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Adaptive Regret Bound
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1 Recap

A normal regret bound for fixed learning rate is as follows

T
1
Regret(u) < 5 llull* + 73 ol (1)
t=1

We should note that the regret depends on choice of 7. If we do not know T in advance, this bound could
be very bad. Even if we know T and set n properly, we need to wait until we get T to get the regret bound.
Ideally, we want our bound to hold for any 7', this is where we need to introduce adaptive update.

Our goal is prove a bound in the following style.

T
Regret < B Z lg: |2 << GBVT (2)

t=1

We want to have a bound that does not need guess and double trick.
There are several class of related algorithms, that we will be discussed in a general framework
OGD/Mirro Descent:

R 1
Wiyl = Wi — Ny = argmin gyw + —||w wy|?. (3)
w
FTRL-Proximal .
. Os
Wes1 = argmin fre(w) + Z: ?Hw — w,l|%. (4)
Dual-Averaging
. 01:
wy1 = argmin f1.4(w) + %Hw”2 (5)

They are equivalent when we have no constraint. FTRL Proximal and dual averaging are equivalent
when learning rate is constant.

2 General Framework for Adaptive Update
In this lecture, we will study the update rule in the following form:
wy1 = argmin f1..(w) + ro.¢(w) = argmin ho.; (w) (6)

Note that we have ho(w) = ro(w). Base on this update rule, we have a strong FTRL Lemma as follows

Lemma 1. Strong FTRL Lemma

T
Regret(u) < ro.r(u) + Z [ho-t(we) — ho.t(wes1) — re(wy)] (7)
t=1



Proof. The bound can be proved by induction(see previous lecture note) O
Before we prove the main theorem, we will need the following lemma
Lemma 2. Let
wy = argmin ¢q,
w

ws = argmin gy = argmin[é (w) + ¥ (w)],

where ¢1 is 1 strongly convex function with respect to norm ||.||, and ¥ (w) is convex function.
Let b € 0vy(w), then we will have

Ba(w1) — 62(w2) < 3.

[[wr = wa| < [|b]].

We can verify that for a special case where ¢; is quadratic function, and v is linear: ¢ (w) = %Hsz,

¢(w) = bw, this bound is tight.

Theorem 3. Assuming ri(w) > 0,7 (wy) = 0, ho(w) is 1 strongly convex with respect to ||.||¢. Then the
regret of general framework can be bounded by

T
1 2
Regret(u) < ror(u) + 5 t_zl 19211t - (8)

Proof. For fixed round ¢, Let
d1(w) = fre—1(w) +rie—1(w) + re(w) = hop—1(w) + 7¢(wy)

Note that w; = argmin,, r(w;), we have w; = argmin,, ¢1(w). Let ¥ = f;, and b = ¢¢,9: € 9fi(w). The
following inequality holds follows because of Lemma 1.

ho:t(wi) — hot(wis1) = d1(we) + fe(we) — ¢1(wig1) — fr(wirr)

9
= ¢2(wi) — P2(wey1) < %Hgt”(Qt,*)' )

Then the results follows by Lemma 2. O

Now we need to make use Theorem 3 to analyze FTRL-Proximal algorithm. A first simple fact is that if
r¢ is oy strongly convex with respect to |.||, then ro.; is 1 strongly convex with respect to ||[ull: = /o1.¢||-||-
For FTRL-Proximal, we have

e ro(w) = Iy (w)

o 1 = %llw —we|?, note n, =

T1:t

o llglles = o=l

Applying Theorem 3, we can get the following bound for adaptive learning rate.

2B)? 1
Regret(u) < (277:3 + 3 ZmllgtIIQ (10)
t=1

We still need to decide how we can choose 7;, an important bound that we will use, is stated by following
Lemma



Lemma 4. For sequence ay,az,-++ ,an , a; > 0 the following inequality holds.

(11)

Proof. Let z; = 3"

j=1@j, To =0, first note the integral equality

Tn 1
/0 ﬁdz =22, — 20 (12)

This is because 20,/x = % Then we can think how we can “compute” the integral in the left side
numerically. We can first discretize the interval into small pieces of length aq,as,as - - -, then take the right
end of the function to approximate the function value in that interval. Note that the right end of function
ﬁ is smaller than the functions in the interval, we can get a lower bound of integral:

3

) R o m

0

As a special case (take a; = 1), we have Zt 1 \/ < 2y/T. If we choose 1; = \G[\/B%, we have

Regret(u) < (252 + - Z \GfﬁGQ < 2V2GBVT (14)

We can also let a; = 2=
0= ol m = e
1 Z T
52%”%\\2 S Z:Hgt”2 (15)
t=1 t=1

The adaptive regret bound is given by

Regret(u) (16)

T
antnua antw— (+a) S g2
t=1



