
CSE599s, Spring 2014, Online Learning Lecture 20 - 6/5/2014

CTR Predictions and Literature References
Lecturer: Brendan McMahan or Ofer Dekel Scribe: Javad Hosseini

In the final lecture of the online learning course, we talk about one of the applications of Online Learning and
provide some references on what we have learnt so far and future readings. In section 1, we present a talk
in “ACM SIGKDD international conference on Knowledge discovery and data mining” on “Click Through
Rates”. We present some “Literature References” in section 2.

1 Ad Click Prediction: a view from the trenches

Many billions of dollars a year are spent on web advertising. In search engines, after a user enters his/her
query, targeted ads are shown in response to the query. Figure 1 shows an example for Google. Web search
ads align incentives. This is because search engines only get paid if the user clicks on the ad. This is not a
perfect proxy for relevant ads, but it is good-enough to say that clicked ads are relevant. So search engines
like to show relevant ads. On the other hand, users also like relevant ads more. In order to satisfy these, the
key ingredient is predicting the probability of a click for a specific ad in response to a specific query. The
most important features for this task are search phrases and ad text. Figure 2 shows the system overview
of a prediction system for click probability. The data including ads, features and labels are streaming and
we do not know the dimensionality in advance. There are some challenges in systems for training massive
models on massive data with minimum resources. These systems should be able to handle

• billions of unique features (model coefficients)

• billions of predictions per day serving live traffic

• billions of training examples

Figure 1: Google Adwords ads

1



Figure 2: System Overview

1.1 FTRL-Proximal Online Learning Algorithms

The Follow The Regularized Leader Proximal (FTRL-Proximal) algorithm is similar to stochastic gradient
descent, but has much sparser models. It is an online algorithm, therefore can be served for the click
prediction task. It is simple, rich and has rich theory. If no regularization is used, this algorithm will be
equivalent to Online (Stochastic) Gradient Descent [3]. FTRL-Proximal implements regularization in a way
similar to RDA [5], but gives better accuracy in our experiments. The key is re-expressing gradient descent
implicitly as:

wt+1 = argmin
w

(g1:t.w +
1

2

t∑
s=1

σs ‖w − ws‖22 + λ1 ‖w‖1). (1)

This algorithm can be implemented as easily as gradient descent with a few tricks.

1.2 Per-Coordinate Learning Rates

Instead of having a constant learning rate in stochastic gradient descent, one can think of per-coordinate
learning rates. In order to have an intuition why this can be helpful, consider predicting for English queries
in the US, which includes 1,000,000 examples. Also, consider learning for Iceland queries in Iceland (100
training examples). If we imagine that the features are disjoint, we will train separate SGD models for each,
i.e. generally around 1

#examples . On the other hand, if we train a single model by concatenating the feature
vectors and interleave training examples, there will be no good learning rate to choose. SGD will either
never converge for iceland (with a low learning rate) or will oscillate widely for the US (with a large learning
rate). While there may be a middle ground, it will be still sub-optimal.

Theory indicates learning rate

ηt,i =
α

β +
√∑t

s=1 g
2
s,i

. (2)

Implementing this requires storing one extra statistics per coordinate. However, we have a trick for
reducing this if you are training multiple similar models. Using per-coordinate learning rates will lead to
huge accuracy improvement. This improved AUC by 11.2% versus a global learning rate while for the
advertisement task a 1% improvement is large [4, 1]

2



1.3 Techniques for saving memory

Due to L1 regularization used in FTRL-Proximal, there are some features that are not included in the final
model. This motivates seeking techniques for saving memory both while training and testing. While training,
we may use probabilistic feature inclusion. Grouping similar documents and randomized rounding are other
techniques for saving memory while training. While testing, feature reduction because of L1 regularization
leads to saving memory. Also, we may still use randomized rounding. These techniques are discussed later
in this section.

Figure 3 shows the tradeoff frontier for a small (106 examples) dataset between the fraction of selected
features by L1 regularization and AUC for three algorithms including FTRL-Proximal. It can be seen that
smaller models will have better accuracy. However, if the fraction of selected features becomes too low, the
performance will decrease. Each line varies the L1 parameter for different size/accuracy tradeoffs.

In order to evaluate FTRL-Proximal, we compare it to a baseline algorithm. In baseline, only features that
occur at least K times are included. We have tuned the L1 parameter to provide a good sparsity/accuracy
tradeoff. Then we tuned K to get the same accuracy with the baseline. This resulted in 3 times non-zero
features in baseline. We can conclude that L1-regularization selects features well.

Figure 3: Tradeoff between and Performance

1.3.1 Probabilistic Feature Inclusion

Long-tailed distributions produce many features that only occur a handful of times. In some of our models,
half of the unique features occur only once in a training set of billion examples. There generally are not useful
for prediction. If we want to use this intuition to reduce dimensionality, it cannot be done directly. Since if
we read all the stream of data and then want to prune low-accuracy features, we have already used a lot of
memory. We want to distinguish rare features from common features without tracking any state. This can
be done by probabilistic techniques. Two probabilistic features that can be used are Poisson inclusion and
Bloom-filter inclusion. In Poisson inclusion, when a feature not in the model is seen, it is added to the model
with probability p. Intuitively, with low p, if a feature is seen a lot of times, it will be included. Otherwise,
chance of inclusion of a feature is low. In Bloom-filter inclusion, a rolling set of counting Bloom-filters is
used to count occurrences. As a result, a feature will be added after K occurrences, but sometimes features
with lower than K occurrences will also be added. In Table 1, the amount of saved RAM and also detriment
in Auc is shown when these techniques are used. while the decrease in performance is low, we see around
50% decrease in used RAM for different methods.

3



Table 1: Feature Inclusion Tradeoff

1.3.2 Storing coefficients with fewer bits: Randomized Rounding

The learning rate tells us how accurately we might know the coefficient. If training on one example might
change the coefficient by ∆, one does not know the value with more precision than ∆. Therefore, we do not
need to waste memory storing a full-precision floating point value with 32 or 64 bits. In practice, storing a
16-bit fixed point representation is easy and works well. However, we need to be careful about accumulating
errors. While an update may not change the value of a coefficient, lots of small updates will be important.
We can use randomized rounding trick [2]. For training with randomized rounding, usual update is computed
at full-precision, then the result is randomly projected to an adjacent value expressible in the fixed-point
encoding. It should be noted that rounding should be unbiased, i.e. E[rounded coefficient] = unrounded
coefficient. In our experiments, there was no accuracy loss with a 16-bit fixed-point representation, compared
to 32 or 64 bit floating point values, which means 50%-75% less memory. Figure 4 shows this technique.

Figure 4: Randomized Rounding

1.3.3 Training many similar models Grouped

Training similar models causes loss of memory. As an example, assume we train four similar models separately
with coefficients stored in a hash table. As it is shown in Figure5, for each feature, we may use 10 bytes for its
key, its gradient-squared sum (used to compute learning rate) and the coefficient. The reason that we want
to have similar models is that we may want to try different feature variations, learning rates, regularization
strengths, etc.

We can train many similar models grouped and store data for all the similar models in one hash table. This
technique is shown in Figure6. Besides 12 bytes of overhead per coefficient, this technique only uses 2 bytes
per coefficient per model. However, we will not have exact per-coordinate learning rates. Instead, we use a
good-enough approximation based on the number of observed positive and negative examples. This trick,
however, requires using the same learning-rate statistic for all grouped models. The theory-recommended
learning rate is

4



Figure 5: Training many similar models: individually

ηt,i =
α

β +
√∑t

s=1 g
2
s,i

. (3)

Figure 6: Training many similar models: grouped

If we only use counts, we have

∑
g2t,i =

∑
positive events

(1− pt)2 +
∑

negative events

(pt)
2 ≈ P (1− P

N + P
)2 +N(

P

N + P
)2 =

PN

N + P
, (4)

where N is the number of positive examples and P is the number of negative examples.

1.4 High-Dimensional Data Visualization for Model Accuracy

The aggregate accuracy is not the only thing that matters. In online learning we also care about progressive
validation, i.e. computing prediction on each example before training on it. We also want to look at relative
changes in accuracy between models and also be able to quickly spot outliers or problem areas. Figure 7
shows an example of performance monitoring for three models on consecutive data.

1.5 Automated Feature Management System

In Google, we need a system to automatically manage features. There are many raw signals such as words-
in-user-query, country-of-origin, etc. Many engineers are working on signals and multiple different learning
platforms and teams consume them. There is also a metadata index to manage all these signals. It knows
what systems are using what signals, what signals are available to different systems, status and version
information/deprecation and also whitelist for production readiness/test status. The automated feature
management system is used for automatic testing, alerting, notification and cleanup of unused signals.

5



Figure 7: High-Dimensional Data Visualization for Model Accuracy

1.6 Final remarks about the paper

In the paper we had also discussed some other topics:

• Fast approximate training with a single value structure

• Unbiased training on a biased subsample of training data

• Assessing model accuracy with progressive validation

• Cheap confidence estimates

• Approaches for calibrating predictions

There were also some techniques that did not work as well in the paper:

• Aggressive feature hashing

• Randomized feature dropout

• Averaging models trained on different subsets of the features

• Feature vector normalization

2 References and Other Topics

We discussed references and some other topics that can be found here. Presented references include:

1. Online Linear and Convex Optimization

(a) Projected Gradient Descent View

(b) Follow-the-Regularized-Leader View

2. Kalai-Vempala

3. Learning with Structure

4. Log(T) Regret for Strongly Convex f

6

http://courses.cs.washington.edu/courses/cse599s/14sp/online_learning_references.pdf


5. “Second-Order” Algorithms (also for Classification in the Mistake Bound Model)

6. “Second-Order” Algorithms for Linear Functions (aka, AdaGrad)

(a) The per-coordinate gradient descent algorithm

(b) General feasible sets

7. The Experts Setting / Entropic Regularization

(a) Experts Setting

(b) EG vs GD for Squared Error

(c) Game Theory View

8. Minimax Analysis and Unconstrained Linear Optimization

9. K-Armed Bandits (EXP3) and Contextual Bandits (EXP4)

(a) Original EXP3 and EXP4 Analysis

(b) Analysis for Losses (No Mixing Needed)

(c) Improved EXP4 Analysis

(d) High-probability bounds for EXP4

10. Stochastic Approaches to the Contextual Bandits Problem

(a) Stochastic Setting

(b) Model

11. Bandit Convex Optimization

(a) General T
3
4 Regret

(b) Strongly convex functions T
2
3 Regret

(c) Smooth convex functions, T
2
3 Regret

12. Bandit Linear Optimization

13. Online Submodular Minimization

14. Online Kernel Methods with a Budget of Support Vectors

15. Selective Sampling / Online Active Learning / Label Efficient Learning

16. Other Problems

(a) Online PCA

(b) Online One-Class Prediction (e.g., outlier detection)

(c) Online Ranking

7



References

[1] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine Learning Research, 12:2121–2159, 2011.

[2] Daniel Golovin, D Sculley, H Brendan McMahan, and Michael Young. Large-scale learning with less ram
via randomization. arXiv preprint arXiv:1303.4664, 2013.

[3] H Brendan McMahan. Follow-the-regularized-leader and mirror descent: Equivalence theorems and l1
regularization. In International Conference on Artificial Intelligence and Statistics, pages 525–533, 2011.

[4] H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex optimiza-
tion. arXiv preprint arXiv:1002.4908, 2010.

[5] Lin Xiao et al. Dual averaging methods for regularized stochastic learning and online optimization.
Journal of Machine Learning Research, 11(2543-2596):4, 2010.

8


	Lecture 20 – CTR Predictions and Literature References
	Ad Click Prediction: a view from the trenches
	FTRL-Proximal Online Learning Algorithms
	Per-Coordinate Learning Rates
	Techniques for saving memory
	Probabilistic Feature Inclusion
	Storing coefficients with fewer bits: Randomized Rounding
	Training many similar models Grouped

	High-Dimensional Data Visualization for Model Accuracy
	Automated Feature Management System
	Final remarks about the paper

	References and Other Topics


