 =

∥∥P tf − Ef
∥∥ .

So, for t = log ε−1 log π(u)−1

1−λ∗

|P tf(u)− F | ≤ 1

π0(u)
Ev|P t(v)− F | ≤

Theorem 1.5
ε ‖f‖

Having this, we can simply estimate π0(A) within an additive error of ε (with probability 1−δ) by averaging
k independent f(Xt), where Xt is the t-th state that the simple random walk started at u lands on. Here,
k = O( 1

ε2 log δ) and t is as defined above.
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