Exercise: Due Friday December 18

6. The key to the degree 3 upper bound for SoS refutations of $P H P_{n-1}^{n}$ was a degree 3 derivation of the constraint $1-\sum_{i \in[n]} x_{i j} \geq 0$ from the constraints $1-x_{i j}-x_{i^{\prime} j} \geq 0$ for $i \neq i^{\prime}$. In this problem you will show that this derivation requires degree n for SheraliAdams (SA). For simplicity, we drop the hole index, so assume that you are given the set \mathscr{P} of polynomials consisting of $1-x_{i}-x_{j} \geq 0$ for all $i \neq j \in[n]$.
Define a linear function $\widetilde{\mathbb{E}}$ on polynomials by

$$
\widetilde{\mathbb{E}}\left(x_{S}\right)= \begin{cases}1 & \text { if } S=\emptyset \\ 1 /(d+1) & \text { if }|S|=1 \\ 0 & \text { otherwise }\end{cases}
$$

where $x_{S}=\prod_{i \in S} x_{i}$.
Show that $\widetilde{\mathbb{E}}$ is a degree d SA-pseudo-expectation for \mathscr{P} and use this to conclude that if $d<n-1$ then there is no degree d SA-derivation from \mathscr{P} of $1-\sum_{i \in[n]} x_{i} \geq 0$.

