
CSE599s Spring 2014 - Online Learning
Theoretical Homework Exercise 2

Due 5/8/2014

1 Unconstrained Linear Learning

Recall the online gradient descent with a fixed learning rate η selects strategy

wt = −η
t−1∑
s=1

gs

on round t. Note that there is no a priori bound on ‖wt‖. This algorithm achieves a regret
bound

Regret(u) ≤ 1

2η
‖u‖22 + ηTG2,

where we assume ‖gt‖2 ≤ G.

A. Suppose we choose a learning rate η = B
G
√
2T

. Give a (simplified) regret bound for this
choice of η that still holds for an arbitrary comparator u ∈ Rn. Further simplify the
bound when we assume ‖u‖2 ≤ B. (Both parts are fairly trivial).

B. Alternatively, suppose we run FTRL on linear functions ft(w) = gt · w with regularizer

R(w) =
1

2η
‖w‖22 + IW (w),

where W is a convex set, and IW (w) is the convex indicator on W (that is, IW (w) = 0
for w ∈ W and ∞ otherwise). Prove this algorithm will never select a wt 6∈ W .

Consider the choice W = {w : ‖w‖2 ≤ B}. Using the FTRL analysis for strongly convex
regularizers, give a regret bound for this algorithm, using the same learning rate as for
part A.

C. Again consider W = {w : ‖w‖2 ≤ B}. One might hope that the constrained algorithm
of part (B) could obtain sub-linear regret against some comparators u 6∈ W that are at
least “close” to W . Unfortunately for the constrained algorithm, this is not the case,
as you will now show. Fix an arbitrary comparator u 6∈ W , and give an example of
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a sequence of gt with ‖gt‖2 ≤ 1 where the unconstrained algorithm of part (A) has
Regret(u) = O(

√
T ), but the constrained algorithm of (B) has regret Regret(u) = Ω(T ).

Treat the dependence of the bound on u as a constant.

D. Based on the above, you might conclude the unconstrained algorithm seems strictly
better. Why might you need to use the constrained algorithm anyway?

E. Consider the unconstrained algorithm with an arbitrary learning rate η. We will use the
regret bound to construct an upper bound of our loss,

Loss ≡
T∑
t=1

gt · wt.

Observe that by re-arranging the definition of Regret, we have that

∀u ∈ Rn, Loss = Regret(u) +
T∑
t=1

gt · u

≤ 1

2η
‖u‖22 + ηTG2 + g1:T · u.

Given the final g1:T , find the best post-hoc upper bound on the loss of the algorithm, by
optimizing the choice of the comparator u to minimize the right-hand side of the above
bound.

This shows that the regret bound can alternatively can be viewed as a upper bound on
loss that is parameterized by the sum of gradients chosen by the adversary, g1:T . For
what sequences is this loss bound maximized? For what sequences is it minimized?

We can turn this approach around, and consider arbitrary functions L(g1:T ), and ask
whether or not there exist online algorithms that guarantee Loss ≤ L(g1:T ) when the
adversary plays g1, . . . , gT . This approach generalizes the usual definition of regret, and
has been studied in several of Brendan’s recent papers [1, 2].

2 Convex sets and randomization

A set C is convex if for any w1, w2 ∈ C, and any α ∈ [0, 1], we have αw1 + (1− α)w2 ∈ C.

A. Let W ⊆ Rn be a convex set, with w1, . . . , wk ∈ W , and let θ1, . . . , θk ∈ R that satisfy
θi ≥ 0 and

∑k
i=1 θi = 1. Show that w̄ =

∑k
i=1 θixi is also in W . We say that w̄ is a

convex combination of the wi.

B. Now, let w1, . . . , wk ∈ Rn be arbitrary points, and let

∆k =
{
θ ∈ Rk | θi ≥ 0,

k∑
i=1

θi = 1
}
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be the k-dimensional probability simplex (the set of probability distributions on k items).
Show that the convex hull of the wi,

conv(w1, . . . , wk) = {θ · w | θ ∈ ∆k}

is in fact a convex set.

C. Let w1, . . . , wk ∈ Rn be arbitrary points, let W = conv(w1, . . . , wk), and let f(w) = g ·w
be a linear loss function on W . Show that for any w ∈ W , there exists a probability
distribution such that choosing a wi according to the distribution and then playing the
chosen wi against f produces the same expected loss as just playing w. Conversely, show
that for any probability distribution on w1, . . . , wk, there exists a w ∈ W that gets the
same expected regret. When might it be preferable to represent such a strategy as a
distribution θ ∈ ∆k, and when might it be preferable to represent such a strategy as a
point w ∈ W? (Hint: consider n and k).

3 Projected Online Gradient Descent

Let W ⊆ Rn be a closed convex set, with IW the corresponding convex indicator function.
We can use our regret bounds to analyze the linearized FTRL algorithm

wt+1 = argmin
w∈Rn

g1:t · w +
1

2η
‖w‖22 + IW (w), (1)

where we choose gt ∈ ∂ft(wt) where the ft are the convex loss functions presented by the
adversary, and we use the regularizer R(w) = 1

2η
‖w‖22 + IW (w) which is 1

η
-strongly convex

with respect to the L2 norm.
We saw in class that the unconstrained version of this algorithm (where we take W = Rn

or equivalently drop the IW term from the regularizer entirely) corresponds exactly to online
gradient descent with a constant learning rate, so wt+1 = −ηg1:t which implies wt+1 =
wt − ηgt.

In this problem, you will show the FTRL algorithm of Eq. (1) is also a form of gradient
descent. Precisely, define the L2 projection onto a convex set W by

ΠW (u) = argmin
w∈W

‖u− w‖2.

The alternative algorithm initializes u1 = w1 = 0, and then at the end of each round t
performs the update:

ut+1 = ut − ηgt
wt+1 = ΠW (ut+1).

This algorithm is sometimes called Online Gradient Descent with Lazy Projections; prove it
is equivalent to the FTRL algorithm of Eq. (1).
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