CSE599s, Spring 2014, Online Learning

Lecture 99 - 01/01/2014

Sample file for CSE599s

Lecturer: Brendan McMahan or Ofer Dekel

Scribe: Your Name Here

1 Introduction and notes on style

This sample shows how to use the cse599s style file. A few pointers on style:

• Please write your notes in complete sentences, including correct punctuation for called out equations. For example, the definition of regret is

Regret =
$$\sum_{t=1}^{T} f_t(w_t) - \min_{u \in W} \sum_{t=1}^{T} f_t(u).$$

Notice the period at the end of the above sentence!

• Use \text for text inside of equations, or better define a newcommand using \operatorname. Compare

- Use the macros defined in this sample file, e.g., \Regret, \argmin, \R, etc.
- Try Googling "how to write math" for more good advice; this is good place to start: http://erickson.sites.truman.edu/files/2012/04/guide1.pdf.

2 Notation

We will typically use the following notation. Don't worry if you don't know what these all mean yet.

symbol	meaning
$t \in \{1, \dots, T\}$	There are T total rounds, and t is the index of the current round.
$w_t \in \mathbb{R}^n$	The feasible point selected by the algorithm on round t .
$\mid n$	The dimension of the feasible set.
$w_{t,i} \in \mathbb{R}$	The <i>i</i> th coordinate of w_t , with $i \in \{1, \ldots, n\}$.
$\mathcal{W} \subseteq \mathbb{R}^n$	A convex set of feasible points, from which w_t is chosen.
$f_t: \mathcal{W} \to \mathbb{R}$	A convex loss function selected by the adversary on round t .
$g_t \in \mathbb{R}^n$	The gradient of the current loss function at w_t , so $g_t = \nabla f_t(w_t)$.
$R:\mathcal{W}\to\mathbb{R}$	A strongly convex regularization function.
(x_t, y_t)	Feature vector x (usually in \mathbb{R}^n), and label $y \in \mathbb{R}$.
$h \in \mathcal{H}$	Hypothesis h from the set of possible hypotheses \mathcal{H} .
\hat{y}_t	Predicted label for x_t , for example $\hat{y}_t = h(x_t)$.

3 Online learning is fun

Theorem 1. My algorithm works.

Proof. I have proof.

References

[1] N. Cesa-Bianchi and G. Lugosi, "Prediction, Learning, and Games", Cambridge University Press, 2006.