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The Online Gradient Descent with adaptive learning rate
Lecturer: Brendan McMahan Scribe: Yanping Huang

1 The Online Gradient Descent Algorithm

In the previous lecture, Zinkevich’s online gradient descent [1] algorithm was presented:

ONLINE GRADIENT DESCENT (OGD).
Inputs: convex feasible set W ∈ Rn, non-increasing step sizes η1, η2, . . . ≥ 0, initial w0 ∈ W
for t = 1, 2, . . . , do
wt = ΠW(wt−1 − ηtgt), where gt ∈ ∂ft(wt)

end for
Here ΠW denotes the projection onto nearest point in W, ΠW(w) = arg minw′∈W ‖w −w′‖.

If we use a feasible set where ‖w‖ ≤ R, we showed a general bound for this algorithm of

Regret ≤ 2R2

ηT
+

1

2

T∑
t=1

ηg2t . (1)

In the previous lecture, assuming f1, f2, . . . , fT are G-Lipschitz, we let ηt = R
√
2

G
√
t
, and showed the above

bound reduces to

Regret ≤ 2
√

2RG
√
T . (2)

Note that this regret bound is the bound for infinite horizon problems, i.e., the algorithm needs not know
the total number of iterations T in advance. The bound holds on the regret up through round T for all
T ≥ 1. The regret bound for the corresponding finite horizon problems (which holds only for a fixed T ,
which we need to know in advance) can be shown to be 2RG

√
T .

Some comments on OGD algorithm:

• Gradient descent problems with smaller feasible sets W are easier.
This can be easily shown by the regret bound in Eq. (2).

• The potential function may not be monotonically increasing or decreasing, depending on the choice of
w?. Recall Φ(w) = 1

2‖w −w?‖2 and let the projection operator ΠW be the identity operator, that is
W = Rn. We have the below recursive relationship:

Φ(wt+1) =
1

2
‖wt −w?‖2 − ηtgTt (wt −w?) +

1

2
η2t ‖gt‖2

= Φ(wt) +
1

2
η2t ‖gt‖2 − ηtgTt (wt −w?).

If ft(w
?) ≤ ft(wt), we have gTt (w? −wt) ≤ 0 from Lemma 1 (below), then Φ(wt+1) will be smaller

than Φ(wt) if we choose a small enough learning rate. On the other hand, if ft(w
?) is not a desired

point, i.e., ft(w
?) > ft(wt), we may have gTt (w? −wt) > 0. In this case Φ(wt+1) > Φ(wt).

Lemma 1. Let g be a sub-gradient of f at x. If f(y) ≤ f(x) then gT (y − x) ≤ 0 (immediate from
f(y) ≥ f(x) + gTt (y − x)). Thus, nonzero subgradients of f at x define supporting hyperplanes to
sub-level set {y|f(y) ≤ f(x)} (see picture).
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• In a later lecture, we will analyze the Follow-the-Regularized-Leader (FTRL) algorithm with adaptive
regularization, where on each round we use a total amount of regularization like R(w) ≈

√
t‖w‖2.

2 Lower Bounds for OGD

In this section, we would like to show that the regret bound for OGD is tight by constructing problems
whose regret is (up to constant factors) as large as the regret bound for OGD. Note: In this section, we use
x’s instead of w’s.

Example 1 Large learning rates are bad. First we construct a online convex optimization problem with
loss function on every round is ft(x) = G|x−x?|, with x ∈ R and G ∈ R a constant. The corresponding sub-
gradient can be written as sign(x− x?), where the sign function sign(x) = 1 for x > 0 and sign(x) = −1 for
x < 0. The OGD update rule xt+1 = xt− sign(xt−x?)ηG will then make the sequence {xt} oscillate around
the optimal point x?. Suppose at time t, x? − xt = ε with 0 < ε < Gη. Then, we will have xt+1 = x0 +Gη,
so xt and xt+1 are in the opposite sides of x?. After the next update, we will have xt+2 = xt+1 −Gη = xt,
and so the oscillation continues. The resulting regret will be

Regret =
T

2
Gε+

T

2
G(Gη − ε) =

T

2
G2η.

The T
2Gε term counts the T/2 rounds where we are at the first point (without loss of generality, x0, x2, . . . , xt, xt+2, . . . ),

when we are a distance ε from x?. The term T
2G(Gη − ε) counts the regret on the remaining T/2 rounds

when we are a distance Gη − ε from x?.
Example 2 Small learning rates are bad, too. Let x ∈ [0, D], and ft(x) = G(D − x). The OGD update

rule xt+1 = xt + Gη will generate a sequence of {xt} = {x0, x0 + Gη, x0 + 2Gη, . . . , }. Let x0 = 0, after
K = D

2Gη steps, the total regret will be

Regret =

k∑
t=0

G(D − tGη) ≥ GD

2

D

2Gη
=
D2

4η
.
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Using previous two constructions, for any learning rate, the adversary can choose a one dimensional

problem where regret is at least max {D
2

4η , G
2η T2 }. In comparison, the regret bound for OGD with feasible

region [0, D] and maximum gradient G has the form of D2

2η +G2η T2 . This shows the regret bound for OGD
is tight.

3 OGD with adaptive learning rate.

Our goal now will be to study Eq. (1), and to derive better learning rate schedules which produce lower
regret bounds. We begin with a motivating example that shows when this may be possible.

Suppose in the online optimization game (in one dimension), the adversary plays a sequence like

gt = {0, 0, . . . , 0, 1, 0, . . . , 0,−1, 0, 1, 0, . . .},

t = 1, . . . , T . For example, let T = 1010 but only 104 of gt are non-zero. The OGD with ηt ≈ 1/
√
t will have

a step size decreasing on each round. This choice of step size will have a regret bound of order
√
T = 105.

Alternatively, if we update the step size only when gt 6= 0, we will have a much lower regret bound of order√
104 = 102. The key is that we can safely ignore rounds when gt = 0, because whatever wt we choose will

incur the same loss as any w?, so our regret will be the same as the OGD algorithm that is only updated
when there are non-zero gradients.

To deal with the case where the adversary replaces 0s with some infinitesimal number ε ' 0, a more
general step size updating rule is needed. Suppose we know the sequence {gt}t=1,...,T in advance, the

optimal fixed learning rate η̂ = 2R√∑T
t=1 g

2
t

will have a regret at most 2R
√∑T

t=1 g
2
t . This can be derived by

taking derivatives to optimize for the best fixed rate, as we have done several times already.
But, we can do almost as well without knowing any of the gt in advance! We use the adaptive global

learning rate:

ηt =
R
√

2√∑t
s=1 g

2
s

(3)

The corresponding regret is

Regret ≤ 2
√

2R

√√√√ T∑
t=1

g2t (4)

It is not obvious that plugging the learning rate from Eq. (3) into the bound of Eq. (1) gives a bound like
Eq. (4). Proving this requires a technical lemma, see for example [2].
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We apply the above algorithm to the following online prediction problem:

Example 3 Online Prediction Problem. Let {xt, yt} be a sequence of learning examples where xt
represents the feature vector and yt represents the label. xt ∈ Rn, yt ∈ {0, 1}. We will make predictions
using a generalized linear model, where ŷt = σ(wt,xt) based on xt and parameters wt. The nonlinear
function σ(·) maps from R to [0, 1]. For example σ(·) can be a sigmoid function σ(x) = ex

1+ex . Then this
online prediction problem can be viewed as logistic regression problem. At each round t, the player receives
xt, makes a prediction ŷt by choosing a wt, and suffers a loss ft(wt) = `(wt · xt, yt). For generalized linear
models, ` is usually chosen so that gt = Oft(wt) = (σ(wt · xt)− yt)xt = (ŷt − yt)xt.

In problems like document classification, the feature vector xt is usually very sparse. For example, xt,i
may represent whether a word i appears in a document t or not. While xt is in a very high n-dimensional
space (n is the number of words in a dictionary), typically most xt,i are zero (since most documents have a
relatively small number of distinct words).

If we choose a feasible set W = {w ∈ Rn | wi ∈ [−Bi, Bi]} for constants Bi ∈ R, we can apply OGD with
the learning rate from Eq. (3) on a per-coordinate basis:

wt+1,i = Π[−Bi,Bi](wt,i − ηt,igt,i)

where ηt,i =

√
2Bi√∑t
s=1 g

2
s,i

.

The regret can be shown to be no more than
∑n
i=1 2Bi

√
2
∑T
t=1 g

2
t,i. Writing B = (B1, B2, . . . , Bn) and

gt = (. . . ,
√∑T

t=1 g
2
t,i, . . .), We have

Regret ≤ 2
√

2B · gt ≤ 2
√

2‖B‖‖gt‖ = 2
√

2R

√√√√ T∑
t=1

‖gt‖2,

and so the adaptive per-coordinate learning rate gives a bound as least as good as the adaptive global rate,
Eq. (3).
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