CSE599s, Spring 2012, Online Learning Lecture 3 - 04/03/2012

The Online Optimization Game
Lecturer: Brendan McMahan Scribe: Evan Herbst

1 Online Optimization Game

Again, define the online optimization game:
e for t = 1..T (eventually we’ll have bounds that hold VT, so that we can let T = o0)
— player chooses a predictor w; € W C R”
— adversary reveals loss function f; : W — R
— player pays f,(w)
For real applications, think 7" maybe O(107), n maybe O(107).

The worst-case sum of losses is arbitrarily high, so instead of minimizing the sum of losses we’ll minimize
regret:

T T
Regret = > _ fy(w) — min _ fi(w).
t=1 t=1

We also can’t minimize regret wrt strategies that can change w at each iteration, because we’d still do
arbitrarily badly. For now we’ll write w as though it’s constant over time, but later we will develop algorithms
that have low regret against the set of strategies that switch w a known finite number of times (switching
regret) and to the set of strategies in which |w; — w;—1] is bounded (drifting regret).

2 Example Online Optimizers

An example algorithm: Follow-The-Leader (FTL):

t
Wiyl = argminz fs(w) = argmin f1.+(w)
weW s—1 w

Against linear functions, FTL can have the worst possible regret, O(T).

Another example algorithm (not realizable because it sees the future): Be-The-Leader (BTL): as FTL,
but play w1 on round ¢ instead of playing w; on round ¢.

Suppose W C R and the loss is required to be linear (f;(w) = g:w). Table for the same example we did for
FTL last week:

t Wi gt IOSS(t) gi1:t

1 -1 5 -9 5
2 1 -1 -1 -5
3 -1 1 -1)

Etc. Regret(BTL) will be about —T', not about T as it was for FTL. This is because now each g; entry gets

filled in before the w; entry on the same line.

Theorem 1 (BTL Theorem). For arbitrary bounded f;, Regret(BTL) < 0. Equivalently, 23;1 fi(werr) <

ST filwryy), which will be our TH.

Proof. By induction.
Base case: T =1. f1(ws2) < fi(ws2).
For the induction step, suppose the ITH holds for T'. Then,

T+1

Z ft wt+1

f (weg1) + fre1(wryz)

MH ||M~3

IN

fi(wrs1) + fraa(wree)

~~
Il
—

M“]

fe(wri2) + frei(wris)

o~
Il
-

[
Mq

fr(wryi2).

~
I
—

IH

def. WT+1

O

Since the difference between FTL and BTL is whether we play w; or w41, let’s try to bound the regret of

FTL using that of BTL.

Theorem 2 (FTL Theorem). For Yw* € W,

T
Regret(FTL vs w* Z Jr(we) — fr(wegr)),
t=1

again assuming the f; are bounded.

Proof.
T T
Regret(FTL) = Z Je(wy) — Z fe(w®)
t;l t;1
< Z fe(we) — Z fe(wr1)
t=1 t=1

def. WT+1

T T
=" felwir) = Y frlwrp) + > (felwe) = folween))

t=1 t=1 t=1

3 Transformations in Online Optimization

fi fi
; inner
adversary trans. orm- online alg
ation (eg FTL)
wep1 €W wi, €W

Figure 1: transformations in online optimization.

Sometimes we can transform the adversary’s loss and parameter space into something that it’s easier to prove
things about. See fig. 1 for an overview. Information flows from upper left to lower left by the arrows.

An algorithm using a transformation: Follow-The-Regularized-Leader (FTRL), which runs FTL on a
regularized loss function. The udpate is defined by

wyp1 = argmin(fi.(w) + r(w))

where the regularization function r : R™ — R satisfies r(w) > 0, and typically also r(0) = 0.

We view this as running FTL together with the following transformation: Given functions f;(w) chosen by
the adversary, we let f{(w) = g: - w + r(w) (that is, we add a regularization component to the first function
we see), and take f] = f; for t > 1.

Again, we can prove a strong result that holds for arbitrary (potentially even non-convex f):
Theorem 3 (FTRL theorem). The FTRL algorithm has

T
Regret(FTRL) <> (fi(w) = fi(wis1)) + r(w”).
t=1
Proof.

th wt) Z fllw*) < Z fi(wy) — f{(wiy1) Applying the FTL theorem to f
t

— Z th +r(wy) —) < Z fr(we) = fe(wep1)) +7(wr) — r(ws)

t

regret(FTRL)

<= Regret(FTRL) < Z(ft(wt) — fe(wigr)) +r(w*) — r(ws)

FTRL for linear f;:
o filw) =g w
e |g:| < G (bounded loss)

o w1 = argmin, (3, 9. - w+ Z|w|*) ,0 € RT (quadratic regularizer)

Then,

T
Regret(FTRL) < Z(ft(wt) — fi(wig1)) +r(w™) FTRL theorem

t=1
= g0 (wp — wpar) +r(w”)
t

< Z Glwy — wiyq| + %|w*|2 Cauchy-Schwarz
t

T
< =G+ g|w*\2.
o 2

This is just gradient descent with a fixed learning rate %, because

T Gut-1t+ g1 Gt
W — Wiy = ————————— = —.
o o

To choose ¢ optimally you need to know G and 7. But in practice it doesn’t matter that you don’t know
T. In general, you can always apply the “doubling trick” (not explained in class). Or even better, you
can analyze a version of the algorithm that changes the amount of regularization adaptively, which we may
analyze later.

Theorem 4. Yw* with |w*| < R, against linear loss functions fi(w) = g¢ - w with |g:| < G, FTRL with
r(w) = §|w|?, where o = G‘I/%ﬁ, has regret < GRV2T.

Proof. Plug this value for o into the regret bound above. O

