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Stochastic bandits: Explore-First and UCB
Lecturer: Brendan McMahan or Ofer Dekel Scribe: Javad Hosseini

In this lecture, we like to answer this question: what happens when everything is stochastic. We answer this
question for the bandit setting. In some cases, stochastic world provides better performance. For examples,
in online advertisement in MSN, we want to decide which news to show and may assume the world is
stochastic.

1 The Bandit Game with Rewards

For historical reasons, we assume the stochastic bandit game with rewards, instead of loss. This is because
in stochastic settings, people are more interested in rewards rather than loss. The bandit game with rewards
is defined as:

for t = 1, . . . , T

• player chooses arm It ∈ 1, . . . , d

• player receives and observes a reward Rt,It ∈ [0, 1], but does not observe Rt,i for i 6= It

If the problem was naturally specified with losses Lt,i, we can define Rt,i = 1− Lt,i

1.1 Stochastic Rewards

We assume there exists unknown distributions ν1, . . . , νd, each supported on [0, 1], such that Rt,i ∼ νi and
R1,i, . . . , RT,i are independent. We also define the player’s expected regret as:

max
i∈{1...d}

E
[ T∑
t=1

Rt,i

]
− E

[ T∑
t=1

Rt,It

]
. (1)

We define some notations to use in this lecture:

• arm i’s expected reward: µi = E[R1,i]

• the best expected reward: µ∗ = maxi∈{1...d} µi

• the gap between arm i and the best arm: ∆i = µ∗ − µi 1

• the number of times arm i is pulled up until round t:

τ(t) =

t∑
s=1

1Is=i. (2)

Lemma 1. The player’s regret can be rewritten as

Tµ∗ −
d∑
i=1

∆iE[τi(T )]. (3)

1how much is the loss if we pull arm i
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Proof.

max
i∈{1...d}

E
[ T∑
t=1

Rt,i

]
− E

[ T∑
t=1

Rt,It

]
= Tµ∗ −

T∑
t=1

E
[
E[Rt,It |It]

]
(by def. of µ∗; total expectation)

=

T∑
t=1

E[µ∗ − µIt](by def. of µi; linearity of expectation)

=

d∑
i=1

∆i

T∑
t=1

Pr(It = i) =

d∑
i=1

∆iE[τi(T )] (4)

Therefore, the only thing that matters is the number of times each arm was pulled. The order in which
the arms were pulled does not matter. As a result, our goal is to upper-bound E[τi(T )] for each suboptimal
arm.

2 Explore First

Assume the player knows a lower bound on positive ∆i’s. Namely, he knows

∆ = min{∆i : ∆i > 0}. (5)

The Explore First algorithm is:

• choose confidence level δ ∈ (0, 1]

• sample each arm C∆,δ times (in any order)

• compute the empirical mean of each arm’s rewards µ̂i

• find the maximizer î = argmaxi∈{1...d} µ̂i

• pull î for the remaining T − dC rounds

2.1 Analysis of the Explore First Algorithm

We state a theorem without proof.

Theorem 2. (Hoeffding-Azuma): Let X1, . . . , Xm be i.i.d. random variables supported on [0, 1]. Define
µ = E[X1] and µ̂ = 1

m

∑m
i=1Xi. Then, for any δ ∈ (0, 1] , with probability at least 1− δ, it holds that

|µ̂− µ| <
√

log(2/δ)

2m
. (6)

We apply the Hoeffding-Azuma theorem to the empirical mean of each arm. Using the union bound, the
guarantee holds simultaneously for all arms. Namely, for any δ ∈ (0, 1], with probability at least 1− dδ,

∀i : |µ̂i − µi| <

√
log(2/δ)

2C∆
. (7)
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To find an arm with expected reward µ∗, we need

∀i : |µ̂i − µi| <
∆

2
. (8)

In Figure 1, you can see why this is true. The µi and µ̂i are actual and observed means. Since the actual
and observed values differ at most ∆

2 , even the arm with second highest actual mean will not have higher

observed mean than the the best arm. If we choose C∆,δ = 2 log(δ/2)
∆2 , then the difference between µi and µ̂i

is at most ∆
2 . Therefore, with probability at least 1 − dδ, µ̂i = µ∗, and the regret is only due to the dC∆,δ

exploration rounds. As a result, we have

Regret ≤ (1− dδ)
2d log( 2

δ )

∆2
+ dδT, (9)

where the first term is for exploration cost and the second term will be applied if our estimates are off.
Setting δ = θ(1/T ), gives a bound of O(d log T

∆2 )

Figure 1: Google Adwords ads

2.2 Uncertainty and Optimism and Upper Confidence Bound Algorithm (UCB)

In the previous section, we assumed that we know ∆ = min{∆i : ∆i > 0}. However, in general, this is not a
realistic assumption. In order to deal with the problem in general, we use a General Principle: “Optimism
in the face of uncertainty”.

Given the number of pulls so far, τ1(t), ..., τd(t), we compute a confidence interval for each arm and
pretend that the true value is the best value in the interval.

The UCB algorithms works as follows: Define our estimate of arm i at time t as µ̂t,i =
∑t

s=1 Rs,i1It=i

τi(t)
.

Fix δ ∈ (0, 1] and define our upper confidence bound on arm i at time t as

Ut,i = µ̂t,i +

√
α log(t)

τi(t)
. (10)

α -UCB:
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for t = 1, . . . , T

• It = argmaxi∈{1...d} Ut−1,i.

The Intuition behind this algorithm is that every time we choose a suboptimal arm, we suffer regret, but
our over-optimistic estimate decreases. This means we are learning. The UCB algorithm is deterministic,
c.f. EXP3. In this problem, the world itself is random, so we do not want to add more randomization. In
settings that the world is malicious, we may add randomization, though.

Note that, we have

E[∆It |It] = µ∗ − µIt ≤w.h.p. Ut,i∗ − µIt ≤argmax Ut,It − µIt. (11)

Therefore, The regret on round t is bounded by the amount of optimism we apply to arm i.

Lemma 3. Let i be such that ∆i > 0, then

E[τi(T )] ≤ 2α log(T )

∆2
i

+
2

α− 2
. (12)

Proof Skecth: If It = i then Ut,i ≥ Ut,i∗ . Therefore, at least one of the following events occur

A1(t) = {Ut,i∗ ≤ µ∗} or A2(t) = {Ut,i ≥ µ∗(= µi + ∆i)} (13)

The event A1(t) can happen with probability at most δ.

Lemma 4.
∀t : Pr(Ut,i∗ < µ∗) ≤ t1−α. (14)

Proof. Let X1, . . . , Xt be i.i.d. random variables in [0, 1], let µ = E[X1], and let µ̂τ = 1
τ

∑τ
j=1Xj .Then,

Pr
(
∃τ ∈ {1 . . . t} : |µ− µ̂τ | >

√
α log(t)

τ

)
≤

t∑
τ=1

Pr
(
|µ− µ̂τ | >

√
α log(t)

τ

)
≤

t∑
τ=1

t−α = t1−α. (15)

Now we Define ui = 2α log(T )
∆2

i
and prove Pr

(
A2(t)|τi(t) ≥ µi

)
≤ t1−α. Overall,

E[τi(T )] ≤ ui +
∑

t:τi(t)>u

Pr
(
A1(t) ∨A2(t)

)

≤ ui + 2

∞∑
t=1

t1−α

≤ ui +
2

α− 2
. (16)

We conclude that regret is upper-bounded by∑
i:∆i>0

(2α log(T )

∆i
+

2∆i

α− 2

)
= O

(
log(T )

∑
i:∆i>0

1

∆i

)
. (17)
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Therefore, as ∆i → 0, the bound E[τi(T )] = O( log(T )
∆2

i
) becomes vacuous. However, it always holds that

E[τi(T )] = O(T ). Finally, we can use min{a, b} ≤
√
ab to conclude that

min
{ log(T )

∆2
i

, T
}
≤ 1

∆i

√
T log(T ), (18)

and get the distribution free bound

Regret = O(d)
√
T log(T ). (19)
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