
CSE599s, Spring 2014, Online Learning Lecture 17 - 05/27/2014

Combinatorial Bandits
Lecturer: Ofer Dekel Scribe: Stephen Joe Jonany

1 Combinatorial Bandit Game

We first define the combinatorial bandit problem with linear losses. We have a ground set [k] = {1, ..., k} and
a combinatorial action set A ⊆ {0, 1}k. The adversary chooses loss functions f1, ..., fT , where ft : [k]→ [0, 1].
The game then proceeds like so:

Combinatorial Bandit Game
for t = 1, 2, . . . , T

player (randomly) chooses action At from the action set A
player incurs and observes loss ft(At) =

∑
i∈At

ft(i)

There are several variations on how informative the losses observed by the players are:

1. Bandit feedback: Player observes only the single number ft(At). This is the case that we are going to
discuss.

2. Semi-bandit feedback: Player observes (ft(i))i∈At
. This loss function is more informative, and one

would think that with more information to leverage from the observed losses, one would be able to do
better than if only bandit feedback is observed.

2 Online Shortest Paths Problem

2.1 Definition

We are going to look at a specific example of the combinatorial bandit game, the online shortest paths
problem. The problem is defined like so. Given G = (V,E), a directed graph, a source vertex s ∈ V and a
target vertex t ∈ V , the adversary defines loss functions f1, ..., fT , where ft : E → [0, 1]. The player’s action
set, A, is defined to be the set of all edge indicator vectors in {0, 1}|E|, such that the edges with indicator
= 1 compose a simple (cycle-free) path.

Online Shortest Paths
for t = 1, 2, . . . , T

player (randomly) chooses an action/path At from s to t
player incurs and observes the loss ft(At) =

∑
e∈At

ft(e)

In English, at each time step, the adversary puts a loss value on each edge, and the player gets to pick a
simple path, and the loss he incurred is equal to the total loss values of the edges on his chosen path.

Our goal is to minimize the regret,

E[

T∑
t=1

ft(At)]−min
a∈A

T∑
t=1

ft(a),

where At and a are actions from the action set A, and ft(a), then cost of an action is shorthand for
∑
i∈a f(i).

1

2.2 First Attempt

A naive solution would be to solve this as a multi-armed bandit problem, which we have previously proven
the regret bound for. We perform the transformation by treating each action a ∈ A as an arm, and dividing
the losses by 1

k . This is so that at any time step, the loss observed is 1
kft(a) ∈ [0, 1]. (Note that ft(a) ≤ k,

since k is the number of edges, and each edge cost is at most 1.)

There are two problems with this. First, the regret bound is O(
√
T |A|log|A|), which is not that good since

|A|, the number of simple paths in the graph, could be exponential with k. Secondly, the computational
complexity of each round is also O(|A|).

2.3 A Better Solution

To arrive at a better solution, we make the observation that the problem has structure that we did not make
use of in the naive solution. The adversary assigns loss values to each edge weight, and the player’s loss is a
linear function of these values. So, the fact that I observed the loss value for the path I chose actually gives
me some information about the other actions/paths I could have possibly taken. Furthermore, the ground
set, k is small. Maybe there is a way to not depend on |A|, which is superpolynomial in k. We will exploit
this problem structure in 3 steps.

Step 1. Formulate the problem as an efficient online integer-linear optimization.
We redefine the problem that so that the action set A is defined by a polynomial set of constraints, each
constraint in O(|E|). Let in(v) denote the incoming edges of the vertex v, and out(v) the outgoing edges.
We define A ⊆ {0, 1}k, the set of edge indicator vectors that satisfy the following properties:

1. Unit flow originates at s : ∀a ∈ A,
∑
e∈out(s) ae = 1.

2. Unit flow absorbed at t : ∀a ∈ A,
∑
e∈in(t) ae = 1.

3. Flow conservation: ∀a ∈ A ∀v ∈ V \ {s, t}
∑
e∈in(v) ae =

∑
e∈out(v) ae. That is, aside from the source

and the sink, for every node, the amount of incoming flow is equal to the amount of outgoing flow.

4. ∀v
∑
e∈out(v) ae ≤ 1. This constraint is needed to ensure that the paths are non cyclic.

The lemma is that the above definition enforces A to be equivalent to a set of simple paths that originate
from s and ends at t. We omit the proof, but it can be found in lectures in algorithm classes related to
max-flow algorithms.

Step 2. Relax the combinatorial constraint and solve as a bandit linear optimization problem
Although originally we mentioned that a player can only pick a single path at every time step, we consider
the case when the player can choose actions from Ā, where Ā is the convex hull of A. Or in other words,
instead of picking a path with a unit flow, the player gets to pick multiple fractional flows.
If such a move is allowed, then we have a convex set of actions, which means we can use bandit linear
optimization algorithms. As described in the previous lecture, when the player chooses actions W1, ...,WT ∈
Ā, the regret is bounded by

E[

T∑
t=1

Wt · lt]]− min
w∈Ā

T∑
t=1

w · lt = O(
√
T)

We note that the comparator term is equivalent to minw∈A
∑T
t=1 w · lt, that is, if we were to use a pure

strategy. We have proven this before. However, we still have to replace the fractional flows Wt with a single
discrete path At to satisfy the problem definition. The next step helps us satisfy this, while allowing us to
keep the same regret bound.

2

Step 3. Add randomization to recover discrete actions.
We effectively get rid of the fractional flow by treating these fractional weights as probability distributions
over unit flows, and randomly choose a path based on this distribution. That is, on each round,

1. Use bandit convex optimization to find a flow Wt. Note that this flow is fractional, and we can’t
actually use it as a legitimate move.

2. Find paths at,1, ..., at,k+1 and convex coefficients αt,1, ..., αt,k+1 such that Wt =
∑k+1
i=1 αt,iat,i. This is

always possible due to Caratheodory’s Theorem (proven below since it’s more of a side detail). Note
that the runtime complexity of this step is polynomial with respect to k.

3. Independently choose a random path At, where At = at,i with probability αt,i.

The expected loss, which is E[At · lt|Wt], using the definition of expectation, is equal to
∑k+1
i=1 αt,i(at,i · lt).

Taking the lt out of the summation, and using the definition of Wt, this is equivalent to Wt · lt. This is
exactly the expression we used in the regret bound for bandit linear optimization algorithm!
As a recap, the steps we have showed have a runtime complexity which is polynomial in k, and by adding
randomization, we have produced a move that satisfies the problem constraint (non-fractional flow), and
whose loss in expectation is equal to Wt · lt, which allows us to benefit from the same regret guarantee of
the bandit linear optimization algorithm.

Caratheodory’s Theorem

Lemma 1. Let S be a set of vectors in Rk. For any z ∈ convex(S) there exists vectors s1, ..., sk+1 ∈ S such
that z ∈ convex(s1, ..., sk+1).

Proof. By definition, z ∈ convex(S) means that z =
∑n
i=1 λivi, where vi ∈ S, λi > 0 and

∑n
i=1 λi = 1.

The easy case is when n ≤ k + 1, we are immediately done.
Otherwise, n ≥ k+ 2. Consider the vectors (v2−v1), ..., (vn−v1). Since there are at least k+ 1 such vectors,
and we are in the k dimension, these vectors are linearly dependent. So, there exists coefficients µi, such
that

∑n
i=2 µi(vi − v1) = 0 and ∃i µi 6= 0. Define µ1 = −

∑n
i=2 µi, which means that∑n

i=1 µi = µ1 +
∑n
i=2 µi = 0.

So,
∑n
i=1 µivi =

∑n
i=1 µivi − 0 · v1 =

∑n
i=1 µivi −

∑n
i=1 µi · v1 =

∑n
i=1 µi(vi − v1) =

∑n
i=2 µi(vi − v1) = 0.

Therefore,

z =

n∑
i=1

λivi − 0 =

n∑
i=1

λivi − α
n∑
i=1

µivi =

n∑
i=1

(λi − αµi)vi.

We choose α = min{λj

µj
: µj > 0}. This is always possible since at least one µi 6= 0. When we choose such

an α, one of the λi − αµi coefficients would evaluate to 0, and now we have a convex combination of n− 1
points from S. We can keep doing this until n = k + 1.

3

