
Google Confidential and Proprietary

Ad Click Prediction:
a View from the Trenches
Presented by Brendan McMahan
H. Brendan McMahan, Gary Holt, D. Sculley, Michael Young,
Dietmar Ebner, Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov,
Daniel Golovin, Sharat Chikkerur, Dan Liu, Martin Wattenberg, Arnar Mar Hrafnkelsson,
Tom Boulos, Jeremy Kubica

KDD 2013

Google Confidential and Proprietary

Web Search
Advertising

KDD 2013

Google AdWords AdsTargeted ads shown in
response to a specific
user query on a search
engine.

Many billions of dollars a
year are spent on web
advertising.

Google Confidential and Proprietary

Ad Click Prediction

Web search ads align incentives:
● The search engine only gets paid

if the user clicks the ad
● So, the search engine only wants

to show relevant ads
● and user only wants to see

relevant ads.

Predicting the probability of a click
for a specific ad in response to a
specific query is the key ingredient!

KDD 2013 KDD 2013

Google AdWords Ads

Google Confidential and Proprietary

System Overview

KDD 2013

Similar to Downpour SGD

Training massive models on massive data with
minimum resources:
● billions of unique features (model coefficients)
● billions of predictions per day serving live traffic
● billions of training examples

Google Confidential and Proprietary

The FTRL-Proximal Online Learning Algorithm

● Online algorithms: simple, scalable, rich theory
● FTRL-Proximal is equivalent to Online (Stochastic) Gradient

Descent when no regularization is used [1]
● Implements regularization in a way similar to RDA [2], but gives

better accuracy in our experiments. The key is re-expressing
gradient descent implicitly as:

● With a few tricks, about as easy to implement as gradient descent
(a few lines of code, pseudo-code in the paper)

[1] Follow-the-Regularized-Leader and Mirror Descent: Equivalence Theorems and L1 Regularization. McMahan, AISTATS 2011.
[2] Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization. Lin Xiao, JMLR 2010.

KDD 2013

"Like Stochastic Gradient Descent, but much sparser models."

Google Confidential and Proprietary

Per-Coordinate Learning Rates: Intuition

Consider predicting for:
● English queries in the US (1,000,000 training examples)
● Icelandic queries in Iceland (100 training examples)

Imagine the features are disjoint.

If we trained separate SGD models for each, we would use a very
different learning rate for each: generally ~ 1/sqrt(# examples)

Train a single model:
concatenate the feature vectors, interleave training examples
There is no good learning rate choice! SGD will either:
● never converge for Iceland (with a low learning rate)
● or oscillate wildly for the US (with a large learning rate)

There is a middle ground, but it is still suboptimal.

KDD 2013

Google Confidential and Proprietary

Per-Coordinate Learning Rates: Implementation

● Theory indicates the learning rate

● Requires storing one extra statistic per coordinate
○ But we have a trick for reducing this if you are training multiple similar

models

● Huge accuracy improvement:
○ Improved AUC by 11.2% versus a global learning rate baseline
○ (In our setting a 1% improvement is large)

References:
Adaptive Bound Optimization for Online Convex Optimization. McMahan and Streeter, COLT 2010.
Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. Duchi, Hazan, and Singer, JMLR 2011.

KDD 2013

Google Confidential and Proprietary

Techniques for Saving Memory

Saving Memory at Serving
● L1 regularization
● Randomized rounding

Saving Training Memory
● Probabilistic feature inclusion
● Grouping similar models
● Randomized rounding

During training, we track some statistics for features not included in the
final model (zero coefficients due to L1 regularization)

KDD 2013

Google Confidential and Proprietary

FTRL-Proximal with L1 Regularization

KDD 2013

Tradeoff frontier for a small (106 examples) dataset

Smaller models /
Better Accuracy

Each line varies the L1 parameter for
different size/accuracy tradeoffs

Google Confidential and Proprietary

FTRL-Proximal with L1 Regularization

Full-scale experiment
● Baseline algorithm: Only include features that occur at least K

times.
○ Tuned the L1 parameter for FTRL-Proximal to provide a good

sparsity/accuracy tradeoff.
○ Then tuned K to get the same accuracy with the baseline.

● Baseline model has about 3x as many non-zero entries
compared to FTRL-Proximal with L1 regularization

KDD 2013

Google Confidential and Proprietary

Probabilistic Feature Inclusion

● Long-tailed distributions produce many features that only occur a
handful of times. These generally aren't useful for prediction.

● So, how do you tell these rare features from common ones without
tracking any state? Two probabilistic techniques:
○ Poisson inclusion: When we see a feature not in the model,

add it with probability p.
○ Bloom-filter inclusion: use a rolling set of counting Bloom filters

to count occurrences (include after K, but sometimes includes a
feature that has occurred fewer than K times).

KDD 2013

In some of our models, half of the unique
features occur only once in a training set
of billions of examples.

Google Confidential and Proprietary

Storing Coefficients with Fewer Bits

The learning rate tells us how accurately we might know the
coefficient.

● If training on one example might change the coefficient by Δ, you
don't know the value with more precision than Δ.

● So, don't waste memory storing a full-precision floating-point
value! (32-64 bits)

● Adaptive schemes are possible
● But in practice, storing a 16-bit fixed point representation is easy

and works very well.

But, you need to be careful about accumulating errors. The trick:
randomized rounding

Large-Scale Learning with Less RAM via Randomization. Golovin, Sculley, McMahan, Young. ICML 2013.

KDD 2013

Google Confidential and Proprietary

Training with Randomized Rounding

Compute the usual update
(Gradient Descent or
FTRL-Proximal) at full
precision, then randomly
project to an adjacent
value expressible in the
fixed-point encoding.

Use unbiased rounding:
E[rounded coefficient]
 = unrounded coefficient

KDD 2013

No accuracy loss with a 16-bit fixed-point representation,
compared to 32- or 64 bit floating point values (and 50-75% less memory)

Google Confidential and Proprietary

Training Many Similar Models: Individually

Training 4 similar models, each model trained separately
with coefficients stored in a hash table.
Each model uses say 4+4+2 = 10 bytes per coefficient

Feature Key
(e.g., 32-64 bit
hash)

Gradient-
Squared
Sum

Model 0
Coefficient
(q2.13)

KDD 2013

Feature Key
(e.g., 32-64 bit
hash)

Gradient-
Squared
Sum

Model 2
Coefficient
(q2.13)

Feature Key
(e.g., 32-64 bit
hash)

Gradient-
Squared
Sum

Model 1
Coefficient
(q2.13)

Feature Key
(e.g., 32-64 bit
hash)

Gradient-
Squared
Sum

Model 3
Coefficient
(q2.13)

Why many similar models? We may want to try different feature
variations, learning rates, regularization strengths, ...

Google Confidential and Proprietary

Training Many Similar Models: Grouped
Data for multiple similar models stored in a single hash table
Only 2 bytes per coefficient (plus 12 bytes of overhead) per model

Feature Key
(e.g., 32-64 bit
hash)

Positive
Examples

Negative
Examples

Model 0
Coefficient
(q2.13)

Model 1
Coefficient
(q2.13)

Model 2
Coefficient
(q2.13)

Model 3
Coefficient
(q2.13)

Common data is only stored
once, so cost (memory, cpu,
and network) is amortized.

The only cost per model
variant is for storing the
model's coefficient, which
can be small (say 16 bit q2.
13 fixed point).

Rather than using exact per-coordinate learning rates based on each
model's gradients, we use a (good enough) approximation based on
the # of observed positive and negative examples.

KDD 2013

Google Confidential and Proprietary

Computing Learning Rates with Counts

The previous trick requires using the same learning-rate statistic for all
grouped models. Approximate the theory-recommended learning-rate
schedule

 using only counts:

N is the number of Negative examples
P is the number of Positive examples

KDD 2013

Google Confidential and Proprietary

High-Dimensional Data Visualization for Model Accuracy

We don't just care about aggregate accuracy!
● Progressive validation: compute prediction on each example before

training on it
● Look at relative changes in accuracy between models
● Data visualization to quickly spot outliers or problem areas

KDD 2013

Google Confidential and Proprietary

High-Dimensional Data Visualization for Model Accuracy

KDD 2013

Google Confidential and Proprietary

Automated Feature Management System

Many raw signals: words-in-user-query, country-of-origin, etc

Lots of engineers working on signals, multiple different learning
platforms / teams consuming them.

A metadata index to manage all these signals:
● what systems are using what signals
● what signals are available to different systems
● status and version information / deprecation
● whitelists for production readiness / test status

Used for automatic testing, alerting, notification, cleanup of unused
signals, etc.

KDD 2013

Google Confidential and Proprietary

Also in the paper …
● Fast approximate training with a single value structure
● Unbiased training on a biased subsample of training data
● Assessing model accuracy with progressive validation
● Cheap confidence estimates
● Approaches for calibrating predictions

Techniques that didn't work as well as expected
● Aggressive feature hashing
● Randomized feature dropout
● Averaging models trained on different subsets of the features
● Feature vector normalization

KDD 2013

Google Confidential and Proprietary

Thanks for listening!

And thanks to all my co-authors:

Gary Holt, D. Sculley, Michael Young, Dietmar Ebner, Julian Grady,
Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, Sharat
Chikkerur, Dan Liu, Martin Wattenberg, Arnar Mar Hrafnkelsson, Tom
Boulos, Jeremy Kubica

KDD 2013

