Exercise: Due Friday, October 23

- 3. In class we proved that PHP_n^{n+1} requires resolution refutations of size at least $2^{n/20}$. While this is exponential, the truth is probably somewhat larger still. This problem is about getting a much larger lower bound for *tree* resolution proof size by a much simpler argument. In this case, it is simpler to work with the *functional* pigeonhole principle directly (and a lower bound for that implies the same lower bound for PHP_n^{n+1}).
 - (a) Use the following general idea to prove that the tree resolution size for *f unction*-*PHP*ⁿ⁺¹_n is at least 2ⁿ:
 - View a tree resolution refutation of $function-PHP_n^{n+1}$ as a DPLL refutation where we have removed the unit clause rule and each node v is associated with a partial assignment α_v that falsifies the tree-resolution clause labeling v.
 - Call a branch step on variable x_{ij} a *splitting step* if neither child is a leaf that falsifies a Hole Clause or Function Clause of $function-PHP_n^{n+1}$.
 - Argue that if node ν is reached after t splitting steps from the root, then there
 is restriction associated with a partial matching of pigeons to holes of size at
 most t that implies all the values set in α_ν.
 - Argue that every non-leaf node must reach a node labeled by a Pigeon Clause.
 - Prove that all root-leaf paths to Pigeon Clauses must be have $\geq n$ splitting steps and use this to argue that the tree-resolution proof has at least 2^n leaves that are labeled by Pigeon Clauses.
 - (b) Describe the most efficient tree-resolution refutation of PHP_n^{n+1} that you can think of. How close can you get to size 2^n ?