
CSE599s, Spring 2012, Online Learning Lecture 3 - 04/03/2012

The Online Optimization Game
Lecturer: Brendan McMahan Scribe: Evan Herbst

1 Online Optimization Game

Again, define the online optimization game:

• for t = 1..T (eventually we’ll have bounds that hold ∀T , so that we can let T =∞)

– player chooses a predictor wt ∈ W ⊆ Rn

– adversary reveals loss function ft :W → R

– player pays ft(wt)

For real applications, think T maybe O(109), n maybe O(107).

The worst-case sum of losses is arbitrarily high, so instead of minimizing the sum of losses we’ll minimize
regret:

Regret =

T∑
t=1

ft(wt)− min
w∈W

T∑
t=1

ft(w).

We also can’t minimize regret wrt strategies that can change w at each iteration, because we’d still do
arbitrarily badly. For now we’ll write w as though it’s constant over time, but later we will develop algorithms
that have low regret against the set of strategies that switch w a known finite number of times (switching
regret) and to the set of strategies in which |wt − wt−1| is bounded (drifting regret).

2 Example Online Optimizers

An example algorithm: Follow-The-Leader (FTL):

wt+1 = argmin
w∈W

t∑
s=1

fs(w) ≡ argmin
w

f1:t(w)

Against linear functions, FTL can have the worst possible regret, O(T).

Another example algorithm (not realizable because it sees the future): Be-The-Leader (BTL): as FTL,
but play wt+1 on round t instead of playing wt on round t.

Suppose W ⊂ R and the loss is required to be linear (ft(w) = gtw). Table for the same example we did for
FTL last week:

t wt gt loss(t) g1:t
1 -1 .5 -.5 .5
2 1 -1 -1 -.5
3 -1 1 -1 .5

1

Etc. Regret(BTL) will be about −T , not about T as it was for FTL. This is because now each gt entry gets
filled in before the wt entry on the same line.

Theorem 1 (BTL Theorem). For arbitrary bounded ft, Regret(BTL) ≤ 0. Equivalently,
∑T
t=1 ft(wt+1) ≤∑T

t=1 ft(wT+1), which will be our IH.

Proof. By induction.

Base case: T = 1. f1(w2) ≤ f1(w2).

For the induction step, suppose the IH holds for T . Then,

T+1∑
t=1

ft(wt+1) =

T∑
t=1

ft(wt+1) + fT+1(wT+2)

≤
T∑
t=1

ft(wT+1) + fT+1(wT+2) IH

≤
T∑
t=1

ft(wT+2) + fT+1(wT+2) def. wT+1

=

T∑
t=1

ft(wT+2).

Since the difference between FTL and BTL is whether we play wt or wt+1, let’s try to bound the regret of
FTL using that of BTL.

Theorem 2 (FTL Theorem). For ∀w∗ ∈W ,

Regret(FTL vs w∗) ≤
T∑
t=1

(ft(wt)− ft(wt+1)),

again assuming the ft are bounded.

Proof.

Regret(FTL) =

T∑
t=1

ft(wt)−
T∑
t=1

ft(w
∗)

≤
T∑
t=1

ft(wt)−
T∑
t=1

ft(wT+1) def. wT+1

=

T∑
t=1

ft(wt+1)−
T∑
t=1

ft(wT+1)︸ ︷︷ ︸
= regret(BTL) ≤0

+

T∑
t=1

(ft(wt)− ft(wt+1))

≤
T∑
t=1

(ft(wt)− ft(wt+1)).

2

3 Transformations in Online Optimization

adversary
transform-

ation

inner
online alg
(eg FTL)

ft f ′t

w′t+1 ∈W ′wt+1 ∈W

Figure 1: transformations in online optimization.

Sometimes we can transform the adversary’s loss and parameter space into something that it’s easier to prove
things about. See fig. 1 for an overview. Information flows from upper left to lower left by the arrows.

An algorithm using a transformation: Follow-The-Regularized-Leader (FTRL), which runs FTL on a
regularized loss function. The udpate is defined by

wt+1 = argmin
w

(f1:t(w) + r(w))

where the regularization function r : Rn → R satisfies r(w) ≥ 0, and typically also r(0) = 0.

We view this as running FTL together with the following transformation: Given functions ft(w) chosen by
the adversary, we let f ′1(w) = gt ·w + r(w) (that is, we add a regularization component to the first function
we see), and take f ′t = ft for t > 1.

Again, we can prove a strong result that holds for arbitrary (potentially even non-convex ft):
Theorem 3 (FTRL theorem). The FTRL algorithm has

Regret(FTRL) ≤
T∑
t=1

(ft(wt)− ft(wt+1)) + r(w∗).

Proof. ∑
t

f ′t(wt)−
∑
t

f ′t(w
∗) ≤

∑
t

f ′t(wt)− f ′t(wt+1) Applying the FTL theorem to f ′

⇐⇒
∑
t

ft(wt)−
∑
t

ft(w
∗)︸ ︷︷ ︸

regret(FTRL)

+r(w1)− r(w∗) ≤
∑
t

(ft(wt)− ft(wt+1)) + r(w1)− r(w2)

⇐⇒ Regret(FTRL) ≤
∑
t

(ft(wt)− ft(wt+1)) + r(w∗)− r(w2)︸ ︷︷ ︸
≤0

FTRL for linear ft:

• ft(w) = gt · w

• |gt| ≤ G (bounded loss)

• wt+1 = argminw
(∑

t gt · w + σ
2 |w|

2
)
, σ ∈ R+ (quadratic regularizer)

3

Then,

Regret(FTRL) ≤
T∑
t=1

(ft(wt)− ft(wt+1)) + r(w∗) FTRL theorem

=
∑
t

gt · (wt − wt+1) + r(w∗)

≤
∑
t

G|wt − wt+1|+
σ

2
|w∗|2 Cauchy-Schwarz

≤ T

σ
G2 +

σ

2
|w∗|2.

This is just gradient descent with a fixed learning rate 1
σ , because

wt − wt+1 =
−g1:t−1 + g1:t

σ
=
gt
σ
.

To choose σ optimally you need to know G and T . But in practice it doesn’t matter that you don’t know
T . In general, you can always apply the “doubling trick” (not explained in class). Or even better, you
can analyze a version of the algorithm that changes the amount of regularization adaptively, which we may
analyze later.

Theorem 4. ∀w∗ with |w∗| ≤ R, against linear loss functions ft(w) = gt · w with |gt| ≤ G, FTRL with

r(w) = σ
2 |w|

2, where σ = G
√
2T
R , has regret ≤ GR

√
2T .

Proof. Plug this value for σ into the regret bound above.

4

