Exercises: Due Friday, October 16

- 1. The GT_n formula formalizes properties of "greater than" on *n* elements (intuitively x_{ij} states that element *i* is greater than element *j*) and makes the claim that there is no maximum element among them. It contains the following clauses.
 - Totality: $x_{ii} \lor x_{ji}$ for all $i \neq j \in [n]$.
 - Anti-symmetry: $\neg x_{ij} \lor \neg x_{ji}$ for all $i \neq j \in [n]$.
 - Transitivity: $\neg x_{ij} \lor \neg x_{jk} \lor x_{ik}$ for all distinct $i, j, k \in [n]$.
 - Non-maximality: $\bigvee_{i \neq j} x_{ij}$ for all $j \in [n]$.

Describe polynomial size resolution refutations for the GT_n formulas.

Hint: derive the non-maximality axioms of GT_{n-1} from those of GT_n by resolving out all variables that touch vertex n, one after another.

2. Show that for any CNF formula *F* you can convert any tree resolution refutation *R* of *F* into a Nullstellensatz refutation of *F* (over any field) whose degree is at most the height of *R*. (Recall that you can assume without loss of generality that *R* is regular also, so it looks like a DPLL tree.)