
CSE599s, Spring 2012, Online Learning Lecture 16 - 05/17/2012

Combinatorial Bandits
Lecturer: Ofer Dekel Scribe: Sergey Feldman

1 Review - Bandit Convex Optimization

First, let’s review the bandit convex optimization problem.

1. The adversary chooses f1, . . . , fT , where each ft :W → R.

2. For t = 1, . . . , T the player

• chooses wt ∈ W (in a randomized fashion), and

• suffers loss ft(wt), observing ft only at this point.

2 Online Shortest Path Problem

We’re going to study bandits with combinatorial action sets (aka combinatorial bandits) by looking at one
specific example: the online shortest path game. First, some graph notation.

• Let the graph G = (V,E) be composed of a set of vertices V that are connected by a set of directed
edges E ⊆ V 2.

• Let u ∈ V and v ∈ V be the source vertex and the sink vertex, respectively.

• A (simple) path from u to v is a set of edges that leads from u to v, where “simple” indicates that
each edge appears only once and the path is cycle free.

• Let the set of all simple paths from u to v be written as paths(u, v).

The game is played as follows.

1. The adversary chooses f1, . . . , fT , where each ft : E → [0, 1].

2. For t = 1, . . . , T the player

• plays path pt ∈ paths(u, v), and

• suffers loss ft(pt) =
∑

e∈pt
ft(e), observing only the total loss ft(pt) and not any of the individual

terms ft(e).

The goal of the online shortest path game is to minimize the expected regret:

E

[
T∑

t=1

ft(pt)

]
− min

p∈paths(u,v)

T∑
t=1

ft(p),

where the expectation is taken over the player’s internal randomization. Some fruitful observations:

• This game looks very similar to the k-armed bandit problem, where each arm represents a path in
paths(u, v).

1

• The loss of each arm is bounded:
max

p∈paths(u,v)
|p| ≤ |E|.

However, there is a hefty obstacle – |paths(u, v)| may be exponential in |E|, which will lead to (a) exponential

regret (something like
√
T2|E|) and (b) exponential complexity.

They key to solving this problem is exploiting its structure. Note that while there may be an exponential
number of paths, they are all composed of the same (relatively) small number of edges. We will make this
problem tractable in three steps:

1. Reformulate the problem using “integer (binary) linear program” constraints.

2. Perform a convex relaxation.

3. Perform derandomization-randomization.

Step 1 - Problem Reformulation

First, let’s enumerate the edges and redefine pt ∈ {0, 1}|E| to be a vector where each coordinate corresponds
to the absence or presence of an edge in the path pt. In other words:

for e ∈ {1, . . . , |E|} pt,e = 1 iff the corresponding edge is in the path.

Let gt = (ft(1), . . . , ft(|E|)). Then we have that the loss of a path is linear:

ft(pt) = gt · pt =
∑
e∈E

pt,egt,e.

The following set of constraints on pt is equivalent to a graph theoretic definition of a simple path from u to
v (this is a lemma, but we omit the proof).

• The path pt is cycle free.

• The path starts at u: ∑
e=(u,∗)

pt,e = 1.

• The path ends at v: ∑
e=(∗,v)

pt,e = 1.

• Flow is conserved:
∀z /∈ {u, v},

∑
e=(∗,z)

pt,e =
∑

e=(z,∗)

pt,e.

Step 2 - Convex Relaxation

We’re going to pretend that the player can play wt ∈ conv(paths(u, v)), i.e. the player can play a point
in the convex hull of the paths. The convex hull is the set of all convex combinations of paths in {0, 1}|E|,
which is a subset of the hypercube [0, 1]|E|. Mathematically, conv(paths(u, v)) =

• ∀e wt,e ≥ 0, wt,e ≤ 1.

•
∑

e=(u,∗) wt,e = 1.

2

•
∑

e=(∗,v) wt,e = 1.

• ∀z /∈ {u, v},
∑

e=(∗,z) wt,e =
∑

e=(z,∗) wt,e.

The loss is still linear
ft(wt) = gt · wt,

and now there is a convex set of actions, which means we can use the bandit convex optimization framework!
For linear loss functions, we can achieve O(

√
T) loss.

Step 3 - Derandomization/Randomization

Using the bandit convex optimization algorithm, we have wt at each round. But we need to play an
actual path pt. To do so we’re going to add another layer of randomness. To see how, first note that
wt ∈ conv(paths(u, v)) means:

∃ p1, . . . , ps ∈ paths(u, v) and α1, . . . , αs ∈ R

s.t. αi ≥ 0,

s∑
i=1

αi, and

s∑
i=1

αipi = wt.

In other words, any point in the convex hull of paths can be written as a convex sum of a subset of the
paths. What we will do is find a set of {αi} and play path pi with probability αi. This is going to work out
because of unbiasedness:

E[pi|wt] = wt,

and, since the loss is linear,
E[ft(pt)] = E[ft(wt)] = gt · wt,

which will ensure that our regret bound holds. So now we have to make sure that we can find the weights
{αi} in polynomial time, or we have just moved the exponential part of the algorithm around, achieving
nothing.

Theorem 1. For
∑s

i=1 αipi, we can find s ≤ |E| and pi, . . . , ps and α1, . . . , αs in O(|E|2) time.

Proof. A proof by construction - the following is an algorithm for finding pi, . . . , ps and α1, . . . , αs. We define
w = wt for simplicity of notation.

For i = 1, . . . , |E|:
1. Find an “augmenting path” pi in the graph G where the edges are weighted by w. (All edges in an

augmenting path have strictly positive weights.)

2. Define αi = mine∈pi
we.

3. Update w ← w − αipi.

We can use a depth first search to find an augmenting path in O(|E|) time (if it exists - see subsequent
Lemma 1). And there are at most O(|E|) steps in the outer for-loop (see subsequent Lemma 2). Therefore,
the total complexity is O(|E|2). �

We now need a few lemmas to round out the proof.

• Lemma 1: ∃ an augmenting path until w = (0, . . . , 0). Proof sketch: flow conservation always holds at
each step.

• Lemma 2: It takes |E| iterations to get to w = (0, . . . , 0). Proof sketch: on each iteration, exactly one
edge becomes zero.

The algorithm outlined above is basically the Caratheodory Theorem (see Wikipedia):

Theorem 2. If S ⊆ Rn and x ∈ conv(S), then ∃ s1, . . . , sn+1 ∈ S s.t. x ∈ conv({s1, . . . , sn+1}).

3

3 Online Bipartite Matching

Consider the problem of online dating, in which we’d like to match k men and k women to each other on
every round - online bipartite matching. The cardinality of the action space is huge: k!, but here too we can
use the structure of the problem to get good regret bounds.

Let gt ∈ [0, 1]k×k be a k × k loss matrix, where

gt(i, j) = 0⇔ i and j didn’t like each other.

The goal is then to minimize
1T gt1.

4

