Game theory is a study of strategic decision making where a set of rational players are playing against each other. Let's consider a zero-sum two-player game where each player's gain or loss is balanced by the loss or gain of the other player. Player I chooses her action from an action set, i.e., \(i \in \{1, 2, \ldots, m\} \) and player II chooses his action \(j \in \{1, 2, \ldots, n\} \). The game's payoff matrix is denoted by \(M \) and is a representation of loss or gain of players. For example player I pays \(M_{ij} \) to player II.

Min-Max Theorem

Based on Min-Max Theorem we have

\[
\min_{p \in \Delta(m)} \max_{q \in \Delta(n)} p^T M q = \max_{q \in \Delta(n)} \min_{p \in \Delta(m)} p^T M q,
\]

where player II has the privilege of playing second and see what player I has chosen. Also, note that since \(p \in \Delta(m) \) and \(q \in \Delta(n) \) the objective function is equivalent to the expected value of \(M_{ij} \) where \(i \) and \(j \) are drawn from the probability distributions \(p \) and \(q \) respectively.

Let's consider the worst case where the player plays against an adaptive all knowing adversary which tries to maximize the regret. The number of rounds \(T \) is known and fixed.

\[
\min_{w_1} \max_{g_1} \min_{w_2} \max_{g_2} \cdots \min_{w_T} \max_{g_T} \left[\sum_{t=1}^{T} g_t w_t - \min_{u \in W} g_1:T \cdot u \right] = V_T \in \mathbb{R},
\]

where \(W = \{w \| w\|_2 \leq B\} \), \(w_t \in \mathbb{R}^d \), \(g_t \in \tilde{G} \), and \(\tilde{G} = \{ g \| g\|_2 \leq G \} \) which is a convex set. The cost of the best fixed comparator can be expressed as

\[
\min_{\|u\|_2 \leq B} g_1:T \cdot u = -B \max_{\|u\|_2 \leq 1} g_1:T \cdot u = -B \|g_1:T\|_* = -B \|g_1:T\|_2,
\]

Min-Max Adversary

The adversary follows the following strategy:

\[
\|g_t\| = G, \ g_t w_t = 0, \ g_t g_{1:t-1} = 0,
\]

which implies \(\sum_{t=1}^{T} g_t w_t = 0 \) and subsequently

\[
V_T = -\min_{u \in W} g_1:T \cdot u = B \|g_1:T\|_2
\]

In order to find a the regret bound we need the following lemmas.

Lemma 1: there exist \(x, y \in \mathbb{R} \) such that \(x \cdot y = 0 \), then

\[
\|x + y\| = \sqrt{\|x\|^2 + \|y\|^2}.
\]

Proof. We have

\[
\|x + y\|^2 = (x + y) \cdot (x + y) = x^2 + 2x \cdot y + y^2 = \|x\|^2 + \|y\|^2,
\]

and the statement of the lemma follows.
Based on Lemma 1 we can provide a bound on $\|g_{1:t}\|$ in the following lemma.

Lemma 2: for any $t \in \{1,2,\ldots\}$ we have $\|g_{1:t}\| = G\sqrt{t}$.

Proof. The proof by induction is used. We know that $\|g_1\| = G$. Suppose that $\|g_{1:t-1}\| = G\sqrt{t-1}$, thus based on lemma 1 we have

$$\|g_{1:t}\| = \|g_{1:t-1} + g_t\| = \sqrt{G^2(t-1) + G^2} = G\sqrt{t}.$$

Therefore, the adversary gets at least $V_T = BG\sqrt{T}$. Note that the regret for Online Gradient Descent (OGD) is bounded as

$$\forall u, \text{ Regret}(u) \leq \frac{\|u\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} g_t^2,$$

where with $\eta = \frac{B}{G\sqrt{T}}$ the regret bound is $BG\sqrt{T}$. Therefore, the player has two choices:

1) OGD with fixed learning rate $\eta = \frac{B}{G\sqrt{T}}$.
2) OGD with adaptive learning rate $\eta_t = \frac{B}{\sqrt{\|g_{1:t}\|^2 + G^2(T-t)}}$.

Note that

$$w_{t+1} = -\eta_t g_{1:t} \Rightarrow \|w_{t+1}\| = \eta_t \|g_{1:t}\| \leq \frac{B}{\sqrt{\|g_{1:t}\|^2}} \Rightarrow \|w_{t+1}\| \leq B,$$

which implies that the projected OGD is equivalent to OGD against a min-max adversary and the best strategy is to use OGD.

In addition, since

$$\forall u, \text{ Regret}(u) \leq \frac{\|u\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} g_t^2,$$

we have

$$\text{loss} \leq \min_{u \in W} (g_{1:T}.u + \frac{\|u\|^2}{2\eta}) + \frac{\eta}{2} \sum_{t=1}^{T} g_t^2 = -\frac{\eta}{2} (g_{1:T}^2 - \sum_{t=1}^{T} g_t^2),$$

and the following theorem provides the exact loss for OGD.

Theorem 1. The loss of OGD algorithm is

$$\text{loss} = -\frac{\eta}{2} (g_{1:T}^2 - \sum_{t=1}^{T} g_t^2).$$

Proof. We know that

$$\text{loss} = \sum_{t=1}^{T} g_t.w_t,$$

and based on the update rule in OGD we have $w_t = -\eta g_{1:t-1}$ and subsequently

$$\text{loss} = \sum_{t=1}^{T} g_t.(-\eta g_{1:t-1}) = -\eta \sum_{t=1}^{T} g_t.g_{1:t-1}.$$

Moreover, since $\sum_{t=1}^{T} g_t.g_{1:t-1} = \frac{1}{2}(g_{1:T}^2 - \sum_{t=1}^{T} g_t^2)$, the statement of the theorem follows. \qed
We can show that the loss in the above theorem satisfies the regret bound for OGD. Based on the definition of regret for a comparator u we have

$$\text{Regret} = \text{loss} - g_{1:T} \cdot u = -\frac{\eta}{2} (g_{1:T}^2 - \sum_{t=1}^{T} g_t^2) - g_{1:T} \cdot u,$$

Thus,

$$\text{Regret} \leq \frac{\eta}{2} \sum_{t=1}^{T} g_t^2 + \max_{z \in \mathbb{R}^d} (-\frac{\eta}{2} z^2 - z \cdot u) = \frac{\|u\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} g_t^2.$$

Generally, any algorithm for online linear algorithm results in

$$\text{loss} \leq -\psi(g_{1:T}) \quad \forall g_1, g_2, \ldots, g_T$$

if and only if

$$\text{Regret}(u) \leq \psi^*(u) \quad \forall u \in \mathbb{R}^d,$$

where the convex conjugate of $\psi(u)$ is defined as

$$\psi^*(u) = \max_{g \in \mathbb{R}^d} g \cdot u - \psi(u)$$