CSE599s Spring 2014 - Online Learning
Theoretical Homework Exercise 1 - due 4/24/14

Online optimization is the following repeated game:

player and adversary agree on the terms of the game: a set of points
W, a set of loss functions F, and the length of the game T’
fort=1,2,...,7T do

player chooses a point wy € W

adversary chooses a function f; € F

player incurs a loss of f;(w;) and observes the function f;
end for

The player’s regret after T' rounds is defined as

> filw) — géivl\l}th(w) -

t=1

A regret upper-bound is a function R(T) such that for any 7" and any sequence fi, ..., fr of
functions in F it holds that

;ft(wt) - gélvf\l};ft(w) < R(T) .

1 Conservative Updates

a. Prove that we can assume, without loss of generality, that min, f;(z) = 0 for each ¢.

b. Making the above assumption, an online optimization algorithm is conservative if
filw) =0 = wi =wy .

In other words, a conservative algorithm keeps playing the same point as long as it doesn’t
suffer any loss. Let A be an online optimization algorithm (not necessarily conservative)
with a regret bound of R(7T"). Use A as a black-box to construct a conservative online
optimization algorithm A’ with the same regret bound.

2 The Doubling Trick

You are given an online optimization algorithm A that guarantees a regret upper-bound
of R(T') = TP, for some p € (0,1), as long as its parameters are set as a function of T.
We will use A as a black-box to construct another online optimization algorithm A’, which
guarantees a regret upper-bound of O(7?), and which does not need to know the length of
the game in advance. In other words, the regret upper-bound of A’ holds simultaneously for
all lengths 7. In particular, define A’ as follows:

for epoch m =0,1,2,... do
Reset A with parameters chosen for 7' = 2™
for rounds t =2™,....2"" — 1 do
Run A
end for
end for

Essentially, the algorithm initially guesses 7' = 1, and when it observes this guess was too
low, it doubles it’s initial guess and re-starts A. This is called the doubling trick.

a. Prove that, for any T', the regret up to time 7" is upper-bounded by chfé(m] R(2™) (keep
in mind that regret can be negative).

b. Prove that the regret of A" up to time 7" is O(7T?) (hint: for any = # 1, it holds that

+1_
ZZ:O = xn$_1 1)'

3 An Application

You are working on a team developing a smartphone app that every morning predicts how
many emails the phone’s owner will receive that day. You construct feature vectors x; € R™
with ||z¢]|2 = 1 such that you can predict the number of emails as a linear function of a x;
using a model w € R™, that is, the prediction is w - x;. The app can observe the actual
number of emails received, y;, at the end of the day, so the problem fits nicely into the online
model. You apply Online Gradient Descent with convex loss function fi(w) = |w - zy — yql.
Assume we know 7', and we take W = {w | ||w||2 < D}.

a. Give a bound G such that ||g||2 < G for all g € df;(w;) for any w;, € W.

b. Using the above GG, what learning rate do we need in order to get a regret bound of
GD+/2T for Online Gradient Descent?

Thinking about the problem, someone on your team suggests: “It would be nice to get low
regret with respect to a comparator strategy that can use one vector w® € W on weekdays,
and a different model w® € W on weekend days.”

. Describe a transformation that produces a single online convex optimization problem
(which can be solved using a single instance of OGD as a subroutine) that gives a regret
guarantee against the best pair of models (w? w’). Hint: You will need to transform
both the loss functions and the points played, and the dimensionality of the problem will
change.

. What learning rate does the theory recommend for the transformed problem? What is
the regret bound against the stronger comparator class used in the transformed problem?

. The above regret bounds do not imply that one approach or the other will have less
cumulative loss. Describe an adversary (some process for generating examples (x4, y;))
for which you would expect the original approach to have lower cumulative loss. Describe
a scenario where you would expect the transformed approach to have lower cumulative
loss. Make these as realistic as possible; they can be described in general terms as long
as it is clear what the impact on the cumulative loss would be.

. An alternative approach is to simply use two separate copies of OGD: for predictions
on weekends you predict and train with one instance of OGD, and for predictions on
weekdays you use a separate OGD instance. Suppose 5/7 of the T examples are for
weekdays, and 2/7 are for weekends (assume T is divisible by 7). As a function of the
total T, how would you set the learning rates for the weekend and weekday algorithms
(again, based on the theory)? (Keep in mind neither algorithm will see a all 7" examples).
Give an overall bound on the total cumulative regret for all T" predictions against the
comparator class that can use a separate w € W for weekdays and weekends. Compare
this bound to the one from part d. Is this bound better or worse? Why?

