
CSE599s, Spring 2014, Online Learning Lecture 99 - 05/08/2014

Adaptive Regret Bound
Lecturer: Brendan McMahan Scribe: Tianqi Chen

1 Recap

A normal regret bound for fixed learning rate is as follows

Regret(u) ≤ 1

2η
‖u‖2 + η

T∑
t=1

‖gt‖22 (1)

We should note that the regret depends on choice of η. If we do not know T in advance, this bound could
be very bad. Even if we know T and set η properly, we need to wait until we get T to get the regret bound.
Ideally, we want our bound to hold for any T , this is where we need to introduce adaptive update.

Our goal is prove a bound in the following style.

Regret ≤ B

√√√√ T∑
t=1

‖gt‖2 << GB
√
T (2)

We want to have a bound that does not need guess and double trick.
There are several class of related algorithms, that we will be discussed in a general framework
OGD/Mirro Descent:

ŵt+1 = ŵt − ηtgt = argmin
w

gtw +
1

2η
‖w − wt‖2. (3)

FTRL-Proximal

wt+1 = argmin
w

f1:t(w) +

t∑
s=1

σs
2
‖w − ws‖2. (4)

Dual-Averaging

wt+1 = argmin
w

f1:t(w) +
σ1:t
2
‖w‖2. (5)

They are equivalent when we have no constraint. FTRL Proximal and dual averaging are equivalent
when learning rate is constant.

2 General Framework for Adaptive Update

In this lecture, we will study the update rule in the following form:

wt+1 = argmin
w

f1:t(w) + r0:t(w) = argmin
w

h0:t(w) (6)

Note that we have h0(w) = r0(w). Base on this update rule, we have a strong FTRL Lemma as follows

Lemma 1. Strong FTRL Lemma

Regret(u) ≤ r0:T (u) +

T∑
t=1

[h0:t(wt)− h0:t(wt+1)− rt(wt)] (7)
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Proof. The bound can be proved by induction(see previous lecture note)

Before we prove the main theorem, we will need the following lemma

Lemma 2. Let
w1 = argmin

w
φ1,

w2 = argmin
w

φ2 = argmin
w

[φ1(w) + ψ(w)],

where φ1 is 1 strongly convex function with respect to norm ‖.‖, and ψ(w) is convex function.
Let b ∈ ∂ψ(w), then we will have

φ2(w1)− φ2(w2) ≤ 1

2
‖b‖∗,

‖w1 − w2‖ ≤ ‖b‖∗.

We can verify that for a special case where φ1 is quadratic function, and ψ is linear: φ1(w) = 1
2‖w‖

2,
φ(w) = bw, this bound is tight.

Theorem 3. Assuming rt(w) ≥ 0, rt(wt) = 0, h0:t(w) is 1 strongly convex with respect to ‖.‖t. Then the
regret of general framework can be bounded by

Regret(u) ≤ r0:T (u) +
1

2

T∑
t=1

‖gt‖2(t,∗). (8)

Proof. For fixed round t, Let

φ1(w) = f1:t−1(w) + r1:t−1(w) + rt(w) = h0:t−1(w) + rt(wt)

Note that wt = argminw rt(wt), we have wt = argminw φ1(w). Let ψ = ft, and b = gt, gt ∈ ∂ft(w). The
following inequality holds follows because of Lemma 1.

h0:t(wt)− h0:t(wt+1) = φ1(wt) + ft(wt)− φ1(wt+1)− ft(wt+1)

= φ2(wt)− φ2(wt+1) ≤ 1

2
‖gt‖2(t,∗).

(9)

Then the results follows by Lemma 2.

Now we need to make use Theorem 3 to analyze FTRL-Proximal algorithm. A first simple fact is that if
rt is σt strongly convex with respect to ‖.‖, then r0:t is 1 strongly convex with respect to ‖u‖t =

√
σ1:t‖.‖.

For FTRL-Proximal, we have

• r0(w) = IW (w)

• rt = σt

2 ‖w − wt‖
2, note ηt = 1

σ1:t

• ‖g‖t,∗ = 1√
σ1:t
‖g‖2

Applying Theorem 3, we can get the following bound for adaptive learning rate.

Regret(u) ≤ (2B)2

2ηT
+

1

2

T∑
t=1

ηt‖gt‖2 (10)

We still need to decide how we can choose ηt, an important bound that we will use, is stated by following
Lemma
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Lemma 4. For sequence a1, a2, · · · , an , ai ≥ 0 the following inequality holds.

n∑
i=1

ai√∑i
j=1 aj

≤ 2

√√√√ n∑
i=1

ai (11)

Proof. Let xi =
∑i
j=1 aj , x0 = 0, first note the integral equality∫ xn

0

1√
z
dz = 2

√
xn − 2

√
0 (12)

This is because 2∂x
√
x = 1√

x
. Then we can think how we can “compute” the integral in the left side

numerically. We can first discretize the interval into small pieces of length a1, a2, a3 · · · , then take the right
end of the function to approximate the function value in that interval. Note that the right end of function
1√
z

is smaller than the functions in the interval, we can get a lower bound of integral:

∫ xn

0

1√
z
dz =

n−1∑
i=0

∫ xi

xi+1

1√
z
dz ≥

n−1∑
i=0

xi+1 − xi√
xi+1

=

n∑
i=1

ai√∑i
j=1 aj

(13)

As a special case (take ai = 1), we have
∑T
t=1

1√
t
≤ 2
√
T . If we choose ηt =

√
2B

G
√
t
, we have

Regret(u) ≤ (2B)2

2ηT
+

1

2

T∑
t=1

√
2B

G
√
t
G2 ≤ 2

√
2GB

√
T (14)

We can also let ai = ‖gt‖2, ηt = α√∑t
s=1 ‖gs‖2

1

2

T∑
t=1

ηt‖gt‖2 ≤ α

√√√√ T∑
t=1

‖gt‖2 (15)

The adaptive regret bound is given by

Regret(u) ≤ (2B)2

2α

√√√√ T∑
t=1

‖gt‖2 + α

√√√√ T∑
t=1

‖gt‖2 =

(
2B2

α
+ α

)√√√√ T∑
t=1

‖gt‖2 (16)
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