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1
Introduction to Proof Complexity

1.1 Origins and motivation

The study of proofs was essential to the birth of computer science, and the
desire to automate mathematics in a bug-free way led to its formal models
and early development. Since then, a focus on obtaining practical algo-
rithms for finding proofs has continued to be an important thread in the
development of the field. This has particularly risen to prominence in the
substantial practical advances in formal methods in the last two decades.

Proofs have played another important role in computer science in the
theory of NP and NP-completeness. In particular, Cook’s 1971 paper in-
troducing these notions is entitled “The Complexity of Theorem-Proving
Procedures" and was inspired in part by the work of Davis and Putnam on
the search for proofs, . Indeed, proofs are involved in the standard intuitive
characterization of NP: NP consists of all languages L that have “short,
easy-to-check, proofs of membership”; that is, we can verify in polynomial
time in |x | that x ∈ L, when given a short proof string y (where short means
polynomial in |x |).

Example 1.1. What does it mean to give a “proof” that a number such
as 1906001 is composite? The number itself contains all the information
required and we could simply run a factoring algorithm to check this fact.
On the other hand, writing 1906001=1009x1889 really is a proof that we
can easily check. The key property that makes the latter a proof is that we
can check it in polynomial time.

How does the NP notion of proof compare with the notions of proof
that we are familiar with from logic and discrete mathematics? There,
rather than the satisfiability problem that characterizes NP, one considers
problems of tautology or unsatisfiability, both coNP-complete problems. In
logic, proofs are objects like truth tables, or sequences of inferences accord-
ing to some formal system. More generally,

. What do we mean to say that something is a proof even when, like a truth
table, it is much longer than the thing being proved?
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In their foundational 1979 paper introducing the notions of proof complex-
ity, Cook and Reckhow pointed out that the right notion is that a string of
symbols is a proof precisely if it is possible to check it in time polynomial in
its length. A basic question for proof complexity roughly is the following:

. Given a true statement A, how long a proof do we need to prove A?

As stated, this question doesn’t quite make sense since proof strings them-
selves have no independent meaning without understanding how they will
be checked. Cook and Reckhow noted that the question needs to be studied
separately for each correct format for writing down proofs or proof system.
Therefore, the proper version of the basic question of proof complexity is:

. Given a true statement A and proof system S, how long is the shortest proof
in S that A is true?

Building on this basic question, some natural questions that Cook and Reck-
how raised were

. How do different proof systems compare with respect to proof length?

. Is there a proof system S that is efficient in that for any true statement A,
the length of the shortest proof in S that A is true is polynomial in the length
of A?

It is not hard to see that an efficient proof system would be an NP algorithm.
In particular, since for the set of propositional logic tautologies TAU T is
coNP-complete, efficient proof systems for TAU T exist if and only if NP=
coNP.

One can see, for example, that truth tables form a very inefficient proof
system. In this course we will study many other natural proof systems for
propositional logic, some because they have been important in practice, and
others because they have nice theoretical properties. Most of these systems
are organized around a framework of axioms and inference rules of the sort
that one finds in logic texts.

A key part of proof complexity is in producing lower bounds on the
lengths of proofs in various proof system. Here, one can view finding super-
polynomial proof length lower bounds for increasingly powerful proof sys-
tems as stepping stones towards proving that NP 6= coNP.

Though many proof complexity questions focus on nondeterministic al-
gorithms, proof complexity also analyzes methods for finding short proofs if
they exist. Since, for example, the statement A could be "This code is bug-
free" or "No solution to these constraints has value better than K", proof
complexity has applications to many areas of computer science, including
optimization and formal verification among others.

Proof complexity methods also give us tools to analyze the power and
limitations of entire classes of algorithms. For example:
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• Modern SAT solvers that are at the heart of much of current work in for-
mal methods in PL/SE can be understood in terms of resolution proofs.

• Semi-definite programming based on sum-of-squares proofs is the best
algorithm we know for solving large classes of optimization problems.
In this case, the mere existence of a short proof that there is a solution is
already enough to guarantee that there is a good algorithm to find that
solution.

From a practical point of view, large lower bounds on the sizes of proofs
yield lower bounds on the time to find them – just writing them down takes
a large amount of time. In particular, lower bounds for finding specific
kinds of proofs in proof systems that underlie practical solution methods
have influenced the directions for the use of these methods in practice, and
proof complexity methods are now part of practical developments in these
areas.

1.2 Proof complexity definitions

We give a definition of proof systems that is closely based on the definition
of NP.

Definition 1.2. A proof system for a language L is a polynomial-time (veri-
fier) algorithm V such that

x ∈ L⇔∃y. V (x , y).

The string y is a proof in proof system V that x ∈ L.

The only difference with NP is that there is no bound on |y| as a function
of |x |. If L = TAU T , the statement x ∈ L ⇔ ∃y. V (x , y) is equivalent to
saying that proof system V is sound (∃y. V (x , y) ⇒ x ∈ L) and complete
(x ∈ L⇒∃y. V (x , y)) in the usual terminology of proof methods.

Definition 1.3. The complexity of a proof system V is the smallest function
S : N→ N such that

x ∈ L⇔∃y. |y| ≤ S(|x |). V (x , y).

Proof system V is polynomially bounded iff this complexity bound S(n) is
nO(1).

The following is immediate from the definition.

Proposition 1.4. L ∈ NP if and only if L has a polynomially-bounded proof
system.

More generally, the strength of a proof system is measured by how short
its proofs can be – stronger proof systems are associated with shorter proofs.



8 PAUL BEAME

Definition 1.5. A propositional proof system is a proof system V for TAU T ;
that is,

F ∈ TAU T ⇔∃P. V (F, P)

Alternatively, we can define propositional proof systems in terms of refu-
tations; that is, a propositional proof systems a proof system for UNSAT ,
the set of unsatisfiable Boolean formulas.

Since both UNSAT and TAU T are coNP-complete, we immediately ob-
tain the following:

Theorem 1.6. NP = coNP if and only if there is a polynomially bounded
propositional proof system.

Remark 1.7. In their original paper, Cook and Reckhow defined a proof
system for a non-empty language L to be a polynomial-time computable
function f from the set of all strings onto the set L; the pre-images of a
string x under f are the proofs y that x ∈ L.

This definition is essentially equivalent to the one from Definition 1.2,
though the two formally look quite different. The only major difference is
that each proof y in the Cook-Reckhow definition must explicitly encode
the x that it proves is in L.

For one direction, given a proof system V as above, define fV (x , y) = x if
V (x , y), and = x0 for some fixed x0 ∈ L otherwise. For the other direction,
given a Cook-Reckhow proof system f , define the verifier Vf on input (x , y)
to simply check that x = f (y).

In general, while there are aesthetic reasons to prefer one or the other
definition, there are no aesthetic differences in the case of the proof systems
that we will consider.

Definition 1.8. We say that proof system U polynomially simulates proof
system V iff

• U and V prove the same language L, and

• proofs in V can be efficiently converted into proofs in U; that is, there
is an polynomial-time algorithm that given (x , y) such that V (x , y) pro-
duces a y ′ such that U(x , y ′).

Proof systems U and V are polynomially equivalent iff they polynomially
simulate each other.

The partial order given by polynomial simulation is a natural measure of
the relative strength of different proof systems.

In our focus on propositional proof systems, it will be convenient to focus
on proof systems for unsatisfiability of CNF formulas which, by the standard
reduction of C IRCU I T -SAT to CN FSAT , immediately yields corresponding
proof systems for UNSAT and TAU T .

In particular, given a propositional logic formula F , define a CNF formula
F ′ where we
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• add an extra variable yG for each distinct subformula G of F

• include clauses to F ′ expressing that yG takes on the value of G deter-
mined by the inputs of F , in particular

– if F = G ∨H then include (¬yF ∨ yG ∨ yH), (¬yG ∨ yF ), (¬yH ∨ yF ),

– if F = G ∧H then include (¬yF ∨ yG), (¬yG ∨ yH), (¬yG ∨¬yH ∨ yF ),

– if F = ¬G then include (¬yF ∨¬yG), (yF ∨ yG)

• include clause yF to express that F must evaluate to true.

The following proposition then follows immediately from this construction.

Proposition 1.9. F ∈ UNSAT ⇔ F ′ ∈ CN F-UNSAT.

For the remainder we will assume, unless otherwise noted, that the propo-
sitional proof systems we consider are proof systems for CN F -UNSAT .
Hence, the inputs for our proof systems will be CNF formulas and our proofs
will be refutations.

There are many different propositional proof systems – some that we
don’t even normally think of in terms of proofs. In particular any correct
algorithm A that decides satisfiability of CNF formulas also yields a proposi-
tional proof system. A proof for a formula F in this case is a correct tran-
script of the execution of A on input F . A verifier VA can easily check whether
a string P is a transcript of A on input F and that this transcript says that A
outputs that F is unsatisfiable.

Why propositional proof complexity? There are several reasons to focus on
propositional proof systems:

• Propositional proofs lie at the heart of approaches to algorithmic rea-
soning and formal methods for more complex questions. In particular,
reduction of these complex questions to SAT solving underlies many of
the most successful practical formal methods today. As an example of
the potential of this approach, Davis and Putnam’s 1960 paper already
showed how to convert theorem proving for first-order logic to a series of
propositional proof complexity questions on the unsatisfiability of CNF
formulas.

• Lower bounds on the complexity for specific proof systems of increasing
strength can be seen as stepping stones towards proving NP 6= coNP and
hence P 6= NP.

• Understanding specific proof systems allows us to understand broad classes
of algorithms for NP-hard problems already in use in practice and to sug-
gest new approaches to solving them.
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A dynamic framework for proof systems Before going through specific proof
systems, we discuss a general framework shared by many propositional
proof systems: In these proof systems, proofs are expressed as sequences
of objects F1, F2, . . . , Ft called proof lines. These lines are often Boolean
formulas but can be other kinds of objects. In these proof systems, there
are rules for introducing lines independent of the previously lines, called
axioms, and rules for introducing lines based on some bounded number of
previous lines, called inference rules. We call these proof systems dynamic
because we can view each proof as an increasing sequence of lines.

For example, in proof systems for tautologies whose lines are Boolean
formulas, the axioms might be based on axioms such as

(Excluded Middle)
A∨¬A

which lets one introduce any line of the form A∨ ¬A, and inference rules
such as

A A→ B(Modus Ponens)
B

which says that from lines A and A→ B one can introduce/infer/derive) the
line B. Each of these axioms or inference rules is a schema in that A and B
refer to arbitrary formulas. A proof of F is correct if the last formula Ft = F
and the axioms and inference rules are correctly applied.

In the case of proofs of unsatisfiability – refutations – one starts with ax-
ioms derived directly from the input formula F and the final line Ft is some
fixed marker of obvious unsatisfiability associated with the proof system.

Proof verification for both of these kinds of systems involves checking
that the various axioms and inference rules are followed appropriately and
bear the right relationship to the input formula F .

Every dynamic proof P implicitly defines a directed graph of inferences
of P whose vertices are the lines P, and whose directed edges go from each
proof line to the previous lines involved in the inference rule deriving it.
(Alternatively, we could direct all edges in the opposite direction.) This
directed graph is acyclic with a topological sort given by the (reverse of
the) sequence of lines, hence we call it a proof DAG.

For every dynamic proof system S, it turns out to be natural to consider
the restricted version in which the proof DAG is a tree, which we call tree-
like S, or simply tree S. Since these dynamic proof systems only require local
consistency properties, it is always possible to expand a dynamic proof to a
tree-like one by repeating lines. Though they are less efficient in general,
one reason to consider tree-like proofs is that they can be much easier to
search for, and another is that the study of such proofs gives a stepping
stone towards understanding the general case.



C SE 599S COURSE NOTES: PROOF COMPLEXITY AND ITS APPLICATIONS 11

1.3 Logic-based propositional proof systems

Truth tables

Truth tables are easy to check (in fact, checkable in linear time) but since
an n variable formula F requires a truth table of size at least |F | · 2n, they
are extremely inefficient1. 1 It seems hard to believe that one can

do any worse but there are natural well-
studied proof systems that are even less ef-
ficient than truth tables. For example, the
propositional part of analytic tableaux, an
intuitive proof system that is the most pop-
ular proof system for understanding more
general modal logics, requires n! size proofs
for small n variable ordinary propositional
formulas in the worst case.

Resolution

Resolution is a dynamic refutation system for CNF formulas. Resolution
and its special cases form the most widely used and studied family of proof
systems, both in practice and theoretically.

• The lines of a resolution proof are clauses, which are viewed as un-
ordered sets of literals.

• The axioms of a resolution refutation of CNF formula F are the clauses
of F .

• Resolution has a single inference rule

A∨ x B ∨¬x(Resolution)
A∨ B

where A and B are sets of literals and x is a variable. We say that A∨B is
the resolvent of A∨ x and B ∨¬x and that these two clauses are resolved
on x to produce A∨B. Soundness follows because a truth assignment to
x can satisfy at most one of A∨ x or B ∨¬x .

• A resolution derivation is a refutation iff it derives the empty clause,
which we denote by ⊥.

Like all dynamic proof systems, it is natural to consider the subclass of
resolution proofs whose inference graph is a tree.

There are two other subclasses of resolution proofs that are important.

Definition 1.10. A resolution proof is regular iff on any path in the proof
DAG each literal occurs at most once.

Lemma 1.11. Any minimal length tree resolution proof is regular.

Proof. The main idea is that if there are two clauses on a path that resolve
on variable x , then one can remove the resolution step that is further from
the root and simplify the remainder of the path without increasing the proof
size. The details are left as an exercise.

From now on, we assume without loss of generality that tree resolution
proofs are regular.
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Regular resolution is the proof system in which only regular proofs are
allowed. This seems a natural restriction: Since the goal is to end up with
the empty clause, it seems intuitively wasteful to remove literals only to
add them back again later. (However, the analogue of Lemma 1.11 does
not hold in general.)

Davis and Putnam’s 1960 paper considered a class of resolution proofs
in which variables are eliminated one by one in some order. Each variable
is eliminated by replacing all clauses involving that variable by the set of all
possible resolvents using those clauses. This class of proofs corresponds to
the subclass of regular resolution proofs called ordered resolution in which
the order of appearance of variables resolved on every path in the proof
DAG is consistent with some fixed total order σ.

It turns out that tree resolution and ordered resolution are incomparable
proof systems.

Tree resolution and DPLL

We will see that tree resolution corresponds to a natural backtracking al-
gorithm to search for satisfying assignments that was introduced in a 1962
paper by Davis, Logemann, and Loveland, which built on the 1960 paper
by Davis and Putnam mentioned earlier. After some confusion in the liter-
ature about how to refer to this algorithm (it was sometimes erroneously
called the Davis-Putnam algorithm, though their 1960 paper had the differ-
ent resolution-based variable elimination algorithm mentioned above), the
terminology has settled on the acronym DPLL.

The algorithm uses the notion of the simplification of a CNF formula
F by assigning a Boolean value to a literal. Given a literal x we define
Fx←1 to be the simplification of F in which every clause containing x is
removed (because it is satisfied) and every clause containing ¬x has ¬x
removed; Fx←0 is the same as F¬x←1. By construction, F and Fx←1 agree on
all assignments on which x has value 1. Algorithm 1: The DPLL algorithm for

satisfiability search. This is invoked as
DPLL( F ,nil). This is a complete algorithm
in that failure of the search implies that F
is unsatisfiable.

1: function DPLL( F , A)
2: while F contains a clause x of size 1 do
3: F ← Fx←1; A← (A, x) . Unit propagation

4: if F is empty then
5: Halt and output satisfying assignment A

6: if F contains the empty clause ⊥ then
7: return
8: else choose unset literal x . Decision literal
9: DPLL( Fx←1 , (A, x))

10: DPLL( Fx←0 , (A,¬x))

Note that DPLL as stated is really a family of algorithms since the choice
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of unset literal x in step 8, the branching step, requires a choice, which is
governed by a literal selection heuristic. At each step of DPLL, the simplified
version of F is called the residual formula. At each line, the residual formula
is equivalent to the original formula on every assignment consistent with
the literals in A, which is called the trail of the search. Each literal x in A
is associated with a decision level which is the number of decision literals in
the prefix of A up to and including x .

Observe that the trace of the execution of a failed DPLL search for a
satisfying assignment on input F is a proof that F is unsatisfiable. (The
associated proof checker can simply check that the trace follows the steps
of the algorithm.) The running time of DPLL is at least the number of times
that the pair (F, A) are re-assigned in the algorithm.

Observe that if we remove unit propagation lines 2-3 and instead in line
8 choose a literal in a clause of size 1, if one exists, in line 9. then the call
on line 11, if reached, would immediately return because Fx←0 would con-
tain an empty clause. This would be essentially the same length execution,
though of course it would be a constant factor slower. We call the version
of DPLL in which lines 2-3 are removed and the literal selection heuristic is
arbitrary, nondeterministic DPLL. When we discuss DPLL as a proof system,
we will assume that it is this nondeterministic version, whose shortest com-
putation is a lower bound on all deterministic DPLL algorithm runtimes.

Theorem 1.12. DPLL and tree resolution are equivalent proof systems.

Proof. More precisely, we show that DPLL executions on F that fail to find
a satisfying assignment correspond to (regular) tree resolution refutations
of F in which branching steps of the DPLL execution involving variable x
correspond to with tree resolution steps resolving on variable x , and vice
versa.

First, given a regular tree resolution refutation of F , we replace each
resolution on variable x , by a branch on literal x (the order in which the
two child subtrees are followed is irrelevant since both are visited in the
DPLL search). The subtree where x ← 1 is associated with the clause that
contains ¬x and that with x ← 0 is associated with the clause containing x .
This maintains the fact that the partial assignment at a node n the DPLL tree
falsifies the corresponding clause in the tree resolution proof. In particular,
since all the variables from an input clause of the tree resolution proof are
resolved away, the partial assignment associated with a leaf falsifies the
associated input clause and hence the DPLL computation will have an empty
clause at each leaf as required.

Conversely, consider the recursion tree of the (nondeterministic) DPLL
execution. At each leaf of this tree, there is a clause of the residual formula
that is empty. This leaf corresponds to an original clause of F that has been
made false by the assignment A at the node. Make a copy of the this tree, la-
beling each leaf by the original clause that produced it. In filling out the rest
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of the tree resolution refutation, we maintain the invariant that the assign-
ment A associated with a node of the DPLL tree falsifies the corresponding
node of the tree resolution proof. In particular, the node corresponding to
a branching node on variable x by the resolvent of the two child clauses on
x if both child clauses contain x and, otherwise, we simply copy one of the
child clauses without x .

DPLL implementation: Watched literals As stated, the explicit computa-
tion of each residual formula can be quite time-consuming. In practice, the
residual formula is not computed explicitly. Observe that it is only neces-
sary to know which residual clauses have size 1 (or become empty). To do
this a watched literal technique is used: For each clause, the data structure
keeps two pointers to distinct literals, the watched literals, initially the first
two literals in the clause, along with a list of clauses for which these are
watched; in addition, a flag is kept for each clause to indicate whether or
not it is active.

When an assignment of literal x is made, only clauses for which that
variable is watched are examined; all other clauses will have residual size
at least two and do not need to be considered. All clauses for which x is the
watched literal are marked inactive. For each active clause for which ¬x is a
watched literal, the next literals after the last watched literal are examined,
one after another, until an unset literal is found. If one is found, it replaces
¬x as the watched literal. Otherwise, the clause has been reduced to a unit
clause and the other watched literal is propagated.

The watched literal method ensures that propagation can be done effi-
ciently. It becomes even more important for the extension of DPLL algo-
rithms, known as Conflict-Directed Clause Learning (CDCL) SAT solvers, are
implemented, since these solvers add many clauses, some of them poten-
tially long, to the original formula F during computation.

CDCL SAT solvers

These are the most important practical algorithms for SAT solving and for-
mal reasoning. In DPLL, when the search fails because of a conflict in line 7,
the recursive calls simply backtrack and the last decision is simply undone.
However, while the conflict was found using the last branching decision, it
may not depend on any other recent branching decision, so changing those
decisions may not impact the conflict. The general idea of conflict-directed
clause learning, is to record somewhat more about the decisions and unit
propagations make during the proof search, using a data structure called a
conflict graph and replace line 7 of DPLL with a conflict analysis step which
adds a new learned clause to F , which summarizes the reason for the conflict
and can be used to simplify future searches.

The conflict graph is a directed graph with one vertex for each literal
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in the trail A. Decision literals are source nodes. For every literal x in A
assigned through propagation of a unit clause that was originally clause C
of F , all of the other literals z in C must have previously appeared as ¬z in
A; in the conflict graph we put an edge from each of these ¬z literals to x .
If some y and ¬y both occur in the conflict graph then immediately after
the second one is created, unit propagation will produce the empty clause,
so we add to the a single sink vertex labeled ⊥ and edges from y and ¬y
to ⊥.

Definition 1.13. Given a conflict graph G = (V, E), a source-sink cut in G is
a set of vertices U ⊂ V such that

• U contains all sources (decision literals) in G,

• U does not contain the sink node labeled ⊥, and does not contain both
y and ¬y .

• U there are no edges from V − U to U in G.

Given such a cut U , let EU be the set of edges that lead from U to V − U .
Observe that EU is a set of edges whose removal eliminates all paths from
source nodes to ⊥. Given such a cut U , we define conflict clause CU to be
the clause whose literals are negations of literals at tails of edges in EU .

Lemma 1.14. Let G be a conflict graph associated with a leaf node of DPLL
search tree for CNF formula F with trail A. Let U be a source-sink cut in G.
Then CU can be derived from F using a resolution derivation of length at most
the length of A.

Proof. Exercise.

CDCL adds one or more conflict clauses CU to the formula F at each
conflict. There are several potential heuristics for choosing which conflict
clause(s) to add. Most commonly, precisely one conflict clause CU is added
and this clause has the additional property that it is asserting, which means
that adding it will cause unit propagation at some prefix of the trail associ-
ated with a smaller decision level, call the assertion level of CU .

If we choose the set U to be the set of decision literals, then the conflict
clause CU will be asserting just one level above the last decision level and
adding U will propagate the opposite value for the last decision literal; i.e.,
adding it and simply using unit propagation will force the same behavior as
ordinary backtracking. This allows us to write CDCL iteratively rather than
recursively.

More generally, better choices of the conflict clause are asserting at much
smaller decision levels. We these choices we can prune off much more than
the last decision level, which has the same effect as backtracking over many
levels of the tree at once.
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Most current CDCL solvers choose a particular conflict clause, called the
1UIP clause, based on the 1UIP cut which has precisely one literal separating
the conflict from the last decision literal and is closest to the conflict among
all such cuts, has been shown to be quite effective in practice. They also
use properties of the learned clauses during the process to update their
heuristics for selection of decision variables. Depending on properties of
the learning, e.g., learned clauses that force literals immediately or after a
certain number of conflicts, they can also choose to restart, which keeps the
added conflict clauses but resets the trail A to nil and decision level to 0.

Finally, modern CDCL solvers also apply learned clause minimization to
the conflict clause before adding it, by removing any literal from the conflict
clause CU that is separated from the decision literals by other literals in CU ;
this is equivalent to ensuring that the set U is chosen so that EU is a minimal
separating set and hence by Lemma 1.14 can be derived via resolution.

For implementation, it is very important to use the watched literal tech-
nique. We therefore obtain the general form of the CDCL algorithm:

Combining all the pieces together we see that the following holds.

Theorem 1.15. CDCL refutations are resolution refutations.

From a practical point of view, the number of learned clauses can get
quite large so CDCL solvers will also have heuristics for removing learned
clauses that are too long or have not been recently used.

Frege systems

These dynamic proof systems are the closest to the formal proof systems of
typical introductory logic texts, consisting of a sequence of proof lines that
are arbitrary Boolean formulas. These systems were named by Cook and
Reckhow after Gottlob Frege who was responsible for many early develop-
ments in logic but is now best known for developing a more general system
that was demolished by Russell’s paradox.

Each Frege systemF is given by a finite set of sound axioms and logical in-
ference rules (used as schemas) that together are implicationally complete2. 2 Ordinary completeness only requires that

the rules should be able to derive any tau-
tology starting from the axioms. Implica-
tional completeness also requires that if we
add arbitrary formulas as given formulas,
then the system can infer any formula that
is logically implied by them

Cook and Reckhow noted the following:

Theorem 1.16. Any two Frege systems polynomially simulate each other

Proof. Because of implicational completeness, any axiom or inference rule
in one system has a derivation in the other system and, since the number
of these is finite, each such derivation is of constant size. We now simply
replace each application of a rule in one system by the substituted version
of the proof in the other system. This increases the proof size at most by a
constant factor.

At the level of Frege systems, the tree-like restriction is not meaningful.
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Algorithm 2: CDCL for satisfiability search.
1: function CDCL( F )
2: Choose two watched literals for each clause of F , if possible.
3: Set A to nil and conflict graph to empty.
4: Set decision level to 0.
5: while true do
6: while F contains a clause with only 1 watched literal x do
7: A← (A, x)
8: Propagate(x ,F) . Unit propagation
9: Add x and edges to conflict graph

10: if F has no active clauses then Halt and output satisfying assignment A

11: if conflict graph has conflicting literals y and ¬y then
12: if decision level=0 then Halt and output “unsatisfiable”.

13: Use conflict graph to find asserting conflict clause CU . Analyze Conflict
14: Minimize CU

15: Add CU to F and add two watched literals for CU

16: Update decision heuristic
17: if restart chosen then
18: Set A to nil and conflict graph to empty.
19: Set decision level to 0.
20: else
21: Set decision level to assertion level of CU , pruning A and the conflict graph.

22: Update watched literals.
23: else
24: Choose unset literal x according to decision heuristic . Decision literal
25: A← (A, x)
26: Propagate(x ,F).
27: Add source x to conflict graph.
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Lemma 1.17. Any Frege proof can be converted to tree-like form in polyno-
mial time

Given these equivalences, we lump all Frege systems together and view
them as one proof system. Frege systems can be used equivalently to prove
tautologies or to refute CNF formulas.

Resolution proofs naturally form a restricted form of Frege proof in which
the only allowed lines are clauses. (The resolution rule A∨ x , B∨¬x ` A∨B
is a special case of a general rule

A∨ C B ∨¬C(Cut)
A∨ B

With clauses, the only way to match the cut rule is if C is a literal.)
Unlike resolution proofs, where each proof line has size at most the num-

ber of variables, lines in Frege proofs can be quite large, so the the proof
size is the total number of symbols in the proof rather than the number of
lines.

Extended Frege proofs

The axiom and inference schemas of Frege proofs have the property that
all variables they discuss can take on arbitrary truth values independent of
other variables, except as specified by the axioms in the case of refutation
systems.

Extended Frege proof systems expand the possibilities by allowing the
introduction of new extension variables that are defined to be equivalent to
entire formulas in other variables. That is, they allow the addition of lines
y ↔ A where A is an arbitrary formula not involving y and y is a new
variable that has not appeared previously.

We can apply extension rules with multiple lines When we cannot di-
rectly represent↔ such a system. In particular, we can add an extension
rule to resolution, that lets us define new variables to be equivalent to arbi-
trary clauses in a way that it is similar to the addition of the gate variables
used to convert formulas to CNF. In particular, to set y equivalent to clause
x1 ∨ · · · ∨ x t , we add clauses

¬y ∨ x1 ∨ · · · ∨ x t

¬x1 ∨ y

· · ·

¬x t ∨ y.

Theorem 1.18. Extended Frege proofs are all equivalent to resolution with
the extension rule.

Proof. Since resolution is a special case of Frege proofs, one direction is
immediate. The idea for the other direction is that using the usual gate
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transformation for circuits to CNF formulas using the extension rule, we
can define resolution variables so that any line of the extended Frege proof
can be expressed as a clause and any inference rule can be derived using
the resolution rule on these variables.

Another way to obtain a proof system based on Frege systems that is
equivalent to extended Frege is to add a substitution rule to any Frege sys-
tem.

The substitution rule applies to Frege systems used as proof systems to
derive the formula being proved, rather than for refutation. In this for-
ward format, every derived line of the Frege proof is itself a tautology. Add
the substitution rule allows any line to be used immediately as an axiom
schema. We will not prove the following:

Theorem 1.19. Extended Frege is equivalent to Frege with the substitution
rule added.

In fact, this equivalence applies even with a very restricted form of the
substitution rule, in which the only changes allowed to a formula are to
substitute some variables by constants 0/false and 1/true.

Finally, we see another direct connection between Frege and extended
Frege proofs.

Theorem 1.20. There is a constant c such that For any formula F, the size
of an extended Frege proof of F is at most c(|F |2 + L) where L is the optimal
number of lines in a Frege proof of F.

Proof. Using extension variables, each line of the Frege proof can be repre-
sented by a constant-size formula in extended Frege. The |F |2 term is for
the final unwinding or extension steps that produces the formula F from
these succinct formulas.

Beyond extended Frege

In principle, we may not need to stop at extended Frege. Though the propo-
sitional logic deals with finite numbers of assignment, it may be possible
that reasoning about infinite objects can help us to reason about them. We
could even use a logical system that covers the vast majority of mathemat-
ical reasoning such as Zermelo-Frankl set theory with the Axiom of Choice
(usually denoted by ZFC) to derive our proofs ... or possibly something
even more powerful.

Getting more down to earth, our ability to make use of propositional
proofs seems better for simpler systems, and our ability to analyze proof
complexity is already challenged for much simpler proof systems. We there-
fore next consider a natural way to think of a hierarchy of simpler natural
proof systems of increasing strength.
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Proofs using circuits: C -Frege proofs

Many circuit complexity classes C are defined in terms of classes of circuits
that satisfy some structural property PC together with a restriction that the
size of such circuits is polynomial. Standard classes of this sort in increasing
power include

• Clauses

• k-DNF (polynomial-size k-DNF formulas)

• AC0 (polynomial size constant-depth unbounded fan-in ∧,∨,¬-circuits),

• AC0[m] (polynomial size constant-depth unbounded fan-in ∧,∨,¬, mod
m circuits),

• TC0 (polynomial size constant-depth threshold circuits),

• NC1 (O(log n) depth fan-in 2 ∧,∨,¬ circuits, which are equivalent to
polynomial size Boolean formulas because any polynomial-size Boolean
formula can be re-balanced to O(log n) depth), and

• P/poly (polynomial-size circuits).

For each such class C , we can define a natural proof system, C -Frege
proofs, as a dynamical proof system having lines that are circuits satisfying
the structural property given by PC and having axioms and inference rules
that are sound and implicationally complete for such circuits.

Using this general framework, we see that:

• Frege ≡ NC1-Frege

• Extended Frege ≡ P/poly-Frege

• Resolution ≡ Clauses-Frege

The proof system k-DNF-Frege generalizing resolution has been studied
under the name Res(k). There has also been extensive study of AC0-Frege,
for which we know a number of strong lower bounds.

Somewhat similar to the situation in circuit complexity, we know very
little about the power and limitations of the TC0-Frege and AC0[m]-Frege
proof systems.

In particular, unlike the situation with circuits, we don’t even know much
about AC0[p]-Frege for prime p. These proofs are closely related to alge-
braic proofs which we consider next.

1.4 Algebraic proof systems

We can use algebra instead of logic to formalize constraints using systems
of polynomial equalities.
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In particular, we can enforce that a variable x only can take on Boolean
values 0 or 1 via the polynomial constraint x2 − x = 0. Similarly, we can
enforce a clause constraint such as C = (x ∨ ¬y ∨ z) via the polynomial
constraint pC = (1− x)y(1−z) = 0, or equivalently y− yz− x y+ x yz = 0.

A key theorem of commutative algebra indicates how we can use algebra
to produce proof systems for CN F -UNSAT :

Theorem 1.21 ((Weak) Hilbert’s Nullstellensatz). LetK be a field and f1, . . . , fm

be multivariate polynomials in K[x1, . . . , xn]. Then the system of equations
f1(x1, . . . , xn = 0, . . . , fm(x1, . . . , xn) = 0 does not have a solution in the
algebraic closure of K if and only if there exist polynomials g1, . . . , gm ∈
K[x1, . . . , xn] such that

∑

i∈[m] gi · fi ≡ 1.

In algebraic language, the set of polynomials that are linear combina-
tions of a set of polynomials f1, . . . , fm ∈ K[x1, . . . , xn] with coefficients in
[K][x1, . . . , xn] is called the ideal generated by f1, . . . , fm. In other words,
it says that no solution exists to this system of equations iff 1 is in the ideal
generated by f1, . . . , fm.

This theorem allows us to translate a universal statement, the non-existence
of solutions, into an existential one, the existence of polynomials, that can
be easily checked; The gi form a proof of the unsatisfiability of the system
of equations in the fi .

As stated in this general form, the Nullstellensatz refers to the algebraic
closure of K. However, in our application to propositional logic proofs,
among the Q i we will always have x2

j − x j , so any solution must have 0-1
values and hence lie in K itself.

in addition, these polynomials ensure that the degrees involved are not
large. Given a polynomial p, let mul til inearize(p) be a polynomial that is
a modification of p in which every exponent larger than 1 has been reduced
to 1:

Proposition 1.22. For any polynomial p ∈ K[x1, . . . , xn] of total degree at
most d, there are polynomials r1, . . . , rn of total degree at most d−2 such that
p = mul til inearize(p) +

∑

j∈[n] r j(x2
j − x j).

Another way of saying this is that p and mul til inearize(p) are equiva-
lent modulo the ideal generated by x2

1− x1, . . . , x2
n− xn which we denote by

I . In particular, because of the ability to multilinearize polynomials, there
is never a need for propositional proofs to have any gi · fi with degree more
than n+ 1.

The degree of algebraic proofs is a natural measure but not the only
aspect that needs to be considered in discussing their size. We will say that
their size is the number of monomials they contain. Finally, there is the
impact of the representation size required for each coefficient. (For this last
quantity, in the case of fields like R or Q, we assume that all polynomials
have integer coefficients.) The bitsize of a proof is the total number of bits
required to represent it in this standard representation.
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In our standard monomial representation, even simple constructs like
large clauses such as C = x1∨· · ·∨ xn require exponential size because pC =
∏

j∈[n](1− x j) has 2n monomials. To get around this annoying problem, for
each variable in our CNF formula, x , we sometimes add a dual variable
x together with the polynomial constraint x + x − 1 = 0. In that case, we
replace each 1−x by x in our translations and any We generally assume that
we have these dual variables (also known as paired variables) and include
all of the dual constraints to the ideal I ′ and work modulo the resulting
ideal I ′ (which allows us to replace x + x by 1).

Nullstellensatz proofs

For a sequence of polynomials f1, . . . , fm in variables z1, . . . , zn over field F,
a Nullstellensatz refutation of the system of polynomial equations F̃ = ( f1 =
0, . . . , fm = 0) is an explicit list of polynomials g1, . . . , gm over F written as
sums of monomials such that

∑

i∈[m]

fi · gi ≡ 1. (1.1)

where ≡ denotes equality of polynomials rather than values. The degree of
a Nullstellensatz refutation is maxi∈[m] deg(gi · fi).

For a CNF formula F = ∧i∈[m]Ci in variables x1, . . . , xn and field F, we
define a Nullstellensatz refutation of F to be a Nullstellensatz refutation of
the polynomial system F̃ = (pC1

= 0, . . . , pCm
= 0, x2

1 − x1 = 0, . . . , x2
n− xn =

0). We define NSdegF(F) to be the minimum degree of any Nullstellensatz
refutation of F .

Since there are only
�n

d

�

multilinear monomials of degree d in n variables,
a Nullstellensatz proof of degree d can have at most (m+n)·

� n
≤d

�

coefficients
which is m · nO(d). For example, any constant-degree Nullstellensatz proof
over a finite field is automatically polynomial size.

Finding Nullstellensatz refutations If we include an indeterminate for each
coefficient of degree up to d − deg( fi) in each gi , then (Eq. (1.1)) yields a
system of linear equations with coefficients determined by the coefficients
of the pC for C ∈ F , one equation per monomial of degree up to d. If
a solution exists, then we can find it using linear algebra on this system,
which has size at most m · nO(d). Therefore, if a degree d Nullstellensatz
refutation of F exists, it can be found in m3 ·nO(d) field operations, which is
polynomial if the degree d is a constant.

Proposition 1.23. Prove that for any tree resolution refutation and any field
F there is a Nullstellensatz refutation over F whose degree is at most the height
of the tree resolution refutation.

Proof. Exercise.
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Though Proposition 1.23 is independent of the choice of field, Nullstel-
lensatz over fields of different characteristic yield incomparable proof sys-
tems.

Polynomial Calculus and PCR proofs

Nullstellensatz proofs are not dynamic proofs – the gi are chosen at once.
Polynomial calculus (PC) is a corresponding dynamic proof system based on
the same initial polynomials and algebraic idea as Nullstellensatz proofs:
to prove unsatisfiability it suffices to prove that 1 is in the ideal generated
by the initial polynomials. In particular, a polynomial calculus derivation
of f = 0 from F̃ = ( f1 = 0, . . . , fm = 0) over field F is the sequence of
polynomials f1, . . . , fm, fm+1, . . . , ft such that for i > m, either

• (Linear combination) fi = a · f j + b · f j′ for some a, b ∈ F and j, j′ < i, or

• (Multiplication by variable) fi = xk · f j for k ∈ [n] and j < i.

Such a derivation is a refutation of F̃ iff ft = 1. The degree of the derivation
is maxi deg( fi). We write f1, . . . , fm `d f if there is a derivation of f from
f1, . . . , fm with degree at most d.

For a CNF formula F in x1, . . . , xn, a PC refutation of F is a polynomial
calculus refutation of the set of polynomials E (F) = {pC | C ∈ F}∪{x2

i − x i |
i ∈ [n]}. Often, rather than including the polynomials x2

i −x i as separate in-
put polynomials we assume that the inference rules are being taken modulo
the ideal I .

We denote the minimal degree of any PC refutation of F over field F as
degF(F).

As noted above, we use PCR (which stands for Polynomial Calculus with
Resolution) to denote the refutation system for CNF formulas in which we
add the dual variables x i , initial polynomials x i+x i−1 for i ∈ [n] and using
the algebraic translation pC instead of pC for clauses yielding the translation
which we can E ′(F). In PCR we generally also work modulo the ideal I ′

defined by all x2
i − x i and 1− x i− x i . (Note that x2

i − x i is also immediately
derived and that the degree required for PCR proofs is identical to that for
PC.)

The following theorem gives a good explanation for the PCR terminology.

Theorem 1.24. PCRF polynomially simulates resolution.

Proof. We already have pC for each input clause C . We show that we can
also efficiently derive pD for each derived clause D in the resolution refuta-
tion. Suppose A∨B is the resolvent of A∨ x and B∨¬x and that inductively
that we already have pA∨x and pB∨¬x . Let C be the set of common literals
in A and B. Then by definition pA∨x = pA−C · pC · x Therefore in |B − C |
multiplication steps we obtain

q0 = pB−C · pA∨x = pA−C · pB−C · pC · x = pA∨B · x .
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Similarly, pB∨¬x = pB−C · pC · x and after |A− C | multiplication steps we
obtain

q1 = pA−C · pB∨¬x = pA−C · pB−C · pC · x = pA∨B · x .

Then q0 + q1 = pA∨B · (x + x). Modulo the ideal I ′, x + x = 1 so this is just
pA∨B as required. In total this is at most n PCRF steps and each line (except
for q0 + q1) is of the same size as the corresponding clause.

Finding PC and PCR proofs PC and PCR proofs of small degree d also can
be shown to have derivations of size at most

�n
d

�O(1)
or nO(d). Here is an

argument for PC; the one for PCR is similar: For each d ′ ≤ d we construct
a basis of the vector space

Vd ′ = { f | f is multilinear and f1, . . . fm `d ′ f }.

In particular V0 = 0 and the basis is empty. Also, Vd ′ has dimension at most
� n
≤d ′
�

, the number of multilinear monomials of degree at most d ′. Suppose
that we have a basis Bd ′ for Vd ′ for d ′ < d. To compute the basis Bd ′+1 for
Vd ′+1:

• View each element p ∈ Bd ′ as an element of Vd ′+1.

• For each p ∈ Bd ′ and each x i for i ∈ [n], add the polynomial multilinear(x i ·
p).

• For any input polynomial p add multilinear(p) if it has degree exactly
d ′ + 1.

• Use Gaussian elimination to reduce the resulting set of polynomials (viewed
as vectors) to a basis Bd ′+1.

For each d ′, we can check to see if the polynomial 1 is spanned by the basis
Bd ′ and stop only when that is found.

In practice, there is a more refined algorithm called the Groebner (or
Gröbner) Basis Algorithm that is used. There are a number of well-known
Groebner basis algorithm software packages out there but most of this soft-
ware is designed for the general case when the equations x2− x = 0 are not
present – in that general case, the degree required can be as large as double
exponential in n. The general idea is to iteratively convert the polynomials
defining the ideal into a minimal collection of rewrite rules that replace the
leading term of a (monic) polynomial (the largest term in a total order on
terms based on a lexicographic order for the exponent vectors of its mono-
mials) by a linear combination of smaller terms. The degree and number
of these rewrite rules can be much larger the the input polynomials.

Beyond PCR

Since the variables we consider are Boolean, multiplication in PC and PCR
can be viewed as a Boolean AN D. Over a finite field such as Fp, a polynomial
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can be viewed as a depth 2 unbounded fan-in circuit with AN D gates feeding
into a MODp gate and hence a special case of AC[⊕p]-Frege.

Another direction that takes us beyond our formal definition of proof sys-
tem is to consider proofs based on Hilbert’s Nullstellensatz involving poly-
nomials represented by algebraic circuits rather than as explicit sums of
monomials. The difficulty is that is not known how to check in determinis-
tic polynomial time if a polynomial given by a circuit is equal to the poly-
nomial 1. However, this is something that can be verified up to arbitrarily
small probability of error by randomized algorithms running in polynomial
time, using the Schwartz-Zippel Lemma, yield a randomly-checkable proof
system. The natural randomly-checkable proof system that best captures
this idea is known as the Ideal Proof System (IPS).

1.5 Semi-algebraic proof systems

While the algebraic proof systems are defined over any field and based on
polynomial equalities, all semi-algebraic proof systems are defined only over
R and are based on polynomial inequalities.

Semi-algebraic proof inequalities always include x i ≥ 0 and 1 − x i ≥
0 (equivalently −x i ≥ −1) for i ∈ [n]. The standard form of the semi-
algebraic translation of a clause C = (∨i∈P x i)∨ (∨i∈N¬x i), is the inequality
`C ≥ 0 where

`C =
∑

i∈P

x i +
∑

i∈N

(1− x i)− 1.

For some semi-algebraic proof systems we prefer to move the constant term
to the right and express this as

∑

i∈P

x i −
∑

i∈N

x i ≥ 1− |N |,

an inequality we denote as LC .
We sometimes also discuss equalities in semi-algebraic proof systems;

each equality is really a pair of inequalities.
In practice, as in algebraic systems, it is often convenient to add dual

variables x i , together with constraints that x i + x i = 1; that is,

x i + x i ≥ 1

−x i − x i ≥ −1

for each variable. In this case we can translate the clause C above as

∑

i∈P

x i +
∑

i∈N

x i ≥ 1.

which we denote by L′C .
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Cutting planes (CP) proofs

Cutting planes is a dynamic proof system whose lines are integer linear in-
equalities of the form

∑

i ai · x i ≥ b where a1, . . . , an, b are integers. Cutting
planes proofs were originally developed by Gomory and Chvatal for gen-
eral inference for integer programming and not just for propositional logic.
The rules we discuss are fully general but our focus will be on their use for
propositional logic.

A cutting planes derivation of a linear inequality L from a system of inte-
ger linear inequalities Ax ≥ b for A∈ Zm×n, is a sequence of linear inequal-
ities L1, . . . , Lt where Li is

∑

j∈[n] Ai j x j ≥ bi for i ∈ [m] and each Li for
i > m follows from previous lines by one of the following inference rules:

a1 x1 + · · ·+ an xn ≥ c b1 x1 + · · ·+ bn xn ≥ d
(Addition)

(a1 + b1) x1 + · · ·+ (an + bn) xn ≥ c + d

a1 x1 + · · ·+ an xn ≥ b
(Multiplication) for any positive integer c

ca1 x1 + · · ·+ can xn ≥ cb

ca1 x1 + · · ·+ can xn ≥ b
(Division) for any positive integer c

a1 x1 + · · ·+ an xn ≥ db/ce

Such a derivation is a refutation of Ax ≥ b iff the last line LS is 0 ≥ 1.
The multiplication and addition rules can be combined in a single rule that
allows one to take any positive linear combination of two inequalities. That
combined rule is sound over the reals.

For a CNF formula F = ∧i∈[m]Ci on variables x1, . . . , xn, a CP refutation
of F is cutting planes refutation of the system of constraints

LC1
, . . . , LCm

, x1 ≥ 0, . . . , xn ≥ 0,1− x1 ≥ 0, . . . 1− xn ≥ 0.

This refutation is a CP∗ refutation if every coefficient in the inequalities in
the refutation has absolute value at most polynomial in the size of the input.

Polytope view Any set of inequalities defines a polyhedron over the reals.
Because we have the bounding constraints that each variable x i is in [0,1],
the input inequalities actually define a polytope P (a bounded polyhedron)
which has rational vertices since the coefficients are all integers. Cutting
planes rules allow us to derive constraints corresponding to the convex hull
of the set of integer points in P, known as the integer hull of P. A refutation
proves that the integer hull is empty.

Each inequality corresponds to a halfspace and two inequalities describe
an intersection of halfspaces. Unless one inequality implies the other over
R, this will have an apex defined by the intersection of their defining hy-
perplanes. The positive linear combination rule derives a new halfspace
whose defining hyperplane contains that apex and, by soundness over the
reals, contains the intersection of the two halfspaces.
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The only progress in moving from P to its integer hull happens during
applications of the division rule. The application of this rule essentially
shifts the constraint until its defining hyperplane intersects with some inte-
ger point, cutting off part of P in the process, hence the name for the proof
system.

Theorem 1.25. Cutting planes (CP∗) polynomially simulates resolution.

Proof. The proof shows inductively that for any clause C of a resolution
refutation, CP∗ can efficiently derive the corresponding inequality LC . This
is already the case for the input clauses by definition; for convenience, we
think of the translation of a clause C =

∨

i∈P x i ∨
∨

i∈N ¬x i as
∑

i∈P

x i +
∑

i∈N

(1− x i)≥ 1.

Suppose that we have already derived inequalities LA∨x and LB∨¬x and that
C is the set of common literals appearing in both A and B. That is, we have
by induction,

x +
∑

i∈PA

x i +
∑

i∈NA

(1− x i) ≥ 1

1− x +
∑

i∈PB

x i +
∑

i∈NB

(1− x i) ≥ 1

Adding these we obtain

1+
∑

i∈PA−C∪PB−C

x i +
∑

i∈NA−C∪NB−C

(1− x i) + 2 · (
∑

i∈PC

x i +
∑

i∈NC

(1− x i)) ≥ 2.

Then, subtracting 1 from both sides, and for all i ∈ PA−C ∪ PB−C adding
x i ≥ 0 and all j ∈ NA ∪ NB, adding 1− x j ≥ 0 yields

2 · (
∑

i∈PA∪B

x i +
∑

i∈NA∪B

(1− x i)) ≥ 1;

so, dividing by 2 and rounding up by the division rule we obtain
∑

i∈PA∪B

x i +
∑

i∈NA∪B

(1− x i) ≥ 1,

which is precisely LA∨B as required and takes O(|A∨ B|) steps.

While working over Rmight seem to allow the possibility that arbitrarily
large coefficients might be need, the following shows that only O(n log n)
bit coefficients are required.

Proposition 1.26 (Muroga). Any linear threshold formula a1 · x1+ · · ·+ an ·
xn ≥ b over Boolean variables x1, . . . , xn for a1, . . . , an, b ∈ R is equivalent to a
linear threshold formula a′1 ·x1+· · ·+a′n ·xn ≥ b′ in which all a′1, . . . , a′n, b ∈ Z
and each has absolute value at most 2(n log2 n)/2−1.
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This implies that every line of a cutting planes refutation can be ex-
pressed by a threshold formula using only O(n2 log n) bits. It also implies
the following simulation.

Corollary 1.27. TC0-Frege polynomially simulates CP.

In particular since TC0 ⊆ NC1, Frege also polynomially simulates CP.
Buss and Clote showed that as a propositional proof system in the defini-

tion of the division rule, it suffices to restrict oneself to the case that c = 2.

Pseudo-Boolean solvers: propositional cutting planes in practice In practice,
there are a number of solvers, called pseudo-Boolean (pB) solvers, that build
on the ideas of CDCL solvers but apply them to integer linear inequalities
for Boolean variables. These solvers generally are used on the dual variable
translations for input clauses which is more convenient and automatically
replaces all instances of x + x on the left with −1 on the right.

The analogue of unit propagation used by these solvers is

• (Propagation) If a1 x1+· · ·+an xn ≥ b and
∑

i 6= j ai < b then infer x i = 1.

pB algorithms generally maintain a sorted list of the (positive) coefficients
of each inequality (together with the total weight of its coefficients) which
makes it easy to find literals to propagate.

This allows pB solvers to match DPLL-style solvers which are just branch-
ing on variable values. However, the interesting part of the development
of pB solvers is how they derive new constraints when conflicts are found
in the constraint-learning process of CDCL. There are many tricky issues in
conflict analysis and in most solvers the production of an asserting conflict
constraint is an iterative process of multiple rounds of constraint refine-
ment.

Many of these pB solvers implement only weak fragments of cutting
planes rules; they rarely implement something equivalent to the full di-
vision rule or full positive linear combination.

They typically only allow positive linear combination if the result elim-
inates a variable x and its dual variable x by cancelling x in one against
x in the other. This restriction is called cancelling linear combination. This
restriction to cancelling linear combination is the reason that learned con-
straints from direct translations of clauses stay as translations of clauses. In
that case, the coefficients are always 1 so there is no use for the division
rule.

Instead of the full division rule, many solvers use the rules

a1 x1 + · · ·+ an xn ≥ b
(Saturation)

min(a1, b) x1 + · · ·+min(an, b) xn ≥ b

a1 x1 + · · ·+ a j x j + · · ·+ an xn ≥ b
(Weakening)

a1 x1 + · · ·+ (a j − 1) x j + · · ·+ an xn ≥ b− 1
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Saturation is obviously sound. Weakening is sound because −x j ≥ −1, and
can enable saturation to be more effective.

Solvers that do include the full division rule implement it without as-
sumption as

a1 x1 + · · ·+ an xn ≥ b
(Division’) for any positive integer c

da1/ce x1 + · · ·+ dan/ce xn ≥ db/ce

Since we have x i ≥ 0 for all i, we can see that this follows from the original
division rule by first rounding up each ai to the next multiple of c. A draw-
back is that, unlike the original division rule in which the use of the rule is
signalled by the common factor c, this new rule can result in a substantial
loss of information from the original constraint. In practice this version of
the rule is also used to avoid coefficient explosion because the least com-
mon multiples required to use cancelling linear combination can result in
significant coefficient growth over time.

Sherali-Adams (SA) proofs

This proof system is the direct analogue for polynomial inequalities over the
reals of the algebraic Nullstellensatz proof system for inequalities over arbi-
trary fields. Like Nullstellensatz, it is a static proof system. and represents
its polynomials as explicit sums of (generalized) monomials.

Given a system of polynomial inequalities and equalities (h1 ≥ 0, . . . , hm ≥
0; f1 = 0, . . . , fm = 0) over the reals in variables x1, . . . , xn, a Sherali-Adams
derivation of a polynomial inequality h≥ 0 is an explicit list of real polyno-
mials g0, . . . , gm; e1, . . . , em′+n such that

g0 +
m
∑

i=1

gi · hi +
∑

i∈[m′]

ei · fi +
n
∑

i=1

em′+i(x
2
i − x i) = h. (1.2)

and for each i ∈ [0, m], gi is a positive linear combination of generalized
monomials of the form

∏

i∈P x i ·
∏

j∈N (1−x j) for disjoint subsets P, N ⊆ [n].
(These generalized monomials are called non-negative juntas and naturally
would correspond to ordinary monomials if we had dual variables.)

Note that for the equalities, we have no constraint on the form of their
coefficient polynomials. The degree of a Sherali-Adams derivation is the
maximum of maxi deg(gi · hi) and maxi deg(ei · fi).

We often find it more convenient to rephrase Eq. (1.2) as

g0 +
m
∑

i=1

gi · hi +
∑

i∈[m′]

ei · fi ≡I h. (1.3)

where I is the ideal generated by x2
1− x1, . . . , x2

n− xn since we never require
terms involving ideal I of degree larger than the rest.
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A Sherali-Adams (SA) refutation of a CNF formula F =
∧

i∈[m] Ci is deriva-
tion of−1 from the system of polynomial inequalities (`C1

≥ 0, . . . ,`Cm
≥ 0; )

We write SAdeg(F) for the minimum degree of any SA refutation of F .
As with the Nullstellensatz proof system we often want to think of terms

in a Sherali-Adams proof as being computed modulo the ideal I generated
by the polynomials x2

1 − x1, . . . , x2
n − xn.

Recall our previous translation which took each clause C and translated it
as a polynomial equality stating that a particular non-negative junta pC = 0.

Proposition 1.28. For any clause C in variables x1, . . . , xn,

(a) there are SA derivations of pC and −pC of degree |C | and size O(|C |2)
from (`C ≥ 0; ) and

(b) there are SA derivations of `C ≥ 0 of degree |C | and size O(|C |2) from
(; pC = 0).

Proof. Let C =
∨

i∈P x i ∨
∨

i∈N x i; then pC =
∏

i∈P(1 − x i) ·
∏

i∈N x i . For
part (a), the inequality pC ≥ 0 is immediate since we can set g0 = pC and
every other polynomial to 0. The derivation of inequality −pC ≥ 0 is an
easy exercise.

For part (b) we prove by induction on the length of C that `C = −pC +JC

where JC is a positive linear combination of non-negative juntas of degree
at most |C |. For the base case, observe that for variable x , `X = x − 1 =
−(1− x) = −px and `¬x = (1− x)− 1= −x = −p¬x . Assume that we have
`C = −pC + JC . Observe that `C + 1 is itself a positive sum of non-negative
juntas. Then, for any expression y ,

`C + y = `C (1− y) + (`C + 1) y

= (−pC + JC) (1− y) + (`C + 1) y by the induction hypothesis

= −pC (1− y) + JC (1− y) + (`C + 1) y

Plugging in y = x we get

`C∨x = `C + x = −pC (1− x) + JC(1− x) + (`C + 1) x

= −pC∨x + JC (1− x) + (`C + 1) x

and plugging in y = 1− x we get

`C∨¬x = `C + (1− x) = −pC x + JC x + (`C + 1) (1− x)

= −pC∨¬x + JC x + (`C + 1) (1− x)

which give the required expressions.

By first applying the above proposition to each of the clauses of F and
splitting every coefficient polynomial of a Nullstellensatz refutation over the
reals (with flipped sign) into two pieces depending on whether pC ≥ 0 or
−pC ≥ 0 should be used, we obtain the following simulation.



C SE 599S COURSE NOTES: PROOF COMPLEXITY AND ITS APPLICATIONS 31

Theorem 1.29. For any CNF formula F, with a Nullstellensatz refutation of
degree d and size S over R, there is a Sherali-Adams refutation of F of degree
at most d and size at most O(S + |F | ·w(F)).

We also can derive the following theorem whose proof is an exercise.

Theorem 1.30. For any CNF formula F, with a resolution refutation of width
w and size S, there is a Sherali-Adams refutation of F using dual variables of
degree at most w+ 1 and size polynomial in w and S.

Proof Sketch. The general idea is to argue inductively that the negative of
the dual variable monomial associated with each derived clause can be ex-
pressed as via an SA derivation of small degree and size. We can do this for
each input clause in F using Proposition 1.28 to derive −pC in degree w(F).
It remains to argue that we can do so for each resolution inference. At the
end of the proof, the monomial corresponding to the empty clause is 1, so
the result will be a derivation of −1 which is a contradiction. The details
are left as an exercise.

Sherali-Adams proofs are closely related to families of linear program-
ming relaxations of 01-programs of increasing numbers of variables and
constraints that provide increasingly tight approximations of the integer
(01) convex hull. In particular, the variables that correspond to degree d
Sherali-Adams derivations are in 1-1 correspondence with the non-negative
juntas of degree at most d. Sherali and Adams’ original definitions of these
derivations were based on this linear programming formulation.

Finding Sherali-Adams proofs The size of any Sherali-Adams proof of de-
gree at most d is polynomial in

� n
≤d

�

or nO(d) as is the size of the linear
programming formulation of Sherali-Adams. Since linear programming is
polynomial-time solvable, SA proofs of degree d may be found in time poly-
nomial in nO(d).

Sum of Squares (SoS) proofs

Sum of Squares (SoS) proofs are a generalization of Sherali-Adams proofs
that allows the use of other polynomials that we know must be non-negative
over the reals beyond the input constraints and the non-negative juntas:
sums of squares of polynomials.

Given a system of constraints defined by polynomial inequalities and
equalities

(h1 ≥ 0, . . . , hm ≥ 0; f1 = 0, . . . , fm = 0)

over the reals in variables x1, . . . , xn, a sum-of-squares (SoS) derivation of a
polynomial inequality h≥ 0 is an explicit list of real polynomials
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q0, . . . , qm; r1, . . . , rm′ such that

q0 +
m
∑

i=1

qi · hi +
∑

i∈[m′]

ri · fi = h. (1.4)

and for each i ∈ [0, m], qi is a sum of squares of polynomials.

If we consider the subset K ⊆ Rn defined by the system of constraints
then Eq. (1.4) is a proof that the polynomial h is always non-negative on K .
The question of whether such a proof always exists for a polynomial h that
is non-negative on K , was open for a long time and the answer was shown
to be negative in general3 by Motzkin, but it is true in the special case that 3 There are two pieces missing in Eq. (1.4)

that are required for the general condition.
We have to allow sums of products of the
h1, . . . , hm (which are also non-negative on
K) and we have to allow a representation
of q · h for some non-zero sum of squares q
and not just of h itself.

the set K is bounded.
We will focus on the case that the set K is a subset of the Boolean hyper-

cube {0, 1}n by always including the Boolean polynomials x2
1 − x1, . . . , x2

n −
xn among the polynomials f1, . . . , fm′ , which certainly guarantees that K
will be bounded. As was the case for SA we will assume that the proof is
done mod the ideal I generated by these Boolean polynomials4 so the proof 4 Working modulo the ideal I is equivalent

to being able to replace a polynomial p by
multilinear(p).

that h≥ 0 can be written simply as

q0 +
m
∑

i=1

qi · hi ≡I h. (1.5)

where all the qi are sums of squares, since the terms in the ideal I never
need to have larger degree than the rest. When we describe these proofs
we will also use the fact that the sum of SoS derivations of h and h′ is an
SoS derivation of h+ h′.

In particular, we will be interested in whether or not K is empty, which
we can certify by deriving the conclusion that the polynomial −1 is positive
on K .

In particular, a sum-of-squares (SoS) refutation of a CNF formula F =
∧

i∈[m] Ci is an explicit list of real polynomials q0, . . . , qm such that

q0 +
∑

i∈[m]

qi · `Ci
≡I −1 (1.6)

and each of q0, . . . , qm is a sum of squares of polynomials.

We now see that Sherali-Adams can be viewed as a special case of SoS
proofs up to a doubling of the degree.

Proposition 1.31. Every non-negative junta g of degree d can be expressed as
q+

∑

j∈[n] r j ·(x2
j − x j) where q is a square and deg(q) and max j(deg(r j)+2)

are at most 2d.

Proof. Since x = x2 − 1 · (x2 − x) and (1− x) = (1− x)2 − 1 · (x2 − x), the
statement is true for non-negative juntas of degree 1. To obtain the result
for larger d we simply multiply the expressions, yielding degree 2d.



C SE 599S COURSE NOTES: PROOF COMPLEXITY AND ITS APPLICATIONS 33

Since Nullstellensatz, and hence Sherali-Adams, has refutations of de-
gree at most n, we immediately obtain the following:

Corollary 1.32. Every CNF formula in n variables has an SoS refutation of
degree at most 2n.

The following theorem due to Berkholz was quite surprizing since it
shows that the dynamic proof system of polynomial calculus over the re-
als can be efficiently simulated by a purely static system.

Theorem 1.33. Every PCR derivation f1, . . . , fm; fm+1, . . . , fT in degree ≤ d,
size ≤ S, and coefficient bitsize ≤ B, can be simulated by an SoS derivation of
− f 2

T from ( f1 = 0, . . . , fm = 0; 1≥ 0) of degree ≤ 2d, size ≤ SO(1) and bitsize
BO(1).

Proof. Let f1, . . . , fm; fm+1 . . . , ft be PCR derivation and assume that every
coefficient c appearing in it satisfies 1/K ≤ 4c2 ≤ K . The required SoS
derivation is immediate from the following claim.

Claim 1.34. There is a sequence of polynomials qm+1, . . . , qT of degree at most
d such that for every t ≤ T, there is an expression Et of the form

Et =
m
∑

i=1

−(ci fi) · fi +
t
∑

i=m+1

ciq
2
i ≡I − f 2

t .

such that 1/K t ≤ ci ≤ K t for each i and every non-zero coefficient of each qi

is at most 2c2.

We prove this claim by induction on t.
CASE t ≤ m: Setting ct = 1 and ci = 0 for all other i ∈ [m] gives the
required expression.

CASE ft = x j ft ′ FOR t ′ < t: Since deg( ft) ≤ d, we have deg( ft ′) ≤ d − 1
and Et ′ ≡ − f 2

t ′ (mod I) by the inductive hypothesis. We set qt = (1− x j) ft ′

which has degree at most d and coefficient size at most twice that of ft ′ .
Then

q2
t = (1− x j)

2 f 2
t = (1− 2x j + x2

j ) f 2
t ′ ≡I (1− x2

j ) f
2
t ′ = f 2

t ′ − f 2
t .

Therefore setting Et = Et ′ + q2
t gives us the desired expression.

CASE ft = a ft ′+ b ft ′′ FOR t ′, t ′′ < t: By induction we have Et ′ ≡I − f 2
t ′ and

Et ′′ ≡I − f 2
t ′′ .

We set qt = a ft ′ − b ft ′′ . Now qt has degree at most d, and its coefficient
size is at most 2c2. Then

f 2
t = a2 f 2

t ′ + b2 f 2
t ′′ + 2ab ft ′ ft ′′

q2
t = a2 f 2

t ′ + b2 f 2
t ′′ − 2ab ft ′ ft ′′

so
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f 2
t + q2

t = 2a2 f 2
t ′ + 2b2 f 2

t ′′ ≡I −2a2 Et ′ − 2b2 Et ′′ .

Now defining Et = 2a2 Et ′ +2b2Et ′′ +q2
t we see that Et ≡I − f 2

t as required.

The polynomials used in the expressions for Et ′ and Et ′′ are part of the com-
mon set shared by all these expressions, so the only remaining part is to
verify the bounds on the ci . They could have grown by a factor of at most
2a2 + 2b2 which is at most 4c2 ≤ K by assumption.

Corollary 1.35. SoS polynomially simulates PCR.

Proof. Since a PCR refutation of a CNF formula F = ∧i∈[m]Ci derives the
polynomial 1, the simulation of Theorem 1.33 yields a derivation of -1 from
the initial polynomial equations pC1

= 0, . . . , pCm
= 0. We are almost done,

except that in SoS we typically assume that we begin with `C1
≥ 0, . . . ,`Cm

≥
0. To complete the argument we simply replace each pCi

by the expression
given in Proposition 1.28. (We can convert this expression to SoS without
increasing the degree.)

The relationship between CP and SoS is unclear.
SoS proofs are closely related to families of semidefinite- programming

relaxations of 01-programs of increasing numbers of variables and con-
straints that provide increasingly tight approximations of the integer (01)
convex hull. These variables for degree d correspond to monomials of de-
gree at most d. The SoS formulation is essentially by Parillo; Lasserre in-
dependently gave a dual formulation in terms of constraints on these lifted
variables. We will discuss much more about the interpretations of the values
of these variables.

Finding SoS proofs The size of any SoS proof of degree at most d is poly-
nomial in

� n
≤d

�

or nO(d) as is the size of its semi-definition programming
formulation. Since semi-definite programming is polynomial-time solvable,
SoS proofs of degree d may be found in time polynomial in nO(d).

Positivstellensatz proofs

Positivstellensatz proofs generalize SoS by using the fact that the product
of two non-negative quantities is itself non-negative. Like SoS, SA, and
Nullstellensatz proofs, these proofs are static.

Given a system of constraints defined by polynomial inequalities and
equalities

(h1 ≥ 0, . . . , hm ≥ 0; f1 = 0, . . . , fm = 0)

over the reals in variables x1, . . . , xn, a Positivstellensatz derivation of a poly-
nomial inequality h ≥ 0 is an explicit polynomial expression over R of the
form

t
∑

i=1

qi ·
∏

j∈Ai

hi +
∑

i∈[m′]

ri · fi = h. (1.7)
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Where for each i ∈ [t], Ai ⊆ [m] and qi is a sum of squares of polynomi-
als. The degree of the proof is the maximum of maxi deg(qi ·

∏

i∈Ai
hi and

maxi deg(ri · fi)

Ordinary SoS proofs are Positivstellensatz proofs in which each Ai has
size at most 1.

It is not clear whether there are analogous algorithms to those for SoS
to find low degree Positivstellensatz proofs.

Positivestellensatz calculus proofs

Positivstellensatz calculus proofs are the dynamic generalization of SA, SoS,
and Positivstellensatz proofs. (This is analogous to the way that PCF gen-
eralizes Nullstellensatz proofs and has the potential to provide substantial
savings in degree and proof size.) For simplicity, we assume that each line
f represents the statement that f ≥ 0. Given h1 ≥ 0, . . . , hm ≥ 0 we have
the axioms:

(Trivial axiom)
1

(Input axiom) for i ∈ [m]
hi

We give a non-minimal set of inference rules for simplicity. We will always
assume that we are operating mod the Boolean ideal I so we have:

f
(Multilinearization)

multilinear( f )

f g
(Linear Combination) for a, b ≥ 0

a · f + b · g

f
(Literal) for y ∈ {x1, . . . , xn, (1− x1), . . . , (1− xn)}y · f

f
(Multiply by Square) for p ∈ R[x1, . . . , xn]

p2 · f

With these rules we can directly simulate SoS.

f
(Input Multiplication) for i ∈ [m]

f · hi

With the Input Multiplication rule we can directly simulate ordinary Posi-
tivstellensatz (and not bother including any axiom but the trivial one). In-
put Multiplication is a special case a more general rule

f g
(Multiplication)

f · g

It is unclear how the specific rules affect the strength of the proof system.
There are no lower bounds knowm for any version that includes the Multiply
by Square rule.
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Cone Proof Systems

These are a generalization of both the Ideal Proof Systems and the Posi-
tivstellensatz Calculus,

1.6 Interesting classes of formulas

We state all of these as unsatisfiable CNF formulas, which generally mean
the negation of the principle under consideration.

Induction Principle This is the CNF formula IN Dn, whose clauses are:

• x1

• ¬x i ∨ x i+1 for i ∈ [n− 1]

• ¬xn

IN Dn has a trivial tree resolution refutation of height n and size n that
can be found by unit propagation from either x1 or ¬xn. An alternative
tree resolution refutation of height log2 n and size n follows using a binary
search tree, where one considers the left half if xdn/2e = 0 and the right half
if xdn/2e = 1.

The Pigeonhole Principle The basic pigeonhole principle states that if m> n
there is no 1-1 mapping from [m] to [n]. For m > n, the basic form PHPm

n

of the pigeonhole principle has variables x i j for i ∈ [m] and j ∈ [n] and
clauses

• Pigeon Clauses: x i1 ∨ . . .∨ x in for each i ∈ [m].

• Hole Clauses: ¬x i j ∨¬x i′ j for each i 6= i′ ∈ [m] and each j ∈ [n].

PHPm
n asserts the more general statement where the mapping can be an

arbitrary relation. If we want the weaker statement that applies only to
functions, we have f unct ion-PHPm

n which adds the clauses for PHPm
n :

• Function Clauses: ¬x i j ∨¬x i j′ for each i ∈ [m] and each j 6= j′ ∈ [n].

Alternatively, we can assert onto-PHPm
n which only applies the pigeonhole

principle to surjective relations by adding the following to PHPm
n :

• Surjectivity Clauses: x1 j ∨ . . . xn j for each j ∈ [n].

Finally, there is the bi jec t ive-PHPm
n which adds both the Function and Sur-

jectivity clauses.
We will see that PHPn+1

n is hard for many proof systems. In fact, PHPm
n

can be shown to be hard for resolution even when m is exponentially large
in n. However, PHPm

n is easy to refute in some semi-algebraic proof systems.
Observe that the standard semi-algebraic translation of PHPm

n is
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• Pigeon inequalities:
∑n

j=1 x i j ≥ 1 for every i ∈ [m]

• Hole inequalities: x i j + x i′ j ≤ 1 for every i 6= i′ ∈ [m] and each j ∈ [n].

We now see that there is a CP∗ refutation of PHPm
n with O(mn) lines using

the following proposition.

Proposition 1.36. For 2 ≤ k ≤ m there is a k-line CP∗ derivation from the
hole inequalities of

∑

i∈[k] x i j ≤ 1.

Proof. We show this by induction on k. The case for k = 2 is already an
axiom. Then we have

(1)
∑

i∈[k]

x i j ≤ 1 Inductive hypothesis

(2) x i j + x(k+1) j ≤ 1 Given for all i ∈ [k]

Adding k− 1 times (1) to the sum of all k inequalities in (2) yields

(3)
∑

i∈[k+1]

k · x i j ≤ 2k− 1.

Applying the division rule we obtain

(4)
∑

i∈[k+1]

x i j ≤ b(2k− 1)/kc= 1,

as required.

To complete the refutation of PHPm
n , summing up all m pigeon inequal-

ities, we obtain
∑

i∈[m], j∈[n] x i j ≥ m, while summing up the n derived in-
equalities from Proposition 1.36 we obtain

∑

i∈[m], j∈[n] x i j ≤ n and so n≥ m
and hence 0≥ m− n which is a contradiction since n< m.

SoS similarly can refute PHPm
n in small size and degree.

Proposition 1.37. There is a degree 3 SoS refutation of PHPm
n .

Proof. Observe that for each j ∈ [n], we can combine the hole axioms using
an SoS derivation as follows:

(1−
∑

i∈[m]

x i j)
2 +

∑

i,i′∈[m], i 6=i′
x2

i j · (1− x i j − x i′ j)≡I 1−
∑

i∈[m]

x i j

Therefore, summing these for all values of j we get a degree 3 derivation of

n−
∑

i∈[m], j∈[n]

x i j .

On the other hand, adding all the pigeons axioms together, we obtain
∑

i∈[m], j∈[n]

x i j −m.

Adding the two together with m− n− 1 which is non-negative, we derive
−1 as required.
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Pebbling formulas Let G = (V, E) be a directed acyclic graph (DAG) with
a single sink t and define pred(v) = {u | (u, v) ∈ E}. We can define the
pebbling formula PEB(G) whose clauses are:

• xv for every source vertex v ∈ V .

• (∨u∈pred(v)¬xu)∨ xv For all v ∈ V that is not a source.

• ¬x t .

Observe that the induction principle is the special case of pebbling formulas
where G is a single directed path on n nodes.

PEB(G) also has simple tree resolution refutations via unit propagation
of length |E|. However, in the case that G has small in-degree there is an
interesting version is a related lifted version PEB(G)∨2 in which each vari-
able xv has been replaced by an OR of two variables x0

v ∨ x1
v , obtaining a

formula whose clauses are:

• x0
v ∨ x1

v for every source vertex v ∈ V .

• (∨u∈pred(v)¬x b(u)
u )∨x0

v∨x1
v for all non-source v ∈ V and all b : pred(v)→

{0,1}.

• ¬x b
t for b ∈ {0, 1}.

For each non-source vertex v, there are 2|pred(v)| clauses in this formula of
the second type.

PEB(G)(∨2) still has resolution refutations of length that is linear in its
size as follows:

We will iteratively derive x0
v ∨ x1

v for each v ∈ V . We already have this
for the source vertices. To derive it for a new vertex v, we eliminate the
predecessors of vertex v, one at a time. In particular, let u∗ ∈ pred(v) and
fix b on pred(v)− u∗. We have clauses

C0 = ¬x0
u∗ ∨ (∨u∈pred(v)−u∗¬x b(u)

u )∨ x0
v ∨ x1

v

C1 = ¬x1
u∗ ∨ (∨u∈pred(v)−u∗¬x b(u)

u )∨ x0
v ∨ x1

v

and we have Cu∗ = x0
u∗ ∨ x1

u∗ by the inductive hypothesis. We first resolve
Cu∗ and C0 to get

D = x1
u∗ ∨ (∨u∈pred(v)−u∗¬x b(u)

u )∨ x0
v ∨ x1

v

and then resolving D and C1 yields

(∨u∈pred(v)−u∗¬x b(u)
u )∨ x0

v ∨ x1
v .

Repeating this for all assignments b on pred(v) − u∗ and then repeatedly
choosing elements of pred(v) that remain, one-by-one, yields the desired
clause x0

v ∨ x1
v in O(2|pred(v)|) steps, which is linear in the number of clauses

associated with vertex v.
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It will turn out that instances of these formulas on certain graphs hards
graphs G of bounded in-degree have useful properties. The following game,
which was originally defined to understand the number of registers required
to evaluate circuits, gives the key property.

Definition 1.38. The (black) pebbling game is a single-player game played
on the nodes of a directed acyclic graph G with a single sink t according to
the following rules:

• The graph G is initially empty.

• If all predecessors of a node v have pebbles then a pebble may be placed
on v.

• A pebble may be removed from a node at any time.

• The game ends when a pebble has been placed on t.

The (black) pebbling number, peb(G) of a graph G is the minimum over
all strategies of the maximum number of pebbles that need to be on the
vertices of G at any one time.

Binary trees on n nodes have pebbling number O(log n). Other graphs
can have much larger pebbling number. For example, the n-node pyramid
graph which is triangle consisting of a corner of the square grid with the
origin at the root has pebbling number Ω(

p
n). In fact, there are graphs of

in-degree 2 that have pebbling number Ω(n/ log n), which is optimal.

Ordering principles There are several such principles, all of which use vari-
ables xuv for u 6= v ∈ V for some set V to indicate that u≺ v for some total
order ≺ on V . They all contain the following axioms:

• Totality: xuv ∨ xvu for all u 6= v ∈ V .

• Anti-symmetry: ¬xuv ∨¬xvu for all u 6= v ∈ V .

• Transitivity: ¬xuv ∨¬xvw ∨ xuw for all distinct u, v, w ∈ V .

The simplest of these formulas, GTn, has V = [n] and adds axioms enforcing
that the total order ≺ does not have a minimal element:

• Non-minimality:
∨

u6=v xuv for all v ∈ V .

More generally, if G = (V, E) is an undirected graph, the graph ordering
principle on G, GOP(G), replaces the non-minimality axioms with a local
version stating that no vertex is even a local minimum of ≺.

• Local non-minimality:
∨

u:(u,v)∈E xuv for each v ∈ V .

Note that GTn = GOP(Kn) where Kn is the complete graph.

Proposition 1.39. GTn has a polynomial size ordered resolution refutation.
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Proof. The general idea is to derive the non-minimality axioms of GTn−1

from those of GTn by resolving out all variables that touch vertex n, one
after another. The details are left as an exercise.

Tseitin formulas These formulas are based on the handshaking principle
for undirected graphs. Tseitin originally introduced these formulas in his
1968 paper in which he first defined regular resolution. He used these for-
mulas over grid graphs as examples for which he proved the first super-
polynomial lower bounds for regular resolution.

There is a Tseitin formula TS(G,`) for each undirected graph G = (V, E)
and each labeling function ` : V → {0, 1} with total parity being odd, that
is
∑

v∈V `(v)≡ 1 (mod 2). It has a variable xe for each edge e ∈ E and has:

• clauses representing the constraint that
∑

e3v xe ≡ `(v) (mod 2) for each
v ∈ V .

(If vertex v has degree d, there will be 2d−1 clauses representing the
constraint at v.)

By the handshaking principle, TS(G,`) would require that

2|E|=
∑

v∈V

∑

e3v

xe ≡
∑

v∈V

`(v)≡ 1 (mod 2)

and hence is unsatisfiable.
Given two odd labelings ` and `′ of V , it is quite easy to derive TS(G,`)

from TS(G,`′), so the complexity of the problem generally depends only
on the graph G

The Tseitin formulas are of particular interest for constant-degree graphs,
for which the formulas have O(m) clauses. We will see that they are partic-
ularly difficult to refute over constant-degree expander graphs.

Modular counting formulas These are defined for any integer k ≥ 2 and
integer n not divisible by k. They express the property that [n] cannot be
partitioned into sets of size k. The modular counting formula COUN T n

k has
variables xe for each e ⊂ [n] with |e| = k; for two such sets e, f ⊂ [n], we
write e ⊥ f iff 0< |e ∩ f |< k. The clauses of COUN T n

k are:

•
∨

e3v xe for each v ∈ [n].

• ¬xe ∨¬x f for each e, f ⊂ [n] with e ⊥ f .

The formula COUN T 2n+1
2 is also known as the Parity Principle and essen-

tially says that the graph K2n+1 does not have a perfect matching. Observe
that the unsatisfiability of bi jec t ive-PHPn+1

n follows from that of the Parity
Principle.

Proposition 1.40. For p a prime and n not divisible by p, there are polynomial-
size Nullstellensatz refutations of COUN T n

p in PCFp
.
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Random k-CNF formulas Let F k,m
n be distribution of random k-CNF for-

mulas with m clauses chosen uniformly randomly and independently from
the set of 2k

�n
k

�

possible clauses on k distinct variables.
Unlike the other families of CNF formulas we consider, random k-CNF

formulas are not always unsatisfiable. However, if there are sufficiently
many clauses, then they are almost surely unsatisfiable:

Theorem 1.41. Let k ≥ 2 be an integer and∆> 2k ln 2. For F ∼F k,m
n where

m≥∆n, F is unsatisfiable with probability 1− on(1).

Proof. Let ε = ∆− 2k ln2. Fix a single truth assignment α to the variables
of F ∼F k,m

n . A uniformly random k-clause is satisfied by α with probability
precisely 1− 1/2k. Since k-clauses of F ∼ F k,m

n are chosen uniformly and
independently, the probability that α satisfies F is precisely (1−1/2k)m. Let
#(F) be the number of satisfying assignments for F . Therefore

Pr
F∼F k,m

n

[F is satisfiable ]≤ E
F∼F k,m

n

[#(F)]

=
∑

α∈{0,1}n
Pr

F∼F k,m
n

[α satisfies F]

= 2n · (1− 1/2k)m ≤ 2n e−m/2k

≤ 2n · e−n ln2−ε n/2k
= e−εn/2

k
,

which is on(1) since k is fixed.





2
The Complexity of Resolution

2.1 An exponential lower bound for the pigeonhole principle

The first exponential lower bound for general resolution was proven for
the pigeonhole principle PHPn+1

n by Haken in 1984, who introduced many
of the concepts important for resolution lower bounds. Here we present a
simpler proof that retains many of these ideas and gets a slightly sharper
bound.

Theorem 2.1. For n ≥ 2, any resolution refutation of PHPn
n−1 has size at

least 2n/20.

Proof. Following Haken, a truth assignment to the variables x i j of PHPn
n−1

is called critical if it defines a one-to-one, onto map from n− 1 pigeons to
n− 1 holes, with the remaining pigeon not mapped to any hole. A critical
assignment where i is the pigeon left out is called i-critical. In what follows
we will only be interested in critical truth assignments.

Let C be a clause. The monotone clause M(C) associated to C is obtained
by replacing each occurrence of a negative literal ¬x ik by the set of literals
{x i′k | i′ 6= i}. It is easy to check that C and M(C) are satisfied by precisely
the same set of critical assignments.

We will be interested in restrictions corresponding to partial matchings
that one obtains by repeatedly choosing an (i, j) pair, and setting x i j = 1,
x i j′ = 0 for j′ 6= j, and x i′ j = 0 for i′ 6= i. Observe that if one begins with
a resolution refutation of PHPn

n−1 and one chooses such a partial matching
restriction that sets t variables to 1 then the result is resolution refutation
of PHPn−t

n−t−1. Furthermore, the restriction applied to the monotone con-
version of each clause results in the same clause as doing the monotone
conversion of the clause first and then applying the restriction. (The trans-
formation to monotone clauses, is not essential, but makes the argument
slightly cleaner.)

So let C1, ..., CS be a resolution refutation of PHPn
n−1 and M1 = M(C1), . . .,

MS = M(CS) be its monotone conversion. Say that a converted clause Mt is
large if it has at least n2/10 (positive) literals, i.e. at least 1/10-th of all the
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variables. To show that S ≥ 2n/20, we will show that the number L of large
clauses is at least 2n/20. Assume for contradiction that L < 2n/20. Let di j

denote the number of large clauses containing x i j . By averaging, there is an
(i, j) with di j ≥ L/10. Choose such an (i, j) pair, and apply the restriction
x i j = 1, x i j′ = 0 for j′ 6= j, and x i′ j = 0 for i′ 6= i. Applying this restriction
we obtain a monotone conversion of a refutation of PHPn−1

n−2 with at most
9L/10 large clauses. Applying this argument iteratively log10/9 L times, we
are guaranteed to have knocked out all large clauses. Thus, we are left with
a refutation of PHPn′

n′−1, where

n′ ≥ n− log10/9 L = (1− (log10/9 2)/20)n> 0.671n,

and where no clause in the refutation is large. But this contradicts the fol-
lowing lemma (originally due to Haken 1) which states that such a refu- 1

tation must have a clause whose monotone conversion has size at least
2(n′)2/9> n2/10.

Lemma 2.2. Any resolution refutation of PHPn
n−1 must contain a clause C

such that M(C) has at least 2n2/9 literals.

Proof. Given a clause C , let

badpigeons(C) = {i | there is some i-critical assignment α falsifying C}.

Define the complexity comp(C) = |badpigeons(C)|.
Let P be a resolution refutation of PHPn

n−1, and consider the complexity
of the clauses that appear in P. The complexity of each initial clause is at
most 1 and the complexity of the final false clause is n.

Note that if we use the resolution rule to derive a clause C from two
previous clauses C ′ and C ′′, we have that comp(C)≤ comp(C ′)+comp(C ′′),
since any assignment falsifying C must also falsify at least one of C ′ or C ′′.
If C is the first clause in the proof with comp(C) > n/3, we must have
n/3 < comp(C) ≤ 2n/3. We will show that M(C) contains a large number
of variables.

For comp(C) = t will now show that M(C) has at least (n− t)t ≥ 2n2/9
distinct literals mentioned. Fix some i ∈ badpigeons(C), and let α be an
i-critical truth assignment falsifying C . For each j 6∈ badpigeons(C), con-
sider the j-critical assignment, α′, obtained from α by replacing i by j, that
is by mapping i to the place that j was mapped to in α. This assignment
satisfies C , and differs from α only in one place: if αmapped j to k, then α′

maps i to k. Since C and M(C) agree on all critical assignments and M(C)
is monotone, it must contain the variable x ik.

Running over all n− t j’s not in badpigeons(C) (using the same α), it
follows that M(C) must contain at least n− t distinct variables x ik, k ≤ n.
Repeating the argument for all i ∈ badpigeons(C) shows that C contains
at least (n− t)t positive literals.
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2.2 Resolution width and proof size

Definition 2.3. For a CNF formula F , we write Res(F) for the minimum
number of clauses in any Resolution refutation of F . If F is satisfiable then
Res(F) =∞.

We define Rest ree(F), Resorder(F), and Resreg(F) analogously for the the
number of clauses required for the restricted cases of tree resolution, or-
dered (Davis-Putnam) resolution, and regular resolution proofs respectively.

Definition 2.4. For a CNF formula F write w(F) = maxC∈F |C | and for a
resolution proof P, define the width of P, w(P) =maxC∈P |C |.

For a CNF formula F define width(F) to be the minimum width w(P)
over all resolution refutations P of F (and∞ if no such refutation exists).

Remark 2.5. Observe that any CNF formula F has a tree-like resolution
refutation of width width(F), since, by repeating derivations, any resolution
refutation can be expanded to a tree-like one using the same set of clauses.

Definition 2.6. A restriction on set of variables X is a partial assignment of
Boolean values ρ : X → {0, 1,∗}, where ρ(x) = 0 or ρ(x) = 1 indicates that
variable x ∈ X has been set to 0 or 1, respectively, and ρ(x) = ∗ indicates
that variable x is unaffected.

Given a Boolean formula F and a restriction ρ defined on the variables
of F , we write Fρ for the formula in which each variable x of F assigned by
ρ is substituted by ρ(x); we write F |ρ for the formula in which we make
substitutions as in Fρ and then apply all immediate simplifications based on
the substituted values. In particular, if F is a CNF formula, in computing F |ρ,
every clause satisfied by ρ is removed and every falsified literal is removed
from the remaining clauses of F . Similarly, if P is a resolution proof, in P|ρ,
every satisfied clause is removed and any remaining clause is shortened.

We sometimes describe a restriction ρ as an explicit sequence of pairs of
the form x ← ρ(x) or ¬x ← 1 − ρ(x) for all x ∈ X for which ρ(x) 6= ∗.
In that case, we omit the vertical bar in the notation where we apply the
restriction, so that, for example, if ρ is x ← 1, y ← 0 we write Fx←1,y←0 in
place of F |ρ.

Proposition 2.7. (a) Let P be a resolution derivation of a clause C from CNF
formula F. For any restriction ρ on the variables of F, P|ρ is a resolution
derivation of C |ρ from F |ρ.

(b) For literal z, if width(Fz←1) ≤ w then either width(F) ≤ w or there is a
resolution derivation of ¬z from F of width at most w+ 1.

Proof. Part (a) is immediate. For part (b), let P ′ be a refutation of Fz←1 of
width at most w. For the new derivation, replace each input clause of Fz←1

by the corresponding clause of F and retain the same sequence of resolution
steps (which is possible since none of the resolution steps involve the literal
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z) to yield a proof P. The replacement of input clauses of Fz←1 by those
of F may add ¬z to some input clauses. It is immediate, inductively, that
every clause of proof P ′ either stays the same or has ¬z added to it in P.
If the output clause is still the empty clause ⊥, then all the clauses of Fz←1

leading to the output clause of P ′ were in the original formula F , so P ′ is
the required refutation. Otherwise, the clause width of P is at most w+ 1
and the output clause is ¬z.

Theorem 2.8. Let F be a CNF formula in n variables.

(a) If Rest ree(F)≤ S then width(F)≤ log2 S +w(F).

(b) If Res(F)≤ S then width(F)≤max(2
p

2n ln S,
p

2n ln S +w(F)).

Proof. We first prove part (a) by induction on S: For the base case, observe
that it holds for S = 1 since in that case the proof width is 0.

Let P be a tree-like refutation of F of size at most S and assume that
the final resolution step (producing the empty clause ⊥) resolves clauses x
and ¬x . Since P is tree-like, the derivations of x and ¬x do not share any
instances of derived clauses and so P consists of two disjoint derivations, Px

that infers x from F and P¬x that infers ¬x from F . By definition, #(Px) +
#(P¬x) ≤ S − 1. Hence, both Px and P¬x have at most S − 1 clauses and at
least one has at most S/2 clauses. Let z be a literal (equal to x or ¬x) for
which #(P¬z)≤ S/2.

Applying the restriction z ← 1 to P¬z , by Proposition 2.7(a) we obtain
a tree-like length ≤ S/2 derivation of ⊥ from Fz←1. Hence we can apply
our inductive hypotheses to derive a refutation P ′1 of Fz←1 with w(P ′1) ≤
log2 S + w(F) − 1. Applying Proposition 2.7(b) to P ′1 and z, we obtain a
derivation P ′′1 of ¬z from F with w(P ′′1 )≤ log2 S +w(F).

Applying the restriction z← 0 to Pz , we similarly obtain a tree-like length
≤ S−1 derivation of⊥ from Fz←0 and hence by the inductive hypothesis we
can efficiently compute a refutation P ′0 of Fz←0 with w(P ′0)≤ log2 S +w(F).

The refutation of F of width at most log2 S + w(F) is constructed as fol-
lows: (1) use the steps of P ′′1 to derive ¬z then (2) resolve ¬z with clauses
of F containing z to produce clauses of Fz←0, and finally (3) use the steps
of P ′0 to derive ⊥ from Fz←0.

We now prove part (b):
Set W = d

p
2n ln Se. We say that a clause C is wide iff w(C)≥W . We prove

the following claim by induction on n and k:

CLAIM: If (1−W/2n)k S < 1 then any CNF formula F in n variables having a
resolution refutation with≤ S wide clauses has width(F)≤max(W, w(F))+
k.

Before proving the claim, we observe that the case k =W is sufficient to
prove part (b), since (1−W/2n)W < e−W 2/2n ≤ 1/S by the choice of W .
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The case k = 0 is trivial, since a refutation with no wide clauses has
width at most W .

For the general case, let P be a resolution refutation of F with n variable
and≤ S clauses of width≥W and suppose that (1−W/2n)k S ≤ 1. Choose
the literal z appearing in the most wide clauses of P. Since there are ≤ 2n
possible literals and ≥ W distinct literals per wide clause, z appears in ≥
WS/2n wide clauses.

Consider the restrictions z ← 1 and z ← 0: Then Pz←1 is a resolution
refutation of Fz←1 and every clause of P containing z is satisfied and hence
removed (and others are only shortened), so Pz←1 has S′ ≤ S −WS/2n =
(1−W/2n) S wide clauses. Therefore (1−W/2n)k−1 S′ ≤ (1−W/2n)k S ≤
1. It follows by our inductive hypothesis with k′ = k− 1, that

width(Fz←1)≤max(W, w(Fz←1)) + k− 1≤max(W, w(F)) + k− 1.

By Proposition 2.7(b), either width(F) ≤ max(W, w(F)) + k, and we are
done, or there is a derivation P ′ of ¬z from F of width ≤max(W, w(F))+k.

Now, Pz←0 is a refutation of Fz←0. By the inductive hypothesis applied
to Fz←0, which has n′ = n − 1 variables, there is a refutation P ′′ of Fz←0

of width at most max(W, w(F)) + k. We next resolve ¬z with clauses of F
containing z to produce every clause of Fz←0 used in P ′′. This part requires
width at most w(F).

Putting the parts together we obtain a single refutation of F of width at
most max(W, w(F)) + k as required for the induction step.

Corollary 2.9. Let F be a CNF formula in n variables.

• If there is a resolution refutation of F or size at most S then there is an algo-
rithm running in time nO(

p
n log S+w(F)) that will find a resolution refutation

of F.

• If there is a tree resolution refutation of F or size at most S then there is
an algorithm running in time SO(log n)nO(w(F)) that will find a resolution
refutation of F.

Proof. For each bound, apply a width-increasing search on proofs up to
the width bound W ∗ given in Theorem 2.8. That is, it applies all possible
resolution inferences that yield clauses of width w beginning with w= w(F)
and increasing until a refutation is found. The number of distinct clauses
up to this width bound W ∗ is less than

∑W ∗

w=0

�2n
w

�

and the running time is
polynomial in this number of potential clauses. Plugging in the different
values of W ∗ and using standard binomial bounds for the two cases yields
the claimed running times.

We restate Theorem 2.8 in the following convenient form:

Theorem 2.10. For any CNF formula F in n variables,
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(a) Rest ree(F)≥ 2width(F)−w(F), and

(b) Res(F)≥ exp[min((width(F)−w(F))2/2n, width(F)2/8n)].

This implies that sufficiently strong resolution width lower bounds suf-
fice for proving resolution size lower bounds. It is known that the width-size
relationship in Theorems 2.8 and 2.10 cannot be improved beyond a loga-
rithmic factor in width or a polynomial factor in size.

In the following sections we show that certain expansion properties of
the clauses of F imply good width lower bounds.

2.3 Boundary expansion and bipartite expansion

Definition 2.11. For a bipartite graph G = (L, R, E) and a set S ⊆ L, the
boundary of S, denoted ∂ S, is the set of all v ∈ R that have exactly one
neighbor u ∈ S.

Graph G = (L, R, E) is an (r, c)-boundary expander iff for every S ⊂ L with
|S| ≤ r, the boundary ∂ S satisfies |∂ S| ≥ c|S|.

Definition 2.12. Any CNF formula F corresponds to a bipartite graph GF =
(L, R, E) where L is the set of clauses of F , R is the set of variables of F , and
(C , x) ∈ E iff variable x appears in clause C .

Given a set of clauses S, the boundary of S, ∂ S, in GF is a set of variables,
but since each occurs with a unique sign in the clauses of S, we can also
interpret ∂ S as a set of literals when it is convenient.

Lemma 2.13. If F is a CNF formula, D is a clause and

• there is a resolution derivation of C∗ from F for which S is the set of clauses
of F that have a path to C∗, or

• S is a minimal subset of the clauses of F whose conjunction implies clause
C∗

then |C∗| ≥ |∂ S|.

Proof. For the first case, observe that the literals in the boundary variables
of S pass through to C∗ without cancellation. For the second case, let x
be a variable in ∂ S and C be the unique clause in S containing x in the
form of literal `. The minimality of S implies that there is some assignment
that satisfies all clauses in S − {C} but makes C∗ false. We can also make
all of S true by flipping ` to true, without changing the assignment on the
remaining clauses, which in turn must make C∗ true. Hence ` is in C∗, so
|C∗| ≥ |∂ S|.

Boundary expansion plays a role in a wide variety of lower bound ar-
guments in proof complexity. In particular, it suffices to prove width lower
bounds for resolution proofs and hence lower bounds on resolution and tree
resolution proof size using Theorem 2.10.
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Theorem 2.14. Any CNF formula F for which GF is an (r, c)-boundary ex-
pander requires resolution refutation width > cr/2.

Proof. Without loss of generality we may assume that c > 0. Define the
complexity of a clause C in the refutation of F to be the size of the subset
of clauses S of F that have a path to C in the proof. In particular, since GF

is an (r, c)-boundary expander, any set S of clauses of size at most r has
|∂ S| > c|S| > 0 by Lemma 2.13 and hence C 6= ⊥. Therefore, the empty
clause at the root of the proof must have complexity > r. The input clauses
have complexity 1. By the soundness of the resolution rule, complexity is
sub-additive; that is, if C is derived from A and B, then the complexity of C
is at most the sum of the complexities of A and B.

We therefore follow the proof back from the root, always taking the
branch of larger complexity, which will be at least 1/2 of the previous com-
plexity by sub-additivity. Eventually this must pass through a clause C∗ with
paths from a minimal subset S of clauses of F with r/2< |S| ≤ r that yields
C∗. Since GF is an (r, c)-bipartite expander, |C∗| ≥ |∂ S| ≥ c|S| > cr/2 as
required.

In general, we can derive boundary expansion as a consequence of suf-
ficiently large bipartite expansion (relative to clause size).

Definition 2.15. A bipartite graph G = (L, R, E) is an (r, c)-bipartite ex-
pander iff every set S ⊆ L with |S| ≤ r has |N(S)| ≥ (1+ c)|S|, where N(S)
is the set of neighbors of elements of S in G.

Proposition 2.16. If G = (L, R, E) has left degree at most k and is an (r, c)-
bipartite expander, then it is an (r, c′)-boundary expander for c′ = 2(c+1)−k.

Proof. Let S ⊂ L with |S| ≤ r. Every element of the neighborhood N(S) of
S that is not in ∂ S is incident to at least 2 of the at most k|S| edges that are
incident to S. Therefore

k|S| ≥ 2|N(S)− ∂ S|+ |∂ S|= 2|N(S)| − |∂ S|.

Since G is an (r, c)-bipartite expander, |N(S)| ≥ 1 + c = (k + c′)|S|/2 and
plugging this in yields |∂ S| ≥ c′|S|.

Corollary 2.17. In particular, if F is k-CNF formula such that GF is an (r, c)-
bipartite expander for c ≥ k/2−1+δ then GF is an (r, 2δ)-boundary expander
and hence width(F)> rδ,

Proof. This follows by plugging in c = k/2−1+δ into Proposition 2.16 and
then applying Theorem 2.14.

For resolution, it turns out that boundary expansion is a more stringent
requirement than necessary and bipartite expansion alone suffices. Namely,
rather than requiring bipartite expansion constant larger than k/2 − 1, it
suffices to merely have positive bipartite expansion.
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Theorem 2.18. Any CNF formula F for which GF is an (r, c)-bipartite ex-
pander requires resolution refutation width > cr/2.

This theorem follows almost exactly the same pattern as the result for
boundary expanders but uses stronger properties of the size of derived
clauses that follow from the use of Hall’s Theorem stated below.

Proposition 2.19 (Hall’s Theorem). In a bipartite graph G = (L, R, E), a
subset S ⊆ L can be matched in G if and only if for every subset T ⊆ S,
|N(T )| ≥ |T |.

Proof Sketch. Clearly, if the condition is violated, there is no way to match
all the elements of T . The other direction follows from the fact that for
any proper subset T ′ ⊂ S and any v ∈ S \ T ′, any matching on T ′ can be
converted to a matching of T = T ′ ∪ {v} (via an augmenting path) since
|N(T )| ≥ |T |> |T ′|.

Hall’s Theorem yields an important consequence for the sizes of mini-
mally unsatisfiable sets of clause.

Lemma 2.20. For any minimally unsatisfiable set of clauses S, |Vars(S)| <
|S|

Proof. Consider the bipartite graph GS for the CNF formula on S. If GS

contains a matching on all clauses of S then the assignment that sets each
variable according to the clause it is matched to is a satisfying assignment.
Since S is unsatisfiable, there is no such matching on S. Therefore, by Hall’s
Theorem, there is some subset T ⊆ S such that |N(T )| < |T | in GS , that is,
|Vars(T )|< |T |. Choose the largest such subset T .

Suppose that T 6= S. Then by the minimality of S there is some assign-
ment α to N(T ) that satisfies T . By the maximality of T , for every nonempty
V ⊆ S − T , we have |N(T ∪ V )| ≥ |T ∪ V | and hence |N(V )− N(T )| > |V |.
(We don’t actually need strict inequality here.) By Hall’s Theorem, this
means that there is a matching of the clauses in S − T to the variables in
N(S) − N(T ). If we combine α with the partial assignment β to the vari-
ables in N(S)−N(T ) that agrees with the clause it is matched to, we obtain
a satisfying assignment to S, which is a contradiction.

The following somewhat technical, but easy, consequence is the key to
the sharper lower bounds based on bipartite expansion.

Lemma 2.21. If F is a CNF formula, D is a clause and S is a minimal subset
of the clauses of F whose conjunction implies D, then |D|> |Vars(S)| − |S|.

Proof. Let ρ be the unique partial truth assignment of size |D| that falsifies
D. Consider the set of clauses S|ρ = {C |ρ | C ∈ S}. This must be contradic-
tory since implication is preserved under the application of any restriction.
Moreover, for any proper subset S′ ⊂ S if S′|ρ is contradictory, then the
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clauses in S′ would imply D, contradicting the minimality of S. Therefore,
S|ρ is a minimally unsatisfiable set of clauses and hence, by Lemma 2.20,

|Vars(S)| − |D|= |Vars(S|ρ)|< |S|ρ | ≤ |S|.

We are now ready to prove Theorem 2.18.

Proof of Theorem 2.18. Without loss of generality we may assume that c >
0. Define the complexity of a clause D in the refutation of F as the mini-
mal size of a subset of clauses S of F that implies D. In particular, since
GF is an (r, c)-bipartite expander, any set S of clauses of size at most r has
|Vars(S)| > |S| and hence is satisfiable by Lemma 2.20. Therefore, the
empty clause at the root of the proof must have complexity > r. The in-
put clauses have complexity 1. By the soundness of the resolution rule,
complexity is sub-additive; that is, if D is derived from A and B, then the
complexity of D is at most the sum of the complexities of A and B.

We therefore follow the proof back from the root, always taking the
branch of larger complexity, which will be at least 1/2 of the previous com-
plexity by sub-additivity. Eventually this must pass through a clause D hav-
ing a minimal subset S of clauses of size between r/2 and r that implies
D. Since GF is an (r, c)-bipartite expander, |Vars(S)| ≥ (1 + c)|S| and by
Lemma 2.21, we get |D|> |Vars(S)| − |S| ≥ c|S| ≥ cr2 as required.

2.4 Random k-CNF formulas: Expansion and resolution lower
bounds

Let F k,m
n be distribution of random k-CNF formulas with m clauses cho-

sen uniformly randomly and independently from the set of 2k
�n

k

�

possible
clauses on k distinct variables.

Lemma 2.22. Let δ > 0. If 0 < (1 + δ) c < k − 2, there is a constant
Cc,δ > 0 such that if ∆ = ∆(n) ≤ nk−2−(1+δ) c then for F ∼ F k,∆n

n , GF is an
(r, c)-bipartite expander with probability 1−on(1) for r = Cc,δ ·n/∆1/(k−2−c).

Proof. Fix a set of clauses S of size s, let q = (1 + c)s, and fix a set T of
variables of size q. For a single C ∈ S, Let p =

�q
k

�

/
�n

k

�

≤ qk/nk be the
probability that all variables of C are in T . Now

Pr[|N(S)| ≤ q]≤
�

n
q

�

ps

≤
�

ne
q

�q �q
n

�ks

= eq ·
�q

n

�ks−q

= e(1+c)s ·
�

(1+ c)s
n

�(k−1−c) s

= as ·
� s

n

�(k−1−c) s



52 PAUL BEAME

for a = e(1+c)(1+ c)k−1−c . Therefore, the probability that GF is not an (r, c)-
bipartite expander is at most

r
∑

s=1

�

∆n
s

�

as ·
� s

n

�(k−1−c) s
≤

r
∑

s=1

�

a · e ·∆n
s

�s

·
� s

n

�(k−1−c) s

=
r
∑

s=1

�

a · e ·∆ ·
� s

n

�k−2−c�s

=
r
∑

s=1

�

b ·∆ ·
� s

n

�k−2−c�s

for b = a · e which depends only on c and k.
To bound this quantity we split the sum into two cases depending on

whether s is small or large. More precisely, we set a threshold t that is a
small growing function of n and show that s > t, we can bound each term
by 1/2s so the total of the large terms is On(1/2t) which is on(1) and for
s ≤ t we show that it is on(1/t) and hence the total is on(1).
Set C = 1/(2b)1/(k−2−c). We first bound every term s ≤ r by 1/2s:
Then

b ·∆ ·
� s

n

�k−2−c
≤ b ·∆ ·

� r
n

�k−2−c

= b ·∆ ·
�

C
∆1/(k−2−c)

�k−2−c

= b · C k−2−c

= b · 1/(2b) = 1/2,

which implies that the term for s is at most 1/2s.
Now, we have a lot of freedom to choose t provided that it is ωn(1) and

not too large. For any such t, the sum of terms over all s such that t < s ≤ r
is at most

∑

s≥t 1/2s = 1/2t−1 which is on(1). For example, we can chose
t = log2 n or t = nδc/[2(k−1−c)]. We now show that we can get a stronger
bound on the total contribution for s ≤ t. Observe that in this case,

b ·∆ ·
� s

n

�k−2−c
≤ b · nk−2−(1+δ)c ·

� t
n

�k−2−c

≤ b · tk−2−c · n−δc .

There are at most t such terms (each raised to a power s ≥ 1) so the total
contribution of such terms is at most b · tk−1−c · n−δc ≤ bn−δc/2, which is
on(1) and hence the sum of terms for all s ≤ r is on(1) as required.

It remains to show that C can be taken to depend on only on c and δ and
not on k. Set Cc,δ = 2−1/(δc) · e−(2+c)/(δc) · (1+ c)−(1+1/(δc)) > 0. It suffices to
show that Cc,δ ≤ C = 1/(2b)1/(k−2−c) or equivalently that C k−2−c

c,δ ≤ 1/(2b).
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Since k− 2> (1+δ)c we have k− 2− c ≥ δc and so

C k−2−c
c,δ = [2−1/(δc) · e−(2+c)/(δc) · (1+ c)−(1+1/(δc))]k−2−c

≤ 2−1 · e−(2+c) · (1+ c)−(k−2−c) · (1+ c)−1 using k− 2− c > δc

= 1/(2 · e · e1+c · (1+ c)k−1−c)

= 1/(2 · e · a) = 1/(2b)

as required.

Putting the pieces together to obtain exponential lower bounds for reso-
lution refutations for random k-CNF formulas.

Theorem 2.23. For k ≥ 3 and every ε′ > ε > 0, there is a constant C > 0 such
that if F ∼F k,∆n

n for ∆=∆(n)≤ nk−2−ε′ then with probability 1− on(1),

• Res(F)> 2Cn/∆2/(k−2−ε)
,

• Rest ree(F)> 2Cn/∆1/(k−2−ε)
.

Proof. Set c = ε and δ = (ε′ − c)/c. By Lemma 2.22, there is a constant
Cc,δ > 0 such that with probability 1 − on(1), GF is an (r, c)=bipartite ex-
pander for r = Cc,δ · n/∆1/(k−2−ε) and hence, by Theorem 2.18, width(F)>
cr/2. Plugging this width lower bound (and k) into Theorem 2.10 yields
the claimed bounds.

In particular, we obtain the following

Corollary 2.24. • For any c > 0, random k-CNF formulas on n variables
with at most cn clauses almost surely require resolution refutation size
2Ω(n).

• For every δ > 0, random k-CNF formulas on n variables with at most nk/2−δ

clauses almost surely do not have polynomial-size resolution refutations.

Proof. The first is an immediate implication. For the second, we have ∆n
clauses for ∆ = n(k−2−2δ)/2 in this case, for any δ > 0, we have . can set
ε′ = δ and ε = δ/3 in Theorem 2.23 to obtain a lower bound of the

Even though boundary expansion of random formulas yields weaker width
lower bounds for resolution proofs as the clause-variable ratio∆ grows with
n, we show that random k-CNF formulas also have good boundary expan-
sion if ∆ is not too large. This is useful for the analysis of random formulas
in other proof systems.

Lemma 2.25. Let δ > 0 and 0< c < k−2−δc. There is a constant C ′c,δ > 0

such that if ∆ = ∆(n) ≤ n
(k−2−c)

2 (1−δ/2) then for F ∼ F k,∆n
n , GF is an (r, c)-

boundary expander with probability 1 − on(1) for r = C ′c,δ · k
−1−2/(k−2−c) ·

n/∆2/(k−2−c).



54 PAUL BEAME

Proof. Plug in c′ = (k+c)/2−1 in place of c and 0< δ′ = δ·(k−2−c)/[2(k+
c−2)] in place of δ in Lemma 2.22. Observe that k−2−c′ = (k−2−c)/2>
δ′c′ and that k− 2− (1+δ′) c′ = [(k− 2− c)/2]−δ′c′ = (k−2−c)

2 (1−δ/2).
Since c′ ≥ (k− 2)/2 is already a function of k, rather than using C = Cc′,δ′

as the constant in the definition of r, we optimize the constant as a function
of k. We chose C so that Ck,c′ · C k−2−c′ ≤ 1/2, where

Ck,c′ = e2+c′(1+ c′)k−1−c′ = e(k+c+1)/2[(k+ c)/2](k−c)/2 ≤ e(k+c+2)/2k(k−c)/2.

Since k− 2− c′ = (k− 2− c)/2, it suffices to choose

C ≤ 2−2/(k−2−c) · e−(1+(c+3)/(k−2−c)) · k−1−2/(k−2−c)

≤ 2−2/(δc) · e−1−1/δ−3/(δc) · k−1−2/(k−2−c)

= C ′δ,c · k
−1−2/(k−2−c),

for C ′
δ,c = 2−2/(δc) · e−1−1/δ−3/(δc).

Therefore by Lemma 2.22, F is an (r, c′)-bipartite expander with proba-
bility 1− on(1). By Proposition 2.16, F is an (r, c)-boundary expander.

2.5 Other applications and limitations of width-based lower bounds

In the general resolution lower bound of , the impact of the maximum input
clause size of F from width(F) and the division by the number of variables
can both limit the utility of the lower bound.

If we try to apply Theorem 2.10 to the PHPn+1
n formula, we immediately

run into problems, since PHPn+1
n has Θ(n2) variables, but width(PHPn+1

n )
is O(n) so the largest lower bound from Theorem 2.10(b) is trivial. In ad-
dition, w(PHPn+1

n ) = n which is similar to the width lower bound.
To get around this, one can define a restricted version of the pigeonhole

principle, called the graph pigeonhole principle, PHP(G), given any bipartite
graph G on [n+ 1]× [n], which has variables x i j only for (i, j) ∈ E(G):

• Pigeon clauses:
∨

j: (i, j)∈ E(G) x i j for each i ∈ [n+ 1]

• Hole clauses: ¬x i j ∨ ¬x i′ j for all j ∈ [n] and i 6= i′ ∈ [n + 1] s.t.
(i, j), (i′, j) ∈ E(G).

Then PHPn+1
n = PHP(Kn+1,n) for the complete bipartite graph Kn+1,n. More-

over, PHP(G) is a restriction of PHPn+1
n in which all x i j for (i, j) /∈ E(G)

have been set to 0. Hence by Proposition 2.7, the restriction of any resolu-
tion refutation of PHPn+1

n is a resolution refutation of PHP(G) so it suffices
to lower bound Res(PHP(G)) for any graph G.

By similar calculations to the ones for random k-CNF formulas, if we
choose G to be a random bipartite subgraph of Kn+1,n that is 5-regular on
the left, it is almost surely an (r, c)-expander for constant c > 0 and r that
is linear in n.
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A variant of the method allows us to prove lower bounds for Tseitin for-
mulas on expanding graphs. Recall that there is a Tseitin formula TS(G,`)
for each undirected graph G = (V, E) and each labeling function ` : V →
{0,1} with total parity odd; i.e.,

∑

v∈V `(v) ≡ 1 (mod 2). It has a variable
xe for each edge e ∈ E and has:

• clauses representing the constraint that
∑

e3v xe ≡ `(v) (mod 2) for each
v ∈ V .

(If vertex v has degree d, there will be 2d−1 clauses representing the
constraint at v.)

Definition 2.26. An undirected graph G = (V, E) is an (r, c)-edge expander
iff for every S ⊂ V with |S| ≤ r, |E(S, V −S)| ≥ c|S| where E(S, V −S) is the
set of edges joining S and V − S.

Fact 2.27. For every degree d ≥ 3, there are undirected d-regular graphs
G = (V, E) on n vertices that are (an, c)-expanders for some constants a, c > 0.

It is not hard to see that if G is an (r, c)-edge expander then for any
labelling function `, the graph GF for F = TS(G,`) is an (r, c)-bipartite
expander. However, it isn’t a boundary expander because for each vertex
v ∈ V there 2d−1 clauses that have exactly the same edge variables and
hence no boundary. However, since each input clause can be associated
with a unique vertex, one can get a similar argument to go through by
counting complexity of a clause C∗ in a proof in terms of the size of the set
of vertices of G whose clauses are used to derive C∗.

Rather than going through the details of this argument, in Chapter 3
we give a stronger argument that yields an exponential lower bound for
PCR proofs and hence resolution proofs of expanding Tseitin formulas in
Corollary 3.27.

Remark 2.28. A variant of the GTn ordering formulas provides a counterex-
ample to an asymptotic improvement (even for ordered resolution). These
formulas have N = n(n− 1) variables and we have already seen that they
have polynomial-size ordered resolution refutations. As originally defined
the GTn formulas have w(GTn) = n− 1 because of the long clauses stating
that each v ∈ [n] is not a minimal element. By adding n(n− 4) extension
variables yv,i to express each long clause as an AND of 3-clauses (as in the
usual reduction of CNF to 3-CNF that replaces a clause (`1 ∨ . . . ∨ `k by
(`1 ∨ `2 ∨ y1), (¬y1 ∨ `3 ∨ y2), . . . , (¬yk−3 ∨ xk−1 ∨ xk)), we get a modified
formula MGTn, which has w(MGTn) = 3 and clearly also has a polynomial-
sized ordered resolution refutation. Bonet and Galesi!2 showed that MGTn

2

still requires resolution width at least n−1 which is essentially
p

N , despite
its small resolution refutation size.
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2.6 Resolution and Falsified Clause Search

While width does not provide us with a precise characterization of resolu-
tion complexity, there is another approach that does yield such a character-
ization, and has been convenient for other lower bounds.

Definition 2.29. Given an unsatisfiable CNF formula F = ∧i∈[m]Ci in n
variables, the clause search problem for F , SearchF is the following compu-
tational problem: On input x ∈ {0, 1}n, output an index i ∈ [m] such that
Ci(x) = 0.

Since F is unsatisfiable, SearchF is total; however SearchF is a relation
rather than a function, since multiple clauses of F may be falsified by a given
truth assignment x; any one of the answers allowed by the relation can be
taken to be correct. Therefore we typically say “solve" rather than “com-
pute" when describing algorithms that satisfy the conditions of SearchF .

Proposition 2.30. DPLL on an unsatisfiable CNF formula F produces a de-
cision tree that solves SearchF and hence Rest ree(F) is equal to the size of the
smallest decision tree solving SearchF .

Proof. The decision tree for SearchF has the same form as the tree for DPLL
(with the unit clause optimization ignored). Each node of the decision tree
queries the underlying variable of the decision literal branched on in the
DPLL tree and the output of the decision tree at a leaf is the index of an
original clause that became empty at that leaf. The decision tree edge is
labeled by the value of the variable consistent with it.

Different subclasses of resolution correspond to variants of decision trees,
known as branching programs. These are generalizations of decision trees
that combine repeated common sub-trees into nodes of in-degree more than
one; they have the structure of directed acyclic graphs (DAGs) and hence
they can be thought of as decision DAGs or decision diagrams.

Definition 2.31. A (Boolean) branching program (BP) is a rooted directed
acyclic graph in which

• each non-sink node is labeled by a variable (which is said to be queried
at that node) and has out-degree 2

• the two out-edges from each non-sink node are labeled 0 and 1, and

• each sink node has an output label.

A branching program B computes a function of its input values in the same
way that a decision tree does; that is, it starts at the root and at each node it
evaluates the queried variable and follows the edge labeled by that value to
the next node. Its output value is the label of the sink reached. The size of
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a branching program is the number of its nodes, and its length is the length
of the longest path from the root to any sink.

A branching program is said to be read-once if no variable is queried more
than once on any path from the root to a sink. It is said to be an ordered
binary decision diagram (OBDD) if it is read once and the order on which
variables are read on every root-sink path is the same.

Example 2.32. Branching programs, even ODBBs, can be much smaller
than decision trees (which correspond to the special case that the DAG is a
tree). The simplest example illustrating this is the n-bit parity function ⊕n:
While any decision tree for ⊕n requires 2n leaves (since no path can stop
before reading all n input bits), there is an OBDD of size 2n+ 1 computing
⊕n that queries the n bits in order and records only whether the parity so
far is even or odd.

OBDDs have been widely used as data structures to represent Boolean
functions (particularly for verification prior to the development of CDCL
SAT solvers). Branching programs have been used in many areas of com-
putational complexity in part because the size and length measures corre-
spond naturally to space and time measures simultaneously. (While length
corresponds directly to time, it is log of size that corresponds to space.)

Remark 2.33. At each node v of a read-once branching program B, we can
associate the set of variables Sv that have been read (queried) on some path
from the root to v. By the read-once property, none of the variables in Sv

can be read at any node reachable from v. By at most a factor n increase in
size we can modify B so that for every node v, the variables in Sv are read
along every path from the root v. We can think of the name of node v as
telling us everything we need to know about the values of the variables in
Sv that we need in order to compute the answer.

Theorem 2.34. Given an unsatisfiable CNF formula F,

• Resreg(F) equals the size of the smallest read-once branching program solv-
ing SearchF .

• Resorder(F) equals the size of the smallest OBDD solving SearchF .

Proof. Suppose that R is a regular resolution refutation of size S for F . Each
clause C appearing in R is a node of B. If two clauses A∨ x and B ∨¬x in
R resolve on a variable x to produce the clause C , then in the branching
program B we branch from the node C on the variable x to reach A∨ x
on the x = 0 branch, and B ∨ ¬x on the x = 1 branch. This maintains
the property that all assignments that reach a node v of B falsify the clause
labeling v. The resulting branching program B solves the conflict clause
search problem for F and has the same size as the refutation R. The fact
that no variable is branched on more than once on any path is immediate
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from the definition; the fact that this results in an OBDD in the case of
ordered resolution is also immediate.

In the other direction, we obtain a regular refutation R from the read-
once branching program B. We will label each node v with the maximal
clause Cv that is falsified by every assignment reaching v. These clauses
form the regular resolution refutation. If v is a leaf then Cv is the conflicting
clause from F found by B. If B branches from node v on a variable x to nodes
v0, v1, then in R we resolve the clauses Cv0

, Cv1
on x to obtain Cv . Again, the

number of clauses in the refutation R is the same as the number of nodes in
the branching program B.

The fact that the resolution refutation is regular follows immediately
from the fact that the branching program is read-once; if the branching
program is an OBDD then it is immediate that the resolution refutation is
ordered.

Because these are characterizations, they work both for finding efficient
proofs and for proving lower bounds.

For example of the former, we can consider the formulas PEB(G)(⊕2) in
which we modify the pebbling formula for a graph G by replacing each
variable xv by the XOR of two variables yv ⊕ zv and expanding the result as
clauses. We will prove the following proposition when we discuss lifting.

Theorem 2.35. There is a constant c > 0 such that for any rooted directed
acyclic graph G, Rest ree(PEB(G)(⊕2))≥ 2c·peb(G).

We can use our characterization to prove that all such formulas have
small regular resolution refutations:

Theorem 2.36. For any rooted directed acyclic graph G, F = PEB(G)(⊕2) has
a polynomial size regular resolution refutation.

Proof. We show this via a read-once branching program B for SearchF . We
describe B as if it were an algorithm and then describe the nodes of B as
a branching program. On input (y, z), B begins at the root (sink) vertex t
of G. and queries the variables yt and zt . If their parity is 1, then B can
identify a violated clause and halt. For each of the remaining steps, we
assume that B has identified a vertex v of B and queried variables yv and zv

whose parity is 0 (and has forgotten the values of any other variables). If
v is a source, then B can output a violated axiom. Otherwise, B will query
the values of the predecessors of v (that is query the values of yv and zv

in turn. For each predecessor u, if their parity is 0, B will move attention
to u and forget all information about v. If their parity is 1, it will move to
the next predecessor of v. If all predecessors of v have value 1, then B can
output the index of a violated clause defined on the y and z values for v
and its predecessors.

As a branching program, for each vertex v of G, B will have one node
n0

v for the parity 0 assignments yv = zv = 0 and one node n1
v for the parity
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0 assignment yz = zv = 1. If v is a source, then each of n0
v and n1

v will be
labeled by a violated source clause. Each of these two nodes will be followed
by a decision tree on the values of the yu and zu for each of the predecessors
u of v (with the yu read first). If an edge for zu such that yu ⊕ zu = 0 will
leave this decision tree and go to node nzu

u . Each leaf of the decision tree
that remains (which corresponds to the case that all predecessors u have
yu⊕ zu = 1) is labeled by the associated violated clause. Finally, the root of
B will have a height two decision tree on yt and zt ; two of its leaves will
be labeled by the violated sink clause and the other two will be n0

t and n1
t .

The total size is O(|F |).

Using the fact that there are graphs G with pebbling number Ω(n/ log n)
we obtain a separation.

Corollary 2.37. Tree resolution proof size can be exponentially larger than
regular resolution proof size.

Techniques for proving lower bounds for computations of functions using
read-once branching programs have been adapted for use with the falsified
clause search problem and can make it easier to prove lower bounds for
regular resolution than for general resolution. However, there are relatively
few kinds of instances known in which there is a provable separation.

Proposition 2.38. There are CNF formulas F in n variables that have nO(1)

size resolution refutations but require regular resolution refutations of size
2nΩ(1) .

One example of such an instance is the following modification of the GTn

instances: Fix some tricky function f : [n](3)→ [n](2) taking ordered triples
of distinct indices to ordered pairs of distinct indices and replace each of the
transitivity axioms ¬xuv ∨¬xvw ∨ xuv by two axioms

¬xuv ∨¬xvw ∨ xuv ∨ x f (u,v,w)

and

¬xuv ∨¬xvw ∨ xuv ∨¬x f (u,v,w).

Clearly, an ordinary resolution proof can first resolve each of these pairs to
recover the original GTn formula and then prove GTn in polynomial size as
before. This proof will not be regular because that proof will encounter the
variable x f (u,v,w) again later as part of its variable elimination for GTn. For
certain functions f , one can show that it is not possible to find an efficient
regular resolution refutation.

Given that the sub-classes of resolution proofs correspond perfectly to
restricted branching programs it would be natural to guess that general
branching programs solving SearchF would correspond to general unre-
stricted resolution, but that is not the case. Such a model would be too
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powerful: In particular, a general branching program could simply evalu-
ate the clauses one-by-one until it reaches a clause that is falsified. This
would read each variable many times but would essentially have size only
as large as the number of literals in the input formula F .

Instead, the computational model for which resolution solves SearchF

are cube DAG protocols. Such protocols, like decision trees, remember a
partial assignment as the computation proceeds. Protocols typically corre-
spond to trees but here the structure of the computation is a DAG.

Definition 2.39. A cube DAG protocol for a relation R from {0,1}n to [m]
is a rooted directed acyclic graph (DAG) that has out-degree 2 at non-sink
nodes. Each node v of the DAG is labeled by a sub-cube of the Boolean
cube that is the set of elements Cv ⊆ {0,1}n consistent with a fixed partial
assignment αv . We have the following other requirements:

(a) The root is labeled by the full cube {0,1}n corresponding to the empty
partial assignment.

(b) For each node u of the DAG with children v, w, we have Cu ⊆ Cv ∪ Cw

(c) Each sink node s is also labeled by an output value i such that Cs ⊆
R−1(i). That is, (x , i) ∈ R for all x ∈ Cs.

On an input x ∈ {0, 1}n, a cube DAG protocol starts at the root; at each
node u, it can move to child node v if x ∈ Cv . (Note that when x ∈ Cv ∩Cw,
we assume that it moves to Cv .) The protocol outputs the value of a leaf
reached.

Theorem 2.40. For an unsatisfiable F, Res(F) is the size of a smallest cube
DAG protocol for SearchF .

Proof. We obtain a 1-1 correspondence between resolution refutations of
F and cube DAG protocols for SearchF , by using a 1-1 correspondence be-
tween clauses and the sets of total assignments that make them false (which
by definition are sub-cubes). The length of the clause is the length of the
longest partial assignment that all these total assignments share. We can
apply this correspondence in either direction.

In particular, the root, which is labeled by the empty clause in the res-
olution proof, is labeled by the associated sub-cube consisting of all inputs
in the cube DAG protocol. It is clear by soundness that any assignment fal-
sifying A∨ B must falsify one of A∨ x and B ∨¬x so the cube property (b)
holds. This implies that a resolution refutation directly yields a cube DAG
protocol.

For the other direction, we first assume without loss of generality that the
cube DAG protocol is minimal in the sense that no nodes can be removed
and no cube Cv can be locally replaced by a smaller cube that retains the
cube DAG protocol property.
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In particular, a minimal cube DAG protocol cannot have any nodes u with
children v and w such that Cu ⊆ Cv or Cu ⊆ Cw.

If we have two sub-cubes Cv and Cw in this proof whose union covers Cu,
then the defining assignments αv and αw must be subsets of the defining
assignment αu for Cu, except for the value of one variable x that has op-
posite signs in the two assignments αv and αw. If supp(αv) ∪ supp(αw) (
supp(αu)∪{x} then the protocol is not minimal since we can reduce Cv (or
Cw) by adding in the remaining assignments from αu into αv (respectively
αw). Therefore we can assume that this does not happen at any node u, and
we easily obtain that the cube DAG proof step exactly matches a resolution
step.

Lower bounds for general resolution proofs for which the width and
restriction-based methods fail are often attacked using the following class
of strategies called Prover-Adversary games:

Definition 2.41. A prover-adversary game for a CNF formula F is a game
with two players having conflicting goals, the Prover and the Adversary. The
Adversary claims that F has a satisfying assignment, while the Prover tries
to catch the Adversary in a lie. The Prover maintains a partial assignment
α to the n variables, initially empty, that is known to the Adversary. The
Prover receives these values by asking the Adversary but the Adversary may
lie and give inconsistent answers when the same question is asked again for
a variable that is not in α at the time. At each step

• The Prover selects an input position i (based only on α and asks the
Adversary for the value of x i

• The Adversary chooses a value bi,t ∈ {0, 1} and tells the Prover that
x i = bi,t .

• The Prover adds x i = bi,t to the current assignment α and removes some
portion of the assignment α that can be forgotten.

The game ends when the Prover has a partial assignment that falsifies some
clause of F .

A Prover strategy in this case is a method for determining which index i to
ask for given the current values of the partial assignment α. The complexity
of the game is the minimum over all Prover strategies of the number of
different configurations α that the Prover might need to remember given
different actions by the Adversary.

Proposition 2.42. The complexity of the Prover-Adversary game for unsatis-
fiable CNF formula F is its resolution complexity.

It should be clear that cube DAG protocols precisely correspond to the
possible executions of Prover-Adversary games and there is one node in
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those protocols for each configuration α that the Prover can be forced to
maintain by the Adversary.

One lower bound that cannot be proven by the width-based methods is
for the grid Tseitin formulas, namely Tseitin formulas on the nxn grid graph.
This formula has O(n2) variables but requires proof width only n (for ex-
ample, there are cuts of size n that split the graph in two). Therefore,
the general resolution lower bound of Theorem 2.10 is trivial. Nonethe-
less Dantchev and Riis proved the following lower bound using the Prover-
Adversary game:

Theorem 2.43. The nxn grid Tseitin formulas require resolution complexity
2Ω(n).



3
The Complexity of Algebraic Proofs

Non-clausal translations When we previously described the versions of the
pigeonhole principle we assumed that we used a standard translation of the
long clauses, resulting in an input representation that was already high de-
gree. We have the following natural algebraic version of PHPm

n for algebraic
proofs over any field:

• Pigeon equations:
∑

j∈[n] x i j − 1= 0 for all i ∈ [m],

• Hole equations: x i j · x i′ j = 0 for all i 6= i′ ∈ [m] and j ∈ [n].

This is somewhat more restrictive semantically than the clausal version of
PHPm

n but it is more natural in this context.
Note that over a field of non-zero characteristic p, the Pigeon equations

are not sufficient semantically to imply the Functional equations since they
would only require that each pigeon map to a number of holes that is ≡ 1
(mod p). For the f unct ion-PHPm

n , we would add

• Functional equations: x i j · x i j′ = 0 for all i ∈ [m], and j 6= j′ ∈ [n],

For the bi jec t ive-PHPm
n we can also add:

• Surjectivity equations:
∑

i∈[m] x i j − 1= 0 for all j ∈ [n].

3.1 Nullstellensatz Proofs and Counting

If we have both the Pigeon equations and Surjectivity equations, then we
can simply add them up with opposite signs to yield the following:

Proposition 3.1. The algebraic version of bi jec t ive-PHPn+1
n has a Nullstel-

lensatz refutation of degree 1 over any field.

It is easy to see that the same holds for PHPm
n provided that m−n is not

divisible by the field characteristic p.
The modular counting formulas COUN T n

k when n is not divisible k, stat-
ing that [n] cannot be partitioned into sets of size k also have nice algebraic
forms using variables xe for e ∈

�[n]
k

�

, we have:
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•
∑

e3v xe − 1= 0 for all v ∈ [n]

• xe · x f = 0 for all e ⊥ f (which means ; 6= e ∩ f 6= e).

Again, by adding up, we have the following:

Proposition 3.2. For prime p, COUN T pn+1
p has degree 1 Nullstellensatz refu-

tations in fields of characteristic p.

We will see that over fields F of characteristic q 6= p, COUN T pn+1
p re-

quires refutations of linear degree even in PCF.

3.2 Nullstellensatz Degree Lower Bounds via Designs

Definition 3.3. A d-design for vector of multilinear polynomials ~f = f1, . . . , fm

in F[x1, . . . , xn] is a linear mapping D : F≤d[x1, · · · , xn] → F with the fol-
lowing properties:

• D(1) = 1

• For every polynomial g ∈ F[x1, . . . , xn] with the degree of fi · g at most
d, D( fi · g) = 0.

Since D is linear, it is determined by its values on the monomials
∏

i∈S x i

for |S| ≤ d. since we are working modulo the ideal I which reduces all
polynomials to multilinear polynomials, we can think of D as a function
D :

�[n]
≤d

�

→ F on subsets of indices of size at most d, providing a “fake”
evaluation in F of the monomial xS =

∏

i∈S x i .

A d-design for ~f provides an impediment to Nullstellensatz refutations.

Proposition 3.4. There is a d-design for ~f over F if and only if ~f requires
Nullstellensatz refutations of degree at least d + 1.

Proof. We simply apply a d-design D to both sides of a purported Nullstel-
lensatz derivation. By the first condition, the right hand-side evaluates to
1, but by the second condition, the left-hand side evaluates to 0. This con-
tradicts the claimed equality between the two.

Like Nullstellensatz proofs themselves, and because d-designs are de-
termined by their values on monomials, we can view the constraints for a
d-designs as systems of linear equations in the D(S). In particular, it suffices
to add constraints on the various D(S) to ensure that D(

∏

j∈T x j · fi) = 0
for each T of size at most d − deg( fi) and i ∈ [m].

Using designs, one can prove the following:

Proposition 3.5. The induction principle IN Dn can be proven in Nullstellen-
satz degree dlog2 ne and this is optimal.
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Proof Sketch. For the upper bound, we observe that the algebraic transla-
tion of IN Dn has polynomials 1− x1 = 0, x i(1− x i+1) = 0 for i ∈ [n− 1]
and xn = 0. For simplicity assume that n= 2k + 1 for some integer k ≥ 0.

We use the simulation of tree-resolution height (DPLL depth) by Nullstel-
lensatz proofs for the upper bound. If k = 0 we get an immediate violation
of degree 2. Otherwise, let m = (n + 1)/2 = 2k−1 + 1. The DPLL queries
xm; if xm = 0 then the DPLL algorithm is run recursively on the IN Dm se-
quence x1, . . . , xm; if xm = 1 then the DPLL algorithm is run recursively on
the sequence xm, . . . , xn, which also has length m= 2k−1 + 1.

We prove the design-based lower bounds in a more general context be-
low.

This is a special case of a more general result about the Nullstellensatz
degree and size required for refuting the pebbling formulas PEB(G) for
single-sink directed acyclic graphs G. The lower bound is based on the
reversible pebble game on G, which was originally defined in order to under-
stand how efficiently general computation can be simulated by reversible
computation (and as a result has had applications to quantum computing).

Definition 3.6. The reversible pebble game on single-sink directed acyclic
graph G is played according to the following rules:

• If all predecessors of a node v have a pebble and v does not, then a pebble
may be placed on v.

• If all predecessors of a node v have a pebble and v has a pebble, then
that pebbled may be removed from v.

The game starts with no pebbles on G, must reach a step when there is a
pebble on the sink of G and must end with an empty graph. (Observe that
the steps of the second half can be the reverse of the first half without loss
of generality.)

The time of a game is the # of moves, and the space is the maximum num-
ber of pebbles that are on G at any point during the game. The reversible
pebble number of G is the minimum space required for any successful strat-
egy.

Recall that IN Dn = PEB(Pn) where Pn is a directed path of n vertices.

Proposition 3.7. The reversible pebble number of Pn is precisely dlog2(n+1)e.

Proof. The upper bound is natural: Number the vertices of Pn by [n]. Let
k(p) be the furthest vertex one can reversibly pebble in the path with p
pebbles.
CLAIM: k(p) = 2p − 1

Clearly k(1) = 1. We prove that k(p+1) = 2k(p)+1 for all p ≥ 1, which
proves the claim.
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For the pebbling strategy with p+1 pebbles, run the strategy for p pebbles
until a pebble is placed on vertex k(p), then place the (p + 1)st pebble on
vertex k(p)+1. and then run the rest of the p-pebble strategy to remove the
first p pebbles for re-use. With the pebble on k(p) + 1, these p pebbles can
be used to pebble the next k(p) nodes reaching node 2k(p) + 1. Therefore
k(p+ 1)≥ 2k(p) + 1.

For the optimality of this strategy, observe that in any pebbling strategy
with p+1 pebbles, the smallest numbered vertex containing a pebble must
be at most k(p)+1, because otherwise such a pebble can never be removed
because there are only p other pebbles available, which can reach k(p) at
most. The other p pebbles can then reach at most k(p) further.

Theorem 3.8. G has a reversible pebbling strategy of time 2T and space S if
and only if PEB(G) has a Nullstellensatz refutation (over any field) of degree
S and size T + 1. In particular, PEB(G) requires Nullstellensatz degree equal
to the reversible pebbling number of G.

Proof. We first describe the easy direction. Observe that the translation of
PEB(G) has polynomials of the form: Qv =

∏

u∈pred(v) xu ·(1− xv) for every
vertex v, and Q′t = x t where t is the sink. Let ; = S0, . . . , ST , . . . , S2T = ;
be the sequence of sets of vertices occupied by the pebbles in a reversible
pebbling strategy on G. For each set Si , let the monomial xSi

=
∏

w∈Si
xw.

Observe that xS0
= 1. We claim that xSi+1

− xSi
is simply Qv multiplied by a

(signed) monomial. By definition Si+1 = Si ⊕ {v} for some vertex v where
pred(v) ⊆ Si , Si+1. Let Ai = Si+1 \ ({v} ∪ pred(v)) and assume w.l.o.g. that
v ∈ Si . Then xSi+1

− xSi
= xA ·

∏

u∈pred(v) xu− xA ·
∏

u∈pred(v) xu · xv = xA ·Qv .
Also since t ∈ ST , we define B = ST − {t} and observe that xST

= xB ·
x t = xB ·Q′t . Writing out the terms, we get that the right hand side of the
telescoping sum:

0= xS0
+ (xS1

− xS0
) + (xS2

− xS1
) + · · ·+ (xSt−1

− xST
) + xST

can be written as 1 plus a sum of T terms of the form xA ·Qv or xB ·Q′t . The
degree of the proof is the size of the largest set Si .

For the other direction, we use a d-design to prove the degree lower
bound and omit the more general simulation, which is more involved. Sup-
pose that d is strictly smaller than the reversible pebbling number of G. For
U ⊂ V with |U | ≤ d, define D(U) = 1 iff U is a set of nodes that is a config-
uration of pebbles that can be reached starting from the empty graph. and
D(U) = 0 otherwise.

Since ; is reachable, we have D(;) = 1 as required. Since d is strictly
smaller than the pebbling number of G, we have D(U) = 0 for any U
containing the sink t, D(xB · Q′t) = 0 for all B of size at most d − 1. Fi-
nally, observe that for any A of size at most d − (pred(v) + 1), xA · Qv =
xA · xpred(v))− xA · xpred(v) · xv = xA∪pred(v)− xA∪pred(v)∪{v}. Now A∪ pred(v)
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is reachable if and only if A ∪ pred(v) ∪ {v} is reachable (this is where
we required reversibility), so D(xA ·Qv) = 0. Therefore we have met the
conditions for a d-design and hence degree must be at least the reversible
pebbling number, as required.

Since doing reversible pebbling requires at least as many pebbles as or-
dinary pebbling when pebbles can be removed freely, we have the following
fact:

Proposition 3.9. There is a family of graphs for each n, with n vertices, con-
stant in-degree at most k, and reversible pebbling number Ω(n/ log n).

This yields the following nearly-optimal separation between the degree
of Nullstellensatz and PCF proofs.

Corollary 3.10. The family of graphs G in Proposition 3.9 have PCF refuta-
tions of constant degree k + 1 but require Nullstellensatz degree Ω(n/ log n)
over any field.

Proof. The lower bound is immediate from Theorem 3.8. For the upper
bound observe that the DPLL unit propagation derivation yields a tree-
resolution refutation where each resolution inference involves one clause of
size 1 and hence the clauses never are larger than the input clauses, which
are of size at most k+1. The PCR simulation of resolution has degree equal
to the clause size and the PCF degree is the same as that of PCR.

3.3 Size versus Degree for Polynomial Calculus and PCR proofs

In the simulation of resolution by PCR proofs in Theorem 1.24, the degree of
the proof is precisely the width of the resolution proof (and hence the same
applies to PC degree). We will see that for PC and PCR proofs, there is a
simulation of small proofs by low degree proofs, that is exactly analogous to
the one we proved in Theorem 2.8 converting small size resolution proofs
to low width proofs. In fact, the version for PC was proven prior to the one
for resolution. This will allow us to derive size lower bounds for PC proofs
(and, more interestingly, PCR proofs) by proving degree lower bounds on
such proofs.

Recall our notation that we write f1, . . . , fm `d f iff there is a degree d
PCF (and hence PCRF) derivation of f from f1, . . . , fm.

Theorem 3.11. Let F be a CNF formula in n variables. If PCRF(F) ≤ S or
PCF(F)≤ S2 then deg(F)≤max(2

p
2n ln S,

p
2n ln S +w(F)).

Proof. We prove the statement for PCRF. Set D = d
p

2n ln Se. We prove the
following claim by induction on n and k:

CLAIM: If (1−D/2n)k S < 1 then any CNF formula F in n variables having
a PCRF refutation (derivation of 1) with ≤ S monomials of degree at has
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deg(F)≤max(D, w(F)) + k.

Before proving the claim, we observe that the case k = D is sufficient to
prove the theorem, since (1− D/2n)D < e−D2/2n ≤ 1/S by the choice of D.

The case k = 0 is trivial.
For the general case, let P be a PCRF refutation of F with n variables

and ≤ S monomials of degree ≥ D and suppose that (1 − D/2n)k S ≤
1. Write p(F) be shorthand for the polynomial translation of F . Let d =
max(D, w(F))+ k Choose the variable z appearing in the most wide clauses
of P. Since there are at most 2n possible PCRF variables and ≥ D distinct
variables per high degree monomial, z appears in ≥ DS/2n monomials of
degree ≥ D.1 1 For PCF, there are only n variables instead

of 2n so DS/2n is replaced by DS/n in the
case of PCF. This is the only difference in
the argument.

Consider the restrictions z ← 0 and z ← 1: Then Pz←0 is a PCRF refuta-
tion of Fz←0 and every monomial of P containing z is set to 0 (and others
are only shortened), so Pz←0 has S′ ≤ S−DS/2n= (1−D/2n) S monomials
of degree ≥ D. Therefore (1− D/2n)k−1 S′ ≤ (1− D/2n)k S ≤ 1. It follows
by our inductive hypothesis with k− 1, that

deg(Fz←0)≤max(D, w(Fz←0)) + k− 1≤max(D, w(F)) + k− 1= d − 1;

that is, p(Fz←0) `d−1 1. Therefore, by multiplying lines of this proof by z as
needed, we get (p)(F) `d z.

Now, Pz←1 is a PCRF refutation of Fz←1. By the inductive hypothesis
applied to Fz←1, which has n′ = n− 1 variables, there is a PCRF refutation
P ′′ of Fz←1 of degree at most max(D, w(F)) + k = d; that is, p(Fz←1) `d 1.

Observe that the clauses C of F that are shortened by z ← 1 contain ¬z
and hence their polynomials pC are multiples of z, which we have already
derived. Hence, since d ≥ w(F), putting things together we have

p(F) `d p(F), z `d p(Fz←1) `d 1

as required.

Corollary 3.12. For any field F and for any CNF formula F, PCF(F) ≥
2(deg(F)−w(F))2/(2n) and PCRF(F)≥ 2(deg(F)−w(F))2/(8n).

3.4 Gaussian Width and Polynomial Calculus over the Fourier
(±1) basis

We will take a digression to a notion of derivations and refutations for un-
satisfiable systems of linear equations.

Definition 3.13. A Gaussian derivation of aT x = b for x ∈ Fn from con-
straints aT

1 x = b1, . . . aT
m x = bm is a sequence of equations a1

1 x = b1, . . .,
aT

S x = bS where a = aS , b = bS and for j > m, there exist i, i′ < j and
constants c, d ∈ F such that a j = c · ai + d · ai′ and b j = c · bi + d · bi′ . If
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this is a derivation of 0 = 1, i.e. a = 0 and b = 1, then this is a Gaussian
refutation of the constraints.

Obviously, Gaussian elimination yields a Gaussian derivation, which is
the reason for the terminology. For n-dimensional variables, Gaussian deriva-
tions can always be short, and only require n2 steps, but we will be inter-
ested in a different parameter.

Definition 3.14. The width of set L of linear equations of the form aT x =
b, w(L ) = maxaT x=b∈L |a|0, the maximum number of variables appearing
in any equation inL . In particular, we can define he Gaussian width wG(L )
of a set of equationsL to be the minimum width of any Gaussian refutation
of L if L is unsatisfiable, and∞ otherwise.

Definition 3.15. For a system L of linear equations, we define a bipartite
graph GL = (L , [n], E) where (`, i) ∈ E iff ` is aT x = b with ai 6= 0.

Proposition 3.16. LetL `
G be the set of parity equations associated with Tseitin

formula TS(G,`). If G is an (r, c)-edge expander, then L = L `
G is an unsat-

isfiable set of equations and GL is an (r, c)-boundary expander.

Proof. This is practically by definition: there is precisely one equation inL `
G

for each vertex in G and the edge boundary of a set of vertices S is precisely
the vertex boundary of the equations indexed by S in GL `

G
.

Lemma 3.17. If GL is an (r, c)-boundary expander, then wG(L )> cr/2.

Proof. We can assume that c > 0. Since GL is an (r, c)-boundary expander,
any set of at most r equations is satisfiable. Therefore a refutation of L
must involve an equation ` that is a linear combination of > r equations
of L . Since each line in a Gaussian derivation is a linear combination of 2
previous lines, there is a line `∗ of the Gaussian refutation that is a linear
combination of set S ⊂ L with r/2 < |S| ≤ r. The c|S| > cr/2 boundary
variables associated with S must all appear in `∗.

In order to prove degree lower bounds for polynomial calculus and PCR
over fields F of characteristic other than 2, it is convenient to consider al-
gebraic proof systems in which algebraic variables z1, . . . , zn are assigned
algebraic values zi = (−1)b ∈ F corresponding to the logical assignment
x i = b.

Definition 3.18. We write PC±F for the variant of PCF in which we work
modulo the ideal I±1 generated by the polynomials z2

i − 1 rather than the
ideal I{0,1} generated by the polynomials x2

i − x i .
In PC±F we represent a clause C =

∨

i∈P x i ∨
∨

j∈N x j as p′C =
∏

i∈P
1+zi

2 ·
∏

j∈N
1−z j

2 .

We can compare p′C with the representation pC =
∏

i∈P(1− x i) ·
∏

j∈ x j

of clause C in PCF without dual variables or pC =
∏

i∈P x i ·
∏

j∈N x j with
dual variables.
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Definition 3.19. Suppose that char(F) 6= 2 and define the multilinear map-
ping φ : F[x1, . . . , xn] → F[z1, . . . , zn] that replaces each x i by (1 − zi)/2.
Its inverse, φ−1 is the multilinear map that replaces each zi by 1− 2x i .

Observe that φ(x2
i − x i) = (z2

i −1)/4 and that if pC is the representation
of a clause C in PCF then p′C = φ(pC) is its representation in PC±F .

Proposition 3.20. Suppose that char(F) 6= 2. Let f1, . . . , fm, f ∈ F[x1, . . . , xn].
Then the degree of inferring f from f1, . . . , fm in PCF is the same as the degree
of inferring φ( f ) from φ( f1), . . . ,φ( fm) in PC±F .

Proof. Apply φ to each line of the derivation of f to derive the proof of
φ( f ). (Each x2

i − x i defining the ideal is converted to (z2
i − 1)/4 which is

equivalent to z2
i − 1 since char(F) 6= 2.) The map φ preserves the degree

since it is multilinear. In the reverse direction, the map φ−1 also preserves
the degree.

This ±1 basis is sometimes called the Fourier basis because it is the nat-
ural basis for Fourier analysis of Boolean functions over F. It can be much
more efficient with respect to size for some properties, since a single mono-
mial in this basis represents a parity function. This makes it particularly
convenient in representing linear equations over field F2. In particular, the
following lemma is immediate from that fact that φ(x i) = (−1)x i :

Proposition 3.21. Let S, T ⊆ [n]. For zi = φ(x i) for i ∈ [n],
∏

i∈S

zai
i = (−1)c ·

∏

i∈T

zbi
i (3.1)

if and only if
∑

i∈S

ai · x i = c +
∑

i∈T

bi · x i

over F2.

Equations of the form Eq. (3.1), are expressed by setting binomial poly-
nomials p = M1±M2 = 0 over F2 where M1 and M2 are monomials. For a bi-
nomial p, we use `p to denote the linear equation given by Proposition 3.21
that expresses p = 0. Note that this representation allows for multiple ver-
sions of the same constraint since the same variable may appear on both
left and right sides (in both S and T). The width of this equation is at most
|S|+ |T |. The following lemma gives a special property of PC±F proofs when
the input polynomials are all binomials.

Theorem 3.22. If there is a PC±F refutation of degree d from a system of
binomials, then there is a PC±F refutation of degree d in which each line is a
binomial, or a monomial.

Proof. Recall the linear algebra construction of the basis Bd of the vector
space Vd of polynomials derivable in degree d in polynomial calculus proofs.
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Even in PC±F , all polynomials are multilinear so the same construction works
for PC±F .

This was produced by viewing each polynomial as a vector of coefficients
of monomials, iteratively inserting original polynomials as they became
available, applying Gaussian elimination and shifting vectors correspond-
ing to multiplication by variables.

Binomials are vectors in which there are only two non-zero entries in this
vector notation, one with entry 1, and the other±1. Observe that if we start
with vectors of this form, shifting a vector will keep it of this form, and any
Gaussian elimination at each can keep vectors of this form or simplifis them
even further.2 In particular, Gaussian elimination involving two linearly in- 2 Note that this Gaussian elimination is over

vectors indexed by monomials of degree at
most d in Z1, . . . , zn and not in x1, . . . , xn.

dependent binomial vectors will cancel one zero-coefficient from each using
±1 coefficients if the result will be a binomial. If the other entries corre-
spond to the same monomial

∏

i∈S zi , then they must add up and we can
use coefficients ±1/2 instead of ±1 in the combination to yield a 1 in that
position. Since we know that the input polynomials are unsatisfiable, the
Gaussian elimination must eventually end with a vector that corresponds
to some single monomial, namely 1; we stop this construction as soon as a
single monomial is generated.

The PC±F derivation simply simulates the vector-based derivation until
the monomial M =

∏

i∈S zi is produced. At that point, the PC±F derivation
simply multiplies M by the variables zi for i ∈ S one by one in turn, which
reduces M to 1 since z2

i = 1.

Corollary 3.23. Let F have char(F) 6= 2 and suppose that F = { f1, . . . , fm}
is a set of binomial polynomials over z1, . . . , zn. For every PC±F refutation of
f1, . . . , fm of degree d there is a Gaussian refutation ofLF = `( f1), . . . ,`( fm) in
variables x1, . . . , xn of width at most 2d. In particular, deg(F)≥ wG(LF )/2.

Moreover, deg(F) ≤ max(w(F), dwG(LF )/2e) and PC±F (F) is polynomial
in n.

Proof. By Theorem 3.22, we can assume without loss of generality that the
PC±F refutation f1, . . . , fm, . . . , ft , . . . , ft+s = 1 has each line as a binomial
except for lines ft+1, . . . , ft+s = 1, which are monomials. The Gaussian
refutation begins with (the simplified forms of) `( f1), . . . ,`( ft). Each `( fi)
corresponds to a simplified linear equation of width at most 2d. Observe
that some steps of the polynomial calculus proof such as multiplication by
variable zi yield precisely the same simplified linear equation, but they ap-
pear different in the two-sided form. Each PC±F step deriving a binomial f j

using a ±1 linear combination of binomials fi , fi′ with simply corresponds
to a substitution in equation form and can be derived directly by Gaussian
elimination steps of `( f j) from `( fi) and `( fi).

Observe that in the step yielding the monomial ft+1, instead of using
the coefficients ±1/2, if we keep the coefficients ±1, then we obtain an
polynomial f ′t+1 =

∏

i∈S zi+
∏

i∈S zi which has the translation `( f ′t+1) given
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by
∑

i∈S x i = 1+
∑

i∈S x i whose linear simplified form is 0= 1.
The lower bound on deg(F) immediately follows from the above and

Proposition 3.20.
For the other direction, observe that we can simulate any Gaussian in-

ference in PC±F in a way that nearly exactly balances each binomial so that
the two monomials differ in degree by at most 1.

In particular, the Tseitin formulas for odd-charged graphs have polynomial-
size proofs in this basis in which each polynomial is bilinear, and hence
represents an equality between parity functions.

Moreover, this representation makes it easy to show that any PC±F proof
of the Tseitin formulas on expander graphs requires large degree.

Theorem 3.24. For char(F) 6= 2, Tseitin formulas on constant-degree n-vertex
(an, c)-edge expanders require PC±F (and hence PCF) degree Ω(n)).

To prove this we use the following simple proposition

Proposition 3.25. Let
∑k

i=1 x i ≡ b (mod 2) be a parity constraint and let
C1, . . . C2k−1 be the set of clauses representing this constraint, then there is a
degree k derivation of

∏k
i=1 zi − (−1)b from p′C1

, . . . p′C2k−1
and vice versa.

Proof. The single equation form is a semantic consequence of the clausal
translation and there are only k variables involved. The same holds in the
reverse direction. A Nullstellensatz proof suffices. Details of an explicit
proof are an exercise.

Proof of Theorem 3.24. Let G be an constant degree n-vertex (an, c)-edge
expander and ` be an odd labeling of G. By the proposition, we can assume
without loss of generality that we begin with the binomial form TS′(G,`)
in the zi variables of the parity equations for the Tseitin formula TS(G,`).
By Corollary 3.23, deg(TS(G,`)) ≥ wG(LTS′(G,`))/2. By Proposition 3.16,
LTS′(G,`) is an (an, c)-boundary expander and hence via Lemma 3.17,

wG(LTS′(G,`))> can/2.

Therefore deg(TS(G,`))> can/4.

We can immediately use the size-degree relationships of Corollary 3.12
to derive.

Corollary 3.26. For char(F) 6= 2, Tseitin formulas on constant degree n vertex
(an,b)-edge expanders require size 2Ω(n) PCF and PCRF proofs.

Corollary 3.27. Tseitin formulas on constant degree n vertex (an,b)-edge ex-
panders require size 2Ω(n) resolution proofs.

Theorem 3.28. For integer k > 2 and charF) 6= 2, random k-CNF formulas
chosen fromF k,m

n where m=∆n for some constant∆> 0, require PCF degree
Ω(n) and size 2Ω(n) with probability 1− on(1).
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Proof. We have already shown that for some constants a and c and such
a formula F , the bipartite graph GF will be an (an, c)-boundary expander
with probability 1 − on(1). However the clauses of F do not correspond
to parity equations. In particular, each clause C on a set S of k variables
merely asserts that the clause contains at least one positive literal.

The clever idea is that we can add clauses to yield a stronger parity con-
straint that ensures that the clause is satisfied. In particular, let b be the
parity of the unique assignment to the variables in S that makes the C false.
Then if we add the remaining 2k−1−1 clauses that together with C express
that

∑

i∈S x i = 1− b (mod 2) then we have ruled out any falsifying assign-
ment for C . This yields a new formula F ′ that is no harder to refute than
F since it only has extra clauses added to F . These can be expressed as bi-
nomials and the resulting linear constraints LF ′ will satisfy GLF ′

= GF and
hence will also be an (an, c) boundary expander.

The rest of the argument follows by the same means as the lower bound
for Tseitin formulas.

Theorem 3.29. Let field F have char(F) 6= 2. COUN T 2n+1
n requires PCF

degree Ω(n) and PCF or PCRF proof size 2Ω(n).

Proof. We can assume without loss of generality that 2n + 1 ≡ 0 (mod 5)
since COUN T 2n′+1

n′ is a restriction of COUN T 2n+1
n for any n′ < n.

Let m = (2n+ 1)/5; observe that m is odd. We prove COUN T 2n+1
n via

reduction3 from a lower bound for TS(G,`) where G is a 4-regular (am, c)- 3 One can generalize these lower bounds to
proofs of COUN T pn+1

n formulas for prime p
in fields of characteristic q 6= p that contain
an element ω 6= 1 such that ωp = 1. One
can work with a mod p version of Tseitin
formulas that has 2p Boolean variables as-
sociated with each undirected edge {i, j}
of G, viewed as two directed edges (i, j)
and ( j, i), with p variables per direction, ex-
pressing that the values in the two direc-
tions are in a(i, j), a( j,i) ∈ {0,1, . . . , p − 1},
and require the constraint a(i, j)+ a( j,i) = p.
A similar handshaking theorem implies that
such an assignment of values is impossi-
ble. The most natural way to prove this is
to work instead with a version of polyno-
mial calculus that involves non-binary as-
signments to values 1,ω, . . . ,ωp−1 and the
equation x p − 1 = 0 instead of x2 − 1 = 0
to prove the degree lower bound and then
infer the results for the Boolean version.

edge expander with an odd number of vertices m and ` is the constant
function 1. We define a set U of size 2n + 1 = 5m as follows: Since it is
4-regular, G has 2m edges. For each undirected edge {i, j} of G there will
be two elements (i, j) and ( j, i) in U . There will also be an element i in
U for each vertex i of G. This yields a total of 2(2m) +m = 5m = 2n+ 1
elements in U .

Given an assignment to the variables x{i, j} of TS(G,`), we obtain an
assignment to the 2-element subsets of U as follows: if x{i, j} = 1 then
the pair consisting of (i, j) and ( j, i) has value 1. Now consider the set Ui

consisting of those j such that x{i, j} = 0. We pair consecutive elements
{(i, j) | j ∈ Ui} in order of j values. If |Ui | is odd (size 1 or 3), then we
pair (i, j) for the largest element j ∈ Ui with i. All other elements remain
unpaired.

Observe that the pairing is always a partial matching and at any vertex
i, all elements of U of the form i or (i, j) are paired if and only if Ui is odd
which is true if and only if the parity equation in TS(G,`) associated with
vertex i is satisfied. Thus the totality axioms associated with these elements
of U yields the odd-parity constraint in TS(G,`).

Observe that the values for the COUN T 2n+1
n variables associated with

the potential pairing on U can be defined as degree 4 polynomials in the
variables of TS(G,`) since the graph G has degree 4. We could substitute
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these polynomials into a PCF refutation of COUN T 2n+1
n to yield a refutation

of TS(G,`)with an increase of degree by at most a factor of 4. Therefore the
PCF degree of COUN T 2n+1

n is at least 1/4 of the PCF degree of TS(G,`).

Finally we note that the following holds. The proof is an exercise.

Proposition 3.30. Let char(F) 6= 2. Any unsatisfiable set of binomials F in
variables z1, . . . , zn has a polynomial-size PC±F refutation.

3.5 Lower bound for the Pigeonhole Principle in Polynomial Cal-
culus

Theorem 3.31. For any field F, PHPm
n requires PCF degree dn/2e.

Proof. The proof applies to f unct ion-PHPm
n which implies the same result

for PHPm
n . The proof of this theorem follows by explicit computation of a

basis Bd for the vector space Vd of multilinear polynomials of degree ≤ d
that are generated by the f unct ion-PHPm

n axioms. The Hole and Function
axioms set any monomial xS =

∏

i j∈S x i j = 0 that does not correspond to
a partial matching of pigeons to holes. We assume that we work modulo
these non-matching polynomials as well as modulo the ideal I .

Observe that this also means that any x i j ·Q i is 0 because all terms of
Q i that involve some x i j′ for j′ 6= j are 0 because they violate a Hole clause
and the remaining terms yield x2

i j − x i j which is 0 in the ideal I . Therefore,
any polynomial of degree at most d modulo this ideal that could possibly be
generated by the f unct ion-PHPm

n constraints (using possibly larger degree
intermediate polynomials) is in the vector space Td generated by all poly-
nomials of the form xM ·

∏

i∈A Q i for some partial matching M and subset
of pigeons A where M and A involve disjoint sets of pigeons.

LetMd be the set of all such partial matchings of size at most d. Given
a partial matching, we call matched holes occupied. The only axioms we
have not yet handled are the pigeon axioms. In order to describe the basis
Bd of Vd , we need to identify a special subset ofMd . For this we define an
operation on elements ofMd that has been called the pigeon dance.

Definition 3.32. Let M = {(i1, j1), . . . , (it , jt)} ∈Md . A pigeon dance on M
repeats the following steps:

• For k = 1 to t

– If all holes > jk are currently occupied then fail.

– Otherwise, replace (ik, jk) with some (ik, j′k) where hole j′k > jk is not
currently occupied.

If successful, let M = M0, M1, . . . Mt be the sequence of matchings after each
step.
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A pigeon dance is minimal iff at each step j′k is the smallest unoccupied
hole > jk. If this does not fail then it is unique and we define D(M) to be
the resulting matching Mt in the minimal dance if it exists.

The pigeon dance is not deterministic and it may not even be possible to
complete a pigeon dance.

Proposition 3.33. Some pigeon dance on M succeeds iff D(M) is defined.

Proof. Intuitively, the high numbered holes are the precious resource for the
pigeon dance and a minimal pigeon dance leaves them freer. More formally,
one can show how to convert the steps of any successful pigeon dance to
a minimal one by swapping: Suppose that the first s − 1 steps of a pigeon
dance are minimal. If the s-the step is not then there is some unoccupied
hole j > js in Ms−1 such that j′s > j > js. We have two cases:

If j is unoccupied in Mt then we simply replace (is, j′s) by (is, j) in all
matchings Ms, . . . , Mt , yielding a pigeon dance with ≥ s minimal steps.

If j is occupied in Mt then there is some step s′ > s such that pigeon is′
is mapped to j > js′ . Observing that this also implies j′s > js′ , we replace
(i,s , j′s) by (is, j) in all matchings Ms, . . . , Ms′−1 and we replace {(is, j′s), (is′ , j)}
by {(is, j), (is′ , j′s)} in all matchings Ms′ , . . . , Mt , again yielding a pigeon dance
that is minimal for ≥ s steps.

Applying this for all s ≤ t yields the minimal dance.

Proposition 3.34. If D(M) = D(M ′) are defined then M = M ′.

Proof. Observe that at each step s of a minimal pigeon dance, we can re-
construct Ms−1 from Ms by replacing (is, j′s) by (is, j) where j is the largest
unoccupied hole less than j′s in Ms.

The basis Bd is given by the set of all polynomials of the form xM ·
∏

i∈A Q i

where:

• M is a matching on [m]× [n] for which D(M) is defined.

• ; 6= A⊂ [m] is a set of pigeons that is disjoint from the pigeons matched
in M .

• |M |+ |A| ≤ d.

Proposition 3.35. If d ≤ dn/2e then Bd is a basis for Vd .

Proof Sketch. One can show that if we add B′d = {xM | D(M)is defined and |M | ≤
d} to Bd and d ≤ dn/2e then together they form a basis for Td . The key to
the argument that this is a basis is to use a partial ordering on pairs (M , A)
and argue by induction that any generator for Td that has a failed pigeon
dance in M is spanned by terms in Bd ∪ B′d . In particular, (M , A) ≺ (M ′, A′)
if M ∪ A( M ′ ∪ A′ or M ∪ A= M ′ ∪ A′ and the largest i ∈ M ∪ A is matched
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to a hole j′ in M ′ where either i ∈ A or i is matched to a lower hole j than
j′ in M .

The idea of the argument is to prove by induction over the partial order
that for any (M ′, A′), a term of the form xM ·

∏

i∈A Q i is equivalent modulo
the basis Bd to the sum of all possible terms based on (M ′, A′) such that
either (1) A′ = A and M ′ is the result of a single pigeon dance step on M or
(2) A′ = A− {i} and M = M ′ ∪ (i, j).

This is sufficient since we can take a single pair (M , A) where D(M) does
not exist and apply these steps until the pigeon dance fails. At the point the
set of terms equivalent to the (M , A) terms is empty.

This is enough since the polynomial 1 ∈ B′d (corresponding to M = ;)
and since Bd ∪ B′d is a basis of Td its representation in that basis is unique,
so 1 cannot be generated by Bd .

Theorem 3.36. f PHPm
n requires PCF and PCRF size 2Ω(n).

Proof Sketch. Even though we have am Ω(n) degree lower bound for refu-
tations of f PHPm

n , the fact that it has mn variables means that the generic
conversion from small size to low degree does not yield a size lower bound.

However, we can instead make a small modification of the general argu-
ment that is tailored especially to the f PHPm

n formulas. In this variant of
the conversion from small size to small degree, we call a monomial big iff
it mentions at least D holes.

Rather than choosing a most frequently occurring variable or literal to
set, we choose a most frequently mentioned hole among the at most S big
monomials. By averaging, some hole j must be mentioned in at least SD/n
big monomials. We now simply choose any variable x i j associated with
hole j in these monomials, and apply one of two restrictions: We either set
x i j = 0, or we set x i j = 1 and all x i′ j = 0 for i′ 6= i (the latter is forced by
the hole constraints).

In the first case, any monomial containing x i j is set to 0 and in the second
case, any monomial mentioning hole j that does not contain x i j is set to
0. At least one of these two cases removes at least DS/(2n) of the big
monomials mentioning hole j, leaving at most (1− D/(2n)) · S monomials
remaining4. In the other case the number of variables has been reduced 4 Since the monomials of interest corre-

spond to partial matchings, each monomial
has at most one variable mentioning each
hole. Because of this, if we choose the
least frequently occurring x i j then the case
when x i j is set to 1 will remove almost all
monomials mentioning hole j, which can
do somewhat better than (1− S/(2n))

so we can apply induction as before. This yields the same parameters as
before but with the number of holes n replacing the number of variables.

Pluggling the degree bound into this new relationship yields the lower
bound.

3.6 Lower bounds for PC±F proof size using diameter

The small refutation of, for example, Tseitin formulas shows that there is no
such size-degree theorem for PC±F . In particular, restrictions that set logical
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variables to 0 or 1 and hence remove entire monomials in the {0, 1} repre-
sentation of PCF merely shorten monomials in the {1,−1} representations
of PC±F .

Nonetheless, there is another measure of PC±F proofs, that is implicit in
the work of Sokolov that does allow us to apply a similar restriction argu-
ment.

Definition 3.37. For S ⊆ [n], we use the notation zS =
∏

i∈S zi , and for
a polynomial p, we write Mon(p) for the set of S such that zS occurs with
non-zero coefficient in p. The diameter of a multilinear polynomial p ∈
F[z1, . . . , zn], diam(p), is the maximum size of the symmetric difference
between the support of any pair of monomials zS in p, i.e. diam(p) =
maxS,T∈Mon(p) |S⊕T |. The diameter of a PC±F proof is the maximum diameter
of any polynomial in the proof.

Observe that the diameter of a multilinear polynomial is the diameter
of its Newton polytope in the `1 metric. Note also that for a clause C , the
diameter of p′C , as well as its degree, is precisely the length of C .

Definition 3.38. For a multilinear polynomial p, define the set [p] of mul-
tilinear polynomials equivalent to zS · p modulo I±1 for some monomial zS

of p.

Proposition 3.39. If q = zS · p for polynomials p and q, there is a PC±F
derivation of q from p of degree at most (deg(p) + deg(q) + |S|)/2.

Proof. We obtain q from p by multiplying p by the variables in zS one by
one and reducing at each step as needed. Observe that in each step the
degree changes by at most 1. Let k be the maximum degree attained at any
intermediate step; it takes at least k − deg(p) steps to reach this degree.
From there, the degree must decrease to deg(q), which requires at least
a further k − deg(q) steps. The total number of steps is |S|. Therefore
k− deg(p) + k− deg(q)≤ |S|. and hence 2k ≤ deg(p) + deg(q) + |S|.

Proposition 3.40. If q ∈ [p] then

(a) deg(q)≤ diam(p),

(b) diam(q) = diam(p),

(c) [q] = [p], and

(d) there is a PC±F derivation of q from p of degree at most deg(p)+diam(p)/2.

Proof. Let q = zS · p modulo I±1 for some S ∈Mon(p).
(a): For S, T ⊆ [n], zS · zT = zS⊕T modulo I±1. Therefore, since S ∈

Mon(p), the degree of q is at most maxT∈Mon(p) |S⊕ T | ≤maxS,T∈Mon(p) |S⊕
T |= diam(p).

(b): diam(q) = maxT,T ′∈Mon(p) |(S ⊕ T )⊕ (S ⊕ T ′)| = maxT,T ′∈Mon(p) |T ⊕
T ′|= diam(p)
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(c): Let q′ ∈ [q], so q′ = zS′ · q modulo I±1 for some S′ ∈ Mon(q); i.e.
S′ = S ⊕ T for some T ∈ Mon(p). Therefore, S′ ⊕ S = T and so q′ =
zS′ · zS · p = zT · p modulo I±1 and hence q′ ∈ [p].

Conversely, let q′ ∈ [p]. Then q′ = zT ′ · p modulo I±1 for some T ′ ∈
Mon(p). Then by definition S⊕T ′ ∈Mon(q) and q′ = zS⊕T ′ ·zS · p = zS⊕T ′ ·q
modulo I±1 and hence q′ ∈ [q].

(d): Let q ∈ [p]. By definition, q = zS · p modulo I±1 for some S ∈
Mon(p). The bound follows by plugging |S| ≤ deg(p) into Proposition 3.39.

The following example shows that the degree bound given in part (d) is
the best possible.

Example 3.41. Let ` and k be positive integers with 2k 6= `. Let T be an
index set of size ` + k and define p =

∑

S⊂T,|S|=` zS . Then deg(p) = ` and
diam(p) = 2k.

Any PC±F derivation of any q ∈ [p] from p must multiply p by a subset
of the variables indexed by T , one by one. If this goes on for k steps, the
resulting polynomial will contain the term zT and hence has degree k + `,
so it remains to prove that k steps are needed.

If 2k < `, then deg(q)≤ diam(p)< deg(p), but in the first k steps of any
derivation the degree can only increase, so > k steps are required.

In general, the argument requires a little more work. Observe that for
any q ∈ [p], the degree 2k portion of q is

∑

B⊆T\A, |B|=k zA∪B for some A⊂ T
with |A| = k. Let C be the set of indices of the first i < k variables that
are used to multiply p in producing q. Observe that the resulting portion
of maximum degree ` + i is

∑

D⊂T\C , |D|=` zC∪D. In particular, the i < k
common indices in these maximum degree terms cannot possibly match
the k common indices in the maximum degree terms in q.

The following lemma implies that a low diameter PC±F refutation can
be converted to a low degree refutation with only a small increase in size.
(For that conclusion one would only need the proof for some sequence of
polynomials, rather than for every sequence.)

Lemma 3.42. Let d0 be the maximum degree of f1, . . . , fm. If there is a PC±F
proof from f1, . . . , fm, ( f1, . . . , fT ) of diameter at most d ≥ 1 and size at most
s, then, for any sequence of polynomials f ′1 , . . . , f ′T with each f ′i ∈ [ fi], there
is a PC±F proof ( f1, . . . , fm, . . . , f ′1 , . . . , f ′T ) from f1, . . . , fm of degree at most
max(d, d0) + d/2 and size O((d + d0)s).

Proof. We show how to derive each f ′i in the required degree and size at
O(d + d0) times the size to derive fi:

1. If fi is an axiom then by definition it has degree at most d0. Therefore
f ′i ∈ [ fi] is derivable in degree at most d0 + d/2 by Proposition 3.40.
This takes at most d0 steps and each line in that derivation has exactly
the same number of monomials as fi .
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2. If fi = zk · f j where j < i, then we observe that [ fi] = [ f j]. Therefore
f ′i = zR · f j for some R ∈Mon( f j). Now f ′j = zS · f j for some S ∈Mon( f j)
and hence

f ′i = zR · f j = zR⊕S · zS · f j = zR⊕S · f ′j .

Since diam( f j)≤ d, we have |R⊕S| ≤ d and hence, by Proposition 3.39,
f ′i is derivable in degree at most 3d/2 in at most d steps from f ′j ; each
line of this derivation has the same number of monomials as fi does.

3. If fi = a · f j+b · f j′ where j, j′ < i. Then f ′i = zR · fi for some R ∈Mon( fi),
f ′j = zS · f j for some S ∈Mon( f j) and f ′j′ = zT · f j′ for some T ∈Mon( f j′).
We have two cases:

Mon( f j) and Mon( f j′) are disjoint: Therefore Mon( fi) is their union,
and so S, T ∈Mon( fi). Since fi has diameter at most d, |R⊕ S| ≤ d and
|R⊕ T | ≤ d. Now

f ′i = zR · fi = a · zR⊕S · zS · f j + b · zR⊕T · zT · f j′ = a · zR⊕S · f ′j + b · zR⊕T · f ′j′ .

Since there is no cancellation of monomials, every monomial in zR⊕S · f ′j
and every monomial in zR⊕T · f ′j′ is a monomial in f and hence each
has degree at most d. Therefore, since deg(zR⊕S), deg(zR⊕T ) ≤ d, by
applying 3.39 twice, we see that we derive f ′i from f ′j and f ′j′ via a further
degree 3d/2 inference in at most 2d + 1 lines, each line of which has a
number of monomials equal to the number in fi or f j or f j′ ,

There is some U ∈ Mon( f j)∩Mon( f j′): From f ′j and f ′j′ , we first derive
p = zU⊕S · f ′j = zU · f j and q = zU⊕T · f ′j′ = zU · f j′ , each of which has degree
at most d since diam( f j), diam( f j′)≤ d and can be derived via a proof of
degree 3d/2 of at most d lines. Hence

r = a · p+ b · q = zU · (a · f j + b · f j′) = zU · fi

has degree at most d. Assume without loss of generality that R ∈Mon( f j).
Since the diameter of f j is at most d, |R⊕U | ≤ d. Therefore f = zR · fi =
zR⊕U · zU · fi = zR⊕U · r can be derived from r in degree at most 3d/2 by
Proposition 3.39 since |R⊕ U | ≤ d, deg(r) ≤ d and deg( f ) ≤ d. There
are at most 3d+1 lines in total for this derivation, each of which has size
bounded by the sizes of fi , f j , f j′ .

Definition 3.43. Given PC±F proof Π = ( f1, . . . , fT ) and a positive integer
D, we write

W (Π, D) = {A⊆ [n] | A= R⊕ S for some R, S ∈Mon( ft) with ft ∈ Π

and |A|> D}

for the set of wide symmetric differences in Π.
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Obviously, if W (Π, D) = ∅ then Π has diameter at most D. Sokolov 5 5

developed a way to iteratively reduce the set of wide symmetric differences
in a way similar to that of Clegg, Edmonds, and Impagliazzo 6, and Im- 6

pagliazzo, Pudlak, and Sgall 7. Unlike those results, this method will not 7

allow us to convert small size PC±F proofs into small diameter proofs based
on the original set of constraints; such a conversion is impossible as shown
by the same Tseitin formula examples. However, it will let us produce small
diameter derivations involving restrictions of the original set of constraints.

Definition 3.44. For any set of constraints F = { f1 = 0, . . . , fm = 0} on
{x1, . . . , xn} and set of indices B ⊆ [n], write FB for the subset of F consisting
of all polynomial constraints in F that contain some variable indexed by B.

The following theorem is the key diameter-reducing result. It differs
from the degree reduction over {0, 1} in that the variables being set are not
allowed to be among the ones that contribute to the large diameter. It is
similar in the way that one finds a small set of variables that is contained in
(and can be used to remove) all but a small number of wide contributions.

Theorem 3.45. Let D > 0 and let F be a field with char(F) 6= 2. Let F =
{ f1 = 0, . . . , fm = 0} be a set of polynomial constraints on variables x1, . . . , xn

and Π be a PC±F refutation of F. Then for every integer k ≥ 1 there is a
subset B ⊆ [n] with |B| ≤ k such that for every restriction ρ defined on a
subset of [n] \ B that satisfies FB, there is a PC±F refutation Π′ of F |ρ with
|W (Π′, D)| ≤ (1− D/n)k · |W (Π, D)|.

Proof. We choose B ⊆ [n] to be a set of size k that intersects the largest
number of sets in W (Π, D).

In particular, we can choose B inductively as follows: At each step we
choose the index i ∈ [n] that appears most frequently among the sets in
W (Π, D) that do not contain previously chosen indices in [n]. By averaging,
since every set in W (Π, D) has size> D, at each stage there is some index i in
[n] that is in at least a D/n fraction of previously untouched sets. Therefore,
the number of sets in W (Π, D) that are disjoint from B is at most (1−D/n)k ·
|W (Π, D)|.

By soundness, applying the restriction ρ to the PC±F refutation Π of F
yields a refutation Π|ρ of F |ρ. Every element of W (Π|ρ, D) corresponds to
a unique element of W (Π, D) shortened by the removal of indices set by ρ.
Since ρ does not set any value indexed by B, the number of elements in
W (Π|ρ, D) that are disjoint from B is at most the number in W (Π, D) that
are disjoint from B. Therefore, in order to prove the theorem, it will suffice
to show that we can modify Π|ρ to get rid of all elements of W (Π|ρ, D) that
intersect B.

Observe that since ρ satisfies FB, F |ρ does not contain any constraints
with variables indexed by B. (The satisfied constraints in FB have been
reduced to 0 and can be ignored.) Since ρ does not set any variables in B,
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Π|ρ will still have terms containing the variables in B. We show that these
variables in B merely serve a kind of book-keeping role and can be removed:

For each ft |ρ in Π|ρ, we write ft |ρ =
∑

A⊆B zA · pt,A where pt,A is a poly-
nomial that does not include any variable whose index is in B. The new
refutation Π′ replaces each polynomial ft |ρ in Π|ρ by the sequence of all
pt,A that are non-zero. To see that this is still a PC±F refutation of F |ρ, we
observe that

• f j |ρ = p j,∅ and p j,A = 0 for ∅ 6= A⊆ B for all j ≤ m (the axioms),

• if f j |ρ = zi · f j′ |ρ for i 6∈ B then p j,A = zi · p j′,A for every A⊆ B,

• If f j |ρ = zi · f j′ |ρ for i ∈ B then p j,A = p j′,A⊕{i} for every A⊆ B,

• If f j |ρ = a · f j′ |ρ + b · f j′′ |ρ then p j,A = a · p j′,A+ b · p j′′,A for every A⊆ B,
and

• pT,∅ = 1

We finally observe that the symmetric differences of monomials in Π′ are
precisely those of Π|ρ that do not contain any variable indexed by B, which
is at most the number for Π and hence |W (Π′, D)| ≤ (1− D/n)k · |W (Π, D)|
as required.

In order for this theorem to be useful, it should be the case that the
input constraints FB that contain the variables indexed by B can be satisfied
without making the restriction ρ too large.

Remark 3.46. As in the case of Lemma 3.42, one can extend Theorem 3.45
to other non-zero values for true, a, and false, b, with essentially no loss.
The only difference is in the definition of p j,A when f j |ρ = zi · f j′ |ρ for i ∈ B:
Instead of p j′,A⊕{i}, if i ∈ A, we have p j,A = (a+ b) · p j′,A+ p j′,A\{i} and if i /∈ A,
we have p j,A = −ab · p j,A∪{i}.





4
Communication and Interpolation

In this chapter we focus on two related techniques for understanding proof
complexity, inspired by the problem of falsified clause search problem SearchF

associated with CNF formula F that we previously discussed in the context
of resolution proof complexity in Section 2.6. Both are related to commu-
nication complexity.

4.1 Basics of Communication Complexity

In communication complexity, players each receive information about a sub-
set of the input variables associated with a function or relation f , which
they must compute on their joint inputs by communicating over a broadcast
channel (or blackboard). The communication complexity of f is the mini-
mum of the worst-case number of bits they need to communicate in order to
produce a correct answer. The constraints are purely information-theoretic
in that players are assumed to have unbounded computational power. Un-
less otherwise specified there are only two parties, also known as players,
and often referred to as Alice and Bob, who received disjoint portions of the
input, which is viewed as a pair (x , y) ∈ X × Y . The two-party communica-
tion complexity of a function/relation f on X × Y is denoted by C( f ). One
can observe that after each bit of communication, the set of inputs consis-
tent with the communication so far is a set of the form A× B where A⊆ X
and B ⊆ Y , and object that is known as a combinatorial rectangle.

Sometimes players are also allowed to make random choices and have
a probability at most ε of producing an incorrect answer; the communica-
tion complexity in this case is denoted by Cε( f ). There is also a variant of
randomized communication complexity in which players begin by sharing
an arbitrarily long uniformly random string and otherwise must behave de-
terministically. This can reduce the number of bits to be sent by at most an
O(log n) additive amount for n-bit input and can be nicer to reason about.
This complexity is denoted by C pub

ε ( f ).

Example 4.1 (Equality). Consider the equality predicate EQn : X × Y →
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{0,1} where X = Y = {0,1}n and EQn(x , y) = 1 iff x = y . We have
C(EQn) = n+ 1. The upper bound, which holds for all Boolean functions
on this domain comes from the trivial algorithm in which Alice sends her
entire input to Bob who responds with the answer. The lower bound can
be shown by observing that the only combinatorial rectangles in X × Y on
which the answer is 1 are the 2n disjoint rectangles consisting of the single
points (x , x) for x ∈ {0,1}n. This means that there must be > 2n possible
markings on the blackboard and hence > n bits communicated.

On the other hand, C pub
ε (EQn) can be seen to be at most O(log(1/ε) by

the following algorithm: Alice and Bob interpret the shared random string
as a sequence of k = dlog2(1/ε)e strings r1, . . . , rk ∈ {0,1}n. Alice computes
bi = rT

i · x mod 2 for i ∈ [k] and sends b1, . . . , bk to Bob who checks that
bi = rT

i · y mod 2 for all i ∈ [k].

Example 4.2 (Disjointness). Consider the set disjointness1 predicate DISJn : 1 The name is based on viewing elements
of {0, 1}n as characteristic vectors of sub-
sets of [n]. DISJn(x , y) = 0 iff the corre-
sponding sets are disjoint. It might have
been more natural to use the term “set in-
tersection” but the term“disjointness” was
originally used.

X × Y → {0,1} where X = Y = {0,1}n and DISJn(x , y) = 1 iff there exists
an i ∈ [n] such that x i = yi = 1. One can show that C(DISJn) = n+1 by ar-
guing that no two pairs of the form (x , x) can be in the same combinatorial
rectangle.

Unlike the savings using randomness for EQn, for any fixed ε < 1/2,
C pub
ε (DISJn) is Ω(n). This requires a quite non-trivial proof. This lower

bound for randomized algorithms for set disjointness has been the basis of
many of the most important applications of communication complexity.

When there are more than k > 2 players, there are two generalizations of
two-party communication complexity typically considered: one called the
number-in-hand (NIH) model in which the inputs are partitioned between
the k players, and the other called the number-on-forehead (NOF) model in
which each input is not seen by precisely one of the k players, as in typi-
cal logic puzzles in which players try to make deductions based on marks
on their foreheads. Both are described by partitions of the inputs into k
blocks, with the i-th block consisting of those inputs seen by player i in the
NIH model, and those inputs not seen by player i in the NOF model. Write
the complexities as C k,NOF ( f ), C k,N IH( f ) and C k,NOF

ε ( f ), C k,N IH
ε for the case

of k players when the partition of the inputs is fixed. The randomized mul-
tiparty communication complexity of the computation of polynomial thresh-
old functions:

Example 4.3 (Linear Inequalities). Define GTn,k to be the function that
takes k signed integers y1, . . . , yk ∈ [−2n, 2n] and outputs 1 iff y1+· · ·+ yk ≥
0. Then trivially C k,N IH(GTn,k) is O(nk), but one can show that for any
c ≥ 0, C k,N IH

1/nc (GTn,k) is O(k log2 n).

Example 4.4 (k-Party Disjointness). The function DISJ k
n : ({0,1}n)k →

{0,1} has value 1 on input x1, . . . , x k ∈ {0,1}n iff there is an i ∈ [n] such
that x1

i = · · ·= x k
i = 1.
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It is known that for any fixed ε > 0, C k,NOF
ε (DISJ k

n ) is at least
p

n/(k2k).
This lower bound is actually proven by showing a stronger result that the
same lower bound also holds when we are given a promise that there is at
most one i ∈ [n] with x1

i = · · · = x k
i = 1, a partial function denoted by

U DISJ k
n for unique disjointness.

4.2 Tree-like proofs and the communication complexity of SearchF

Lemma 4.5. Let P be a dynamic proof system with lines that for n-variable
inputs express Boolean functions from some class BP

n and inference rules that
derive each line from at most two predecessors. Suppose further that under
every partition of the n input variables into k pieces, every function f ∈ BP

n can
be evaluated by a k-party (randomized) communication complexity protocol
of complexity at most C(n) (and error at most εn > 0).

Then, if CNF formula F has a tree-like refutation in P of size at most S,
then SearchF can be evaluated by a k-party protocol of the same type with
communication complexity O(C(n) log S) (and error at most O(ε ·log S) under
every partition of the inputs into k pieces.

Proof. Suppose that there is tree-like refutation R of F of size at most S. Fix
a partition of [n] into k pieces. The players will use R to guide their search.

The key property we use is that in any binary tree T with S leaves, there
is some node v that has between 1/3 and 2/3 of the leaves as descendants.
This follows by the usual argument following backwards from the root of
T taking the child with more descendants until that number is at most 2/3.
(The players don’t need to communicate to know this node.)

The communication protocol for SearchF on input x ∈ {0,1}n proceeds
as follows: The players use the protocol for BP

n to evaluate the line f at
node v of R. If f evaluates to false, then the search reduces to a recursive
computation on the subtree T 0

v in R rooted at v. If f evaluates to true, then
the search reduces to a recursive computation in the tree T 1

v which consists
of R with the subtree T 0

v removed.

Correctness follows from the soundness of the proof system. Since both
T 0

V and T 1
v have at most he number of levels of recursion is O(log S) which

yields both complexity bounds.

Since any clause with inputs divided between two players can be evalu-
ated by a 2-bit protocol we have:

Corollary 4.6. If F has a tree resolution refutation of size at most S, then
C(SearchF ) is O(log S) under any partition of the inputs.

Corollary 4.7. If CNF formula F in n variables has a tree-like CP∗ refutation
of at most S line then under any partition of the inputs, C(SearchF ) is O(log n·
log S). Moreover, if F has a tree-like CP protocol of at most S lines then for
any fixed ε > 0, Cε(SearchF ) is O((log n)2 log S).
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Proof. Observe that each line in CP∗ is of the form a1 x1+· · ·+an xn− b ≥ 0
where each ai and b is at most nO(1) in absolute value and hence under any
partition of the inputs, they can compute the sum of the terms they can see
(say, including the −b with Bob) to get y1 for Alice and y2 for Bob. Observe
that y1 and y2 are also of absolute value at most nO(1). It now remains for
them to evaluate GTN ,2(y1, y2) where N is O(log n). Plugging in the trivial
protocol for GTN ,2 yields the bound.

For the case of CP, by Proposition 1.26 we can assume that each coef-
ficient in a line is at most 2(n log2 n)/2−1 and since there are n + 1 of them,
the corresponding y1 and y2 have absolute value at most 2N where N is
O(n log n). Since, without loss of generality, log S is at most n, and the er-
ror per step can be taken to be 1/n2, we get that the total error is o(1).

Corollary 4.8. Let Pd be a dynamic propositional proof system whose lines
are polynomial inequalities of degree at most d. If CNF formula F in n vari-
ables has a tree-like Pd refutation of with at most S line then for any ε > 0,
C d+1,NOF
ε (SearchF ) is at most O(d4(log n)2 log S) under any partition of the

inputs into d pieces.
If we are further guaranteed that every coefficient in the tree-like proof has

absolute value at most nO(d), then C d+1,NOF (SearchF ) is at most O(d2 log n ·
log S).

Proof. The basic idea is that since the degree of any line p ≥ 0 of a Pd proof
is at most d, every monomial in p will contain variables on the foreheads of
at most d players, so there is one player left over who can see all the values.
If we attribute each monomial to the smallest numbered player who can see
all of its variables. Each player i first computes the weighted sum yi of all
the monomials in p attributed to it. Then the players combine to compute
GTN ,d+1 on their yi values using the NIH protocol. It remains to understand
how large N needs to be. There are only

� n
≤d

�

which is n′ = nO(d) monomials
and each takes on a value in {0,1}, so we can apply Proposition 1.26 to say
that each coefficient only needs to be O(n′ log n′) bits long. Therefore each
yi is only N = O(n′ log n′) bits long. Since log N is O(d log n), we obtain the
claimed result using the bound from Example 4.3.

If we know a priori that the coefficients are at most nO(d) in value, then
any of the yi is also at most nO(d) in absolute value or N = O(d log n) bits
long.

Definition 4.9 (k-fold Tseitin). Given a graph G, an odd labelling ` of the
vertices V of G, and an integer k ≥ 2, we define the k-fold Tseitin formulas
to be CNF formulas TS(G,`)(∧k), in which we replace each edge variable of
the Tseitin formula by a logical AND of new variables and expand the result
using the distributive law to a CNF formula. Observe that if G has n vertices
and maximum degree ∆ then TS(G,`)(∧k) has size at most N = (2k)∆n.

For a certain family of graphs G, the k-fold Tseitin formulas on G can be
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shown to be hard examples for any dynamic tree-like proof system based
on polynomial inequalities. The graph Gn on n vertices in the original proof
is the union of an explicitly constructed highly expanding ∆ = Θ(log n)-
regular graph and a Hamiltonian path.

Theorem 4.10. Let k ≥ 2 and m = n1/3/ log n. If ` is an odd labeling of
Gn then any tree-like Pk−1 refutation of TS(Gn,`)(∧k) requires size at least
2Ω(C

k,NOF
(ε (U DISJ k

m)/ log n)1/3 .

Proof Sketch. By applying Corollary 4.8, it suffices to obtain a lower bound
on the k-party NOF communication complexity of SearchTS(Gn,`)(∧k) . The
only thing that we need to show is a randomized reduction to this commu-
nication problem from U DISJ k

m under a suitable partition of the variables.
That partition allocates each of the k players with one of the k vari-

ables associated to each edge of the k-fold Tseitin formula. Now solving
SearchTS(Gn,`)(∧k) finds a charge violation given an odd labeling. By a stan-
dard randomized reduction, finding a charge violation for an odd labeling
of Gn can also be used to see whether an even labeling has no violations2. 2 Given an even labeling, flip the label of a

random vertex and see if the odd-charge vi-
olation returned is the this planted one. If
not, we know that there was a violation of
the even labeling. By careful choice, one
arrange it so that any violations of the odd-
labelling search problem are essentially in-
distinguishable from each other, so there
is no advantage in guessing which was an
original violation and which was planted.

Each of the m positions in the disjointness problem is associated with
edge-disjoint paths between m pairs of vertices in Gn (that do not use the
edges of the Hamiltonian path part of Gn). The input to the disjointness
problem is transformed in such a way that the result has even parity every-
where except at a pair of endpoint vertices associated with an intersecting
coordinate. Therefore charge violations of the all 0’s charge occur if and
only if the sets intersect.

Combining the above with the lower bounds for NOF k-party unique set
disjointness yields the following:

Corollary 4.11. There is a δ > 0 such that for 2≤ k ≤ δ log n, and any odd
labeling ` of Gn, degree k − 1 tree-like Positivstellensatz Calculus refutations
of TS(Gn,`)(∧k) require size 2nΩ(1) which is 2NΩ(1/ log k)

where N is the size of
TS(Gn,`)(∧k).

4.3 Feasible Interpolation

A classic theorem in logic is Craig’s interpolation theorem. If there are for-
mulas φ and ψ that have shared variables X but also have other variables.
It says that if φ→ψ, then one can “interpolate” a formula θ only involving
variables X , between φ and ψ so that φ→ θ →ψ.

There is a natural version of interpolation involving CNF formulas where
one can easily prove this statement. Let A(x , y) and B(x , z) be two CNF
formulas and suppose that F(x , y, z) = A(x , y) ∧ B(x , z) is unsatisfiable.
Therefore there can’t be any pair (y, z) so that both A(x , y) and B(x , z) are
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satisfiable, so the following (partial) function makes sense:

C(x) =











1 if ∃y. A(x , y)

0 if ∃z. B(x , z)

∗ otherwise.

Any Boolean function that is consistent with C is called an interpolant3 for 3 Observe that ¬(A(x , y) ∧ B(x , z)) ≡
¬A(x , y) ∨ ¬B(x , z) ≡ A(x , y) → ¬B(x , z)
and that A(x , y) → C(x) and C(x) →
¬B(x , z).

A(x , y)∧ B(x , z).

We will show that there is a direct relationship between certain proof
systems and interpolants. The general pattern will be that if a CNF formula
F of the above type has an efficient refutation in some proof system, then it
has an interpolant that can be computed efficiently. Sch proof systems will
be said to have feasible interpolation.

Example 4.12 (Clique-Coloring Formulas). These formulas, denoted C LIQU E−COLORn,k,
express the (impossible) claim that n-vertex graph with a k-clique can be
k− 1 colorable. They have variables

• xe for each potential edge e ∈
�[n]

2

�

in an n-vertex graph G.

• yi j for each i ∈ [k] and j ∈ [n] expressing that vertex j is the i-th vertex
in a chosen k-clique in G.

• z jc for each j ∈ [n] and c ∈ [k − 1] expressing that vertex j has color c
in a chosen (k− 1)-coloring of G.

We write C LIQU E−COLORn,k = A(x , y)∧ B(x , z) where A(x , y) expresses
that y is k-clique in G and is given by the clauses:

• yi1 ∨ · · · ∨ yin for each i ∈ [k],

• ¬yi j ∨¬yi′ j′ ∨ x{ j, j′} for each i 6= i′ ∈ [k] and j 6= j′ ∈ [n],

• ¬yi j ∨¬yi j′ for each i ∈ [k] and j 6= j′ ∈ [n],

and B(x , z) expresses that z is a (k − 1)-coloring of G and is given by the
clauses:

• z j1 ∨ · · · ∨ z j(k−1) for each j ∈ [n],

• ¬x{ j, j′} ∨¬z jc ∨¬z j′c for each j 6= j′ ∈ [n] and each c ∈ [k− 1],

• ¬zic ∨¬zic′ for each i ∈ [n] and c 6= c′ ∈ [k− 1].

The unsatisfiability of C LIQU E−COLORn,k is really an indirect property
of the pigeonhole principle PHPk

k−1; The constraints ensure that y and z
express functions whose composition would be a 1-1 function from [k] to
[k − 1]. Like that principle, it is still unsatisfiable if the third clause types
in both A(x , y) and B(y, x) are removed, since these merely ensure that
y and z express functions rather than relations, whose composition would
also violate PHPk

k−1.
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Observe that any interpolant C for the C LIQU E−COLORn,k must be able
to distinguish between graphs with k-cliques and those that are (k − 1)-
colorable, which is an NP-hard problem.

Observe also that the interpolant C can be taken to be a monotone func-
tion of x (that is, flipping bits of x from 0 to 1 can only cause the value of
C from 0 to 1), since adding edges to a graph can only increase the set of
possible k-cliques and reduce the set of possible (k−1)-colorings. This prop-
erty of having a monotone interpolant is not special to C LIQU E−COLORn,k

and definition holds for any instance for which the x variables occur only
positively in A(x , y).

We say that a circuit computing a monotone function C(x) is itself mono-
tone if it has ∧ and ∨ gates but no ¬ gates. It is known that any monotone
circuit that separates k-cliques from (k−1)-colorings for k = O((n/ log n)2/3)
requires exponential size 2Ω(k

1/2).

Theorem 4.13. Let F(x , y, z) = A(x , y) ∧ B(x , z) be an unsatisfiable CNF
formula. If F has a resolution refutation of size at most S then there is an
interpolant for F computable by a circuit of size at most 4S.

Furthermore, if x only occurs positively in A(x , y), then that circuit can be
monotone.

Proof. The structure of the circuit for the interpolant for F will follow the
DAG structure of a minimal resolution refutation of F . We assign each leaf
of the proof labeled by a clause in A(x , y) by 0 and each leaf of the proof
labeled by a clause in B(x , z) by 1. We will assign each internal node that
resolves on some y j by an ∨-gate and each one that resolves on some z′j by
an ∧-gate.

Each input x i will only enter in the circuit at the nodes in the proof
that resolve on variable x i . Suppose that clause C ′ ∨ D′ at vertex u is the
resolvent of clauses C = C ′∨ x i and D = D′∨¬x i labeling children v and w
respectively. Then we assign a gate sel(x i , v, w) to node v, where sel(0, v, w)
gives the value of node v and sel)(1, v, w) gives the value of node w. We
can write sel(x i , v, w) = (x i ∧ w) ∨ (¬x i ∧ v) which is only 4 gates, so the
size bound is as claimed.

It remains to argue that this circuit computes an interpolant for F . If we
take this refutation and apply the restriction x ← ax to it, then each time we
have a vertex v that resolves one of the x i variables, one of its child clauses
is set to 1 by the assignment ax , so we view it as a copying operation for
the other clause, resulting in a clause that is a subset of the original one
labeling v. Observe that, with this translation, any connection between
clauses derived from A(x , y) and those derived from B(x , z) is broken and
only one of those sets of clauses leads to the root. (All other resolution
steps for which both contain the resolution variable on yi both have children
among those derived from A(x , y) and for steps on zi , both are derived from
B(x , z).)
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However, there may be resolution steps that no longer make sense be-
cause one or both of the child clauses no longer contains the resolution
variable; in that case we simply pass one of those clauses to the parent,
with the provisos that (1) if the resolution variable is a y variable and one
of the child clauses is derived from B(x , z) then we choose to pass that one
through, and (2) if that variables is a z variable and one of the child clauses
is derived from A(x , y) then we pass that one through. The resulting proof
is either a refutation of A(x , y)|x←ax

or of B(x , z)|x←ax
.

We claim by induction that the function computed at each node in our
circuit on input ax , has value 0 if it is derived from A(x , y)|x←ax

and has
value 1 if it is derived from B(x , z)|x←ax

. This is sufficient for correctness
of the circuit, since the output node will be have value 0 if there is a refu-
tation of A(x , y)|x←ax

(which is ensured if B(x , z)|x←ax
is satisfiable) and

will have value 1 if there is a refutation of B(x , z)|x←ax
(which is ensured if

A(x , y)|x←ax
is satisfiable).

Clearly, the claim is true at the leaves by construction. If it is true in-
ductively, then the sel gate will correctly choose the derivation type for any
node resolving on some x i . Finally, our choice to pass through the clause of
opposite type to the resolution variable at a useless resolution step ensures
that the labeling of gates resolving on y j by ∨ and z j′ by ∧ ensures that the
type of the derived clause is correctly represented in the circuit.

Observe that if x only occurs positively in A(x , y), then in the above con-
struction, whenever we resolve on some x i , any clause derived solely from
A(x , y) contains x i positively so we can replace the function sel(x i , v, w)
by the monotone function (x i ∨ v) ∧ w, which differs from sel(x i , v, w) on
precisely one assignment (x i = 0; v = 1; w = 0) where it evaluates to 0,
because if a child is derived from A then we can always assume that it is the
one passed through if x i = 0.

Corollary 4.14. C LIQU E−COLORk,n requires resolution refutations of size
2Ω(k

1/2) for k that is O((n/ log n)2/3).

While this is very nice, we have many other lower bounds for resolution,
so it may not be surprising. On the other hand there is a more general
version of monotone version of interpolation that applies to cutting planes
proofs, which yield the first lower bounds for general cutting planes. The
difference is that we require a much more general and powerful notion of
monotone circuit.

Definition 4.15. A k-ary monotone real function is a mapping f : Rk → R
with that property that increasing the value of any of its arguments cannot
decrease the value of the function.

A monotone real circuit is a directed acyclic graph of in-degree at most 2
with each node of indegree k = 1, 2 labeled by a k-ary monotone real func-
tion. It computes a monotone real function of its inputs as a composition
of the functions labeling its gates.
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The following theorem due to Pudlak is the key to strong lower bounds
for CP.

Theorem 4.16. Let F(x , y, z) = A(x , y) ∧ B(x , z) be an unsatisfiable CNF
formula such that x only occurs positively in A(x , y). If F has a CP refutation
of size at most S then there is an interpolant for F computable by a monotone
real circuit of size at most S + |F | ·w(F).

Proof. The basic structure of the argument is similar to the proof of The-
orem 4.13. However, given an assignment x = α, instead of thinking of
whether to keep the part of a line that depends on A(x , y) or on B(x , z), we
will keep both and figure things out afterward.

More precisely, given an assignment x = α, we will split each line

a(x) + b(y) + c(z)≥ D

of a CP refutation into two lines

b(y)≥ D0 and c(z)≥ D1

where integers D0 and D1 satisfy D0 + D1 ≥ D− a(α). The part involving y
will be derived from A(x , y)|x←α and the part involving z will be derivated
from B(x , z)|x←α.

In particular, this will split the last line of the proof, 0 ≥ 1, into 0 ≥ D0

and 0 ≥ D1 such that D0 + D1 ≥ 1. Since D0 and D1 are integers at least
one of them will be ≥ 1 and hence one of the two sides of the split will be a
refutation of A(x , y) or B(x , z) under the restriction x ← α using precisely
the same rules as each line of the original proof.

We produce this split by induction. An axiom a(x) + b(y) ≥ D derived
from A(x , y) yields a split under restriction of the form

b(y)≥ D− a(α) and 0≥ 0.

An axiom from B(x , z) of the form a(x) + c(z)≥ D becomes

c(z)≥ D− a(α) and 0≥ 0.

We now argue each inference rule in turn. For multiplication by a K > 0,
we just multiply each side of the split by K . For addition, suppose that we
are summing a(x)+ b(y)+c(z)≥ D and a′(x)+ b′(y)+c′(z)≥ D′ to obtain
a(x) + a′(x) + b(y) + b′(y) + c(z) + c′(x)≥ D+ D′. Then by the inductive
hypothesis we have the splits

b(y)≥ D0 and c(z)≥ D1

and

b′(y)≥ D′0 and c′(z)≥ D′1
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where D0 + D1 ≥ D− a(α) and D′0 + D′1 ≥ D′ − a′(α). The split for the sum
can be chosen as:

b(y) + b′(y)≥ D0 + D′0 and c(z) + c′(z)≥ D1 + D′1.

Note that D0 + D′0 + D1 + D′1 ≥ D+ D′ − a(α)− a′(α) as required.
Finally, suppose that we apply the division rule: Given K ·a(x)+K ·b(y)+

K · c(z)≥ D with K > 0 we derive a(x)+ b(y)+ c(z)≥ dD/Ke. By induction
we have a split K · b(y)≥ D0 and K · c(z)≥ D1 where D0+D1 ≥ D−K ·a(α).

Since b(y) and c(z) take on integer values, by applying the same division
rule to each of the split inequalities we have b(y) ≥ dD0/Ke and c(z) ≥
dD1/Ke. Now

dD0/Ke+ dD1/Ke ≥ d(D0 + D1)/Ke

≥ d(D− K · a(α))/Ke by assumption

= dD/Ke − a(alpha)

which means that this new split is also correct.
The algorithm that will be given by the real monotone circuit of fan-in at

most 2 will simply compute the (negation of the) D0 quantity for the split
version of each line as a function of its input α. For the initial inequalities,
this is a quantity of the form a(α) − D which is a monotone function in
α since each variable x i appears positively in the original clause. This re-
quires at most w(F) fan-in 2 monotone real gates for each clause in F . For
each inference rule we have a single gate that is either (i) multiplication by
a positive constant, (ii) addition, or (iii) division by positive constant and
rounding down (since it is computing the negative a number that is being
rounded up), each of which is a monotone function of one or two argu-
ments. At the end, when it has the final constraint 0 ≥ D0, it will output
0 if D0 ≥ 1 (which means that the left side of the splits is a refutation of
A(x , y)) and output 1 otherwise. This is monotone in −D0.

A version of the same theorem holds for the non-monotone case, but the
non-monotone version of these circuits seems extremely powerful. Since
the variables only are Boolean, and the original constraints have integer
coefficients, we can assume without loss of generality that the proofs have
integer values of at most O(n log n) bits each, and hence the resulting cir-
cuits only need to deal with moderately sized integer values rather than
arbitrary reals.

Nonetheless, reasoning about such circuits in terms of arbitrary reals
seems to held avoid distractions. In particular, Pudlak showed that the
monotone Boolean circuit lower bound separating graphs with k-cliques
from those that are (k − 1)-colorable applies equally well to monotone
Boolean circuits.

Corollary 4.17. C LIQU E−COLORk,n requires CP refutations of size 2Ω(k
1/2)

for any k that is O((n/ log n)2/3).
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This was the very first exponential lower bound for CP and for many
years was (essentially) a singular example of a hard problem for CP because
of the specialized format of the formulas required and the difficulty proving
monotone (real) circuit lower bounds.

However, recently, two new methods have been developed to obtain
lower bounds for CP, one of which is based on lifting with we will describe
in a separate chapter, and the other is a re-interpretation of interpolation
that allows one to apply it to formulas with arbitrary format.

The general idea of the second method is the following: Given a CNF
formula F = ∧i∈[m]Ci with variables from X , we show that we can prove CP
lower bounds for F by proving interpolation lower bounds for many differ-
ent formulas based on F , each indexed by a partition of X into two parts,
X0 and X1, which we denote by F X0,X1 that will also have extra variables.

In F X0,X1 , the variables in X0 and X1 play the role of the z and y variables
in the monotone interpolation framework. F X0,X1 will also have a new set
of m variables, W , which will play the role of the x variables in the inter-
polation framework. In F X0,X1 we replace each clause Ci by two clauses:

(C1
i ∨wi)∧ (¬wi ∨ C0

i )

where C1
i is the sub-clause of Ci on the variables of X1 and C0

i is the sub-
clause of Ci on the variables of X0. We can write A(x1, w) for the conjunction
of all the (C1

i ∨ wi) clauses and B(x0, w) for all the (¬wi ∨ C0
i ) clauses.

Clearly w only appears positively in A(x1, w) so any interpolant for F X0,X1 is
monotone. Moreover, each F X0,X1 is logically equivalent for F .

Proposition 4.18. For any CNF formula F with m clauses on variables X
and any partition X = X0 ∪ X1, if F has a CP (resolution) refutation of size
at most S then F X0,X1 has a CP (respectively, resolution) refutation of size at
most S +m

Proof. Simply apply one resolution step to eliminate the variables in W or
the equivalent step in CP.

Therefore, in order to provide a lower bound for F , it suffices to prove
a monotone (real) circuit complexity lower bound for F X0,X1 for the inter-
polant for just one partition (X0, X1).

What are the requirements for such an interpolant? There is precisely
one variable in W for each clause of F . A truth assignment to W corresponds
to a selection of a subset of clauses T ⊆ [m] so we can view the interpolant
as a function f defined on subsets of [m] with the following correctness
property4: 4 Observe that such an interpolant can be

monotone in T since increasing the size of
T makes it easier it is to satisfy the first con-
straint, and force the function value to 1,
which reducing T makes it easier to force te
function value to 0 in the second constraint

• If ∧i /∈T C1
i is satisfiable then F(T ) = 1, and

• if ∧i∈T C0
i is satisfiable then F(T ) = 0.
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This is a nice enough definition in its own right that we give it an indepen-
dent name and call it an unsatisfiability certificate for F under the partition
(X0, X1).

Monotone interpolation immediately implies the following5: 5 In the case of resolution there actually is
a direct construction of the monotone cir-
cuit for the unsatisfiability certificate for F .
In the resolution refutation we replace each
input clause Ci by a variable yi , each reso-
lution step on a variable in X0 by ∧, and
each resolution step on a variable in X1 by
∨. The proof of correctness is left as an ex-
ercise.

Proposition 4.19. If F on variables X has a resolution (CP) refutation of
size S then for every partition of X into X0 ∪ X1, F has a and unsatisfiability
certificate f under (X0, X1) computable by a monotone (real) circuit of size
O(S) (respectively, O(S +m ·w(F)).

We omit the proof of the following theorem, whose proof is quite non-
trivial.

Theorem 4.20. There is a constant c > 0 such that if X is a set of 2n vari-
ables, k ≥ c log n and F is a random k-CNF formula in m = O(2kn) clauses
on X , then for a fixed partition of X into two sets X0 and X1 of size n, any un-
satisfiability certificate for F under partition (X0, X1) requires monotone real
circuit size 2nΩ(1) with probability 1− o(1).

From this, we immediately obtain.

Corollary 4.21. For some constants c, c′ > 0, with probability 1− o(1), ran-
dom k=CNF formulas for k = dc log ne with O(nc′) clauses are unsatisfiable
but require CP refutations of size 2nΩ(1) .

Similar results also hold for a concise version of the pigeonhole principle
known as the bit pigeonhole principle, BPHPm

n , which is defined only when
n is a power of 2 and m> n; write n= 2` Instead of the usual m× n matrix
of variables, BPHPm

n has m× `= m× log2 n variables. The variables in the
i-th row are the binary encoding of the name of the hole that the i-th pigeon
maps to. The clauses simply state that no two rows of the matrix are equal.
That is, we have n ·

�m
2

�

clauses of length 2`:

•
∨

j∈[`]−1(¬x
b j

i j ∨¬x
b j

i′ j) for each i 6= i′ ∈ [m] and each b1, . . . b` ∈ {0,1},

where we use the notation x1 = x and x0 = ¬x .

Both of these classes of hard examples have clauses of logarithmic length.
This seems fundamental in order to be able to apply this technique since
finding good partitions of variables for constant-sized clauses seems hard.

Open Problem 4.22. Prove lower bounds on CP refutation size for unsatisfi-
able random k-CNF formulas for constant k (or k = o(log n)).
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