Exercise: Due Friday December 18

6. The key to the degree 3 upper bound for SoS refutations of PHP_{n-1}^n was a degree 3 derivation of the constraint $1 - \sum_{i \in [n]} x_{ij} \ge 0$ from the constraints $1 - x_{ij} - x_{i'j} \ge 0$ for $i \ne i'$. In this problem you will show that this derivation requires degree *n* for Sherali-Adams (SA). For simplicity, we drop the hole index, so assume that you are given the set \mathscr{P} of polynomials consisting of $1 - x_i - x_i \ge 0$ for all $i \ne j \in [n]$.

Define a linear function $\widetilde{\mathbb{E}}$ on polynomials by

$$\widetilde{\mathbb{E}}(x_S) = \begin{cases} 1 & \text{if } S = \emptyset \\ 1/(d+1) & \text{if } |S| = 1 \\ 0 & \text{otherwise,} \end{cases}$$

where $x_S = \prod_{i \in S} x_i$.

Show that $\widetilde{\mathbb{E}}$ is a degree *d* SA-pseudo-expectation for \mathscr{P} and use this to conclude that if d < n-1 then there is no degree *d* SA-derivation from \mathscr{P} of $1 - \sum_{i \in [n]} x_i \ge 0$.