
CSE599s, Spring 2014, Online Learning Lecture 7 - 04/22/2014

Exponentiated Gradient and Intro to Bandits
Lecturer: Ofer Dekel Scribe: April Shen

1 Exponentiated Gradient

1.1 Review

Recall that we saw a solution to the problem of online learning with expert advice using FTRL with entropic
regularization, in which we use the regularization function

R(p) =
1

η

(
d∑
i=1

pi log pi + log d

)
+ I∆d

(p).

With this regularizer we get a regret bound of

Regret ≤ 2
√
T log d.

The log d rather than d constant is particularly good, since it allows us to compare against a larger set of
experts (and hence perform favorably against a larger set of comparators).

Since we’re still using FTRL, it looks as though we still need to solve the following optimization on each
round:

pt = argmin
p

t−1∑
s=1

ls · p+R(p).

But it turns out we can derive a closed-form solution for this optimization.

1.2 Closed-Form Solution for FTRL with Entropic Regularization

Rewriting our optimization, we want to solve

min
p
p · l1:(t−1) +

1

η

d∑
i=1

pi log pi + I∆d
(p). (1)

To derive a closed-form solution, we’ll apply the method of Lagrange multipliers. First note that the
constraint function I∆d

(p) is equivalent to the pair of constraints

∀i, pi ≥ 0

d∑
i=1

pi = 1.

We can ignore the first for now (in the end, we’ll see we get a solution that satisfies it anyway) and hence
rewrite the constraint as

I∆d
(p) = max

λ
λ

(
1−

d∑
i=1

pi

)
,

1

which is only finite if the sum of the pis is equal to 1. Hence we can rewrite equation (1) as

min
p∈Rd

max
λ∈R

p · l1:(t−1) +
1

η

d∑
i=1

pi log pi + λ

(
1−

d∑
i=1

pi

)
(2)

= min
p∈Rd

max
λ∈R

L(p, λ), (3)

where p is the primal variable, λ is the Lagrange variable or dual variable, and L(p, λ) is called the Lagrangian.
For technical reasons1, strong duality holds, so this is equal to

= max
λ∈R

min
p∈Rd

L(p, λ). (4)

Now we solve the inner minimization of (4) for a fixed λ, by setting the gradient of L with respect to p
equal to zero. So we get for all i,

∂L

∂pi
= l1:(t−1),i +

1

η
(1 + log pi)− λ = 0 (5)

⇒ log pi = −ηl1:(t−1),i − (1− ηλ) (6)

⇒pi =
e−ηl1:(t−1),i

c
(7)

for c = e1−ηλ. However, we know that the sum of the pis must be equal to 1, so in fact c is the just the
normalization constant, i.e.,

c =

d∑
i=1

e−ηl1:(t−1),i .

Note also that this choice of pi is nonnegative, as we wanted. Hence equation (7) with this constant c is our
solution to problem (1).

1.3 The EG Algorithm

This gives us an algorithm called Exponentiated Gradient, which is as follows. For t = 1, . . . , T :

• Define ∀i, wt,i = e−ηl1:(t−1),i .

• Define pt = wt

||wt||1 .

• Draw It ∼ pt, incurring loss lt,It and observing lt.

We can also formulate the updates to wt recursively:

w1 = (1, . . . , 1)

wt,i = (wt−1,i)(e
−ηlt,i) ∀i

The recursive formulation makes the analogy to gradient descent quite apparent: rather than taking an
additive step in the gradient direction, we essentially take a multiplicative step in the direction of the
exponential of the gradient.

As a general aside, it’s a good idea to check our intuitions against the math at the end of a derivation, to
see if they line up. In this case they do: if an expert sucks really badly (high loss), we assign low probability
to choosing that expert, and our probability of choosing an expert is highest if that expert’s loss is 0.

1In particular, Slater’s condition holds, which roughly states that the relative interior of the feasible set is nonempty. For
more details, take a class in convex optimization.

2

It’s also worth thinking about why we were able to get a smaller regret bound using entropic regularization
as opposed to squared l2 or Euclidean regularization. Regularization can be used to encode prior knowledge
about where the best point might be, so we want our regularization function to be minimized at the a priori
most reasonable point. Intuitively, the Euclidean norm doesn’t fit naturally with measuring distances in the
probability simplex, while negative entropy is a natural function to use as it is minimized at the uniform
distribution.

2 Adversarial Multi-Armed Bandits

We now move to the multi-armed bandits scenario, where rather than experts to take advice from, the
analogy is of multiple slot machines with different payout probabilities (of course these both correspond to
having multiple actions to take with differing losses). The catch here is that we only get feedback for the
arm we choose to pull.

2.1 The Setting

We play the following game. For t = 1, . . . , T :

• Player chooses pt ∈ ∆d and draws It ∼ pt.

• Player incurs loss lt,It and observes only lt,It .

Our regret is still defined as

Regret = E

[
T∑
t=1

lt,It

]
− min
i∈{1,...,d}

T∑
t=1

lt,i.

Note that:

1. This is similar to the experts problem, but with less feedback, since the player never sees the full loss
vector.

2. Because information now costs something (i.e., we can only learn about payout probabilities by actually
pulling the arm and incurring loss), we need to both explore the various actions and exploit our current
knowledge, hence the infamous exploration/exploitation tradeoff.

3. One common application of this framework is in online advertising, where we need to choose just a few
ads to show to users and only receive click-through feedback for the ads we show.

2.2 The EXP3 Algorithm

The trick that allows us to conquer the bandits problem is that although the player doesn’t observe the entire
loss vector lt ∈ Rd, he can still estimate it. In other words, the player can construct l̂t ∈ Rd, an unbiased
statistical estimator of the loss2.

Without prolonging the suspense, let

l̂t =

0
...
0

lt,It/pt,It
0
...
0

,

2Recall that a random variable X is an unbiased estimator of a if E[X] = a.

3

where the nonzero coordinate is at index It. Then, like magic, for any i,

E[l̂t,i|pt] = (1− pt,i) · 0 + pt,i ·
lt,i
pt,i

= lt,i.

So the EXP3 algorithm will involve constructing this l̂t on each round and simply plugging it into the
EG algorithm. The analysis of why and how this works will follow in a later lecture.

4

