
CSE599s, Spring 2012, Online Learning Lecture 8 - 04/19/2012

The FTRL Algorithm with Strongly Convex Regularizers

Lecturer: Brandan McMahan Scribe: Tamara Bonaci

1 Introduction

In the last lecture, we talked about regularization models that induce sparsity, and we explained why such
models might be preferred:

• In statistics, a sparse vector might correspond to a feature selection. For example, when there are more
features than training examples, we might choose to set some features to 0 using L1-regularization.

• From systems perspective, having a large number of features requires storing a large number of coeffi-
cients. By setting some features to 0, we may reduce memory requirements.

We also talked about the difference between L1− and L2− regularization, and presented a version of an
Online Gradient Descent (OGD) algorithm, that includes a prediction error and an L1− regularization term.
For the most part today, our loss function will be defined as

ft(ω) = ℓt(ω)
︸ ︷︷ ︸

prediction error

+ λ‖ω‖1
︸ ︷︷ ︸

regularization term

, (1)

where ℓt(ω) represents a short-hand notation for ℓt(ω) := ℓ(ω · xt, yt), λ‖ω‖1 is a regularization term used
to induce sparsity and λ ∈ R is a weighting factor.

In some sense, this loss function allows us to choose predictors such to minimize our regret compared to
the best model making a prediction, while ensuring our predicted vector is sparse. (For example, if there
exists a perfect predictor ω∗ that makes a good prediction every time, but has a large L1− norm, we might
not care about our regret compared to that predictor as much.)

Remark 1: The weighting factor, λ, is highly dependant on the problem we are solving and, for now, we won’t
care about it. As a general rule, however, we note that a hypothetical sparsity/loss curve parameterized by
λ has a form depicted in Figure 1.

loss

sp
ar

si
ty

better

be
tt

er

��= 0

��= 1

��= 10

Figure 1: A sparsity/loss curve parameterized by the weighting factor λ.

1

2 Composite Objective-OGD Algorithm

Let’s consider the OGD algorithm again, with the update rule given as

ωt+1 = ωt − ηĝt, (2)

where ĝt denotes a subgradient of the loss function ft(ω), ĝt ∈ ∂ft(ωt). We’ve analyzed this algorithm last
time and observed it can results in oscillatory predictions, as there is nothing to really force the predictor to
got exactly to 0. In fact, if there is any noise in the loss function gradient, the predictor will never go to 0.

We can, however, rewrite the ODG update rule (2) as the following optimization problem

ωt+1 = argmin
ω

gtω +
1

2η
‖ω − ωt‖

2, (3)

where we approximate the prediction error, ft(ω), by its subgradient at ωt, but keep the sparsity-regularization
part intact, gtω+λ‖ω‖1, and gt ∈ ∂ft(ωt). This modified algorithm is known as the Composite-Objective
Online Gradient Descent (CO-OGD).

The CO-OGD algorithm (3) helps prevent prediction oscillations. It turns out, however, that we can
achieve even sparser predictor vector using the Follow-the-Regularized-Leader (FTRL) algorithm, with the
update rule defined as [3]

ωt+1 = argmin
ω

(g1:tω
︸ ︷︷ ︸

subgradient approximation

+ tλ‖ω‖1
︸ ︷︷ ︸

t copies of L1 penalty

+ r1:t(ω)
︸ ︷︷ ︸

stabilization penalty

). (4)

In order to compare the CO-OGD with the FTRL algorithm and show that the FTRL algorithm (4) enjoys
a better sparsity, we next rewrite the CO-OGD algorithm (3) in the following alternative form:

ωt+1 = argmin
ω

(g1:tω + φ1:t−1ω + λ‖ω‖1 + r1:t(ω)), (5)

with rt(ω) defined as rt(ω) =
σt

2
‖ω − ωt‖

2 and φt ∈ R
n as a subgradient approximation of the L1− penalty,

φt ∈ ∂(λ‖ω‖1). Thus, φ1:t−1ω + λ‖ω‖1 approximates the term tλ‖ω‖1 from the FTRL algorithm (4).
While the fact that CO-OGD update rule (3) and its alternative form (5) are the same is not immediately

obvious (and we do not prove it here), using the alternative representation allows us to immediately see that
in the CO-OGD there is a single L1− penalty for the current learning round, and all previous rounds are
approximated using subgradient (linear) approximation. On the other hand, in the FTRL algorithm there
are t copies of the L1− penalty, for each iteration of the game. Thus, the FTRL algorithm results in a
sparser solution, since it does not assume approximation of the L1− regularization on any of the iterations
of the game.

Remark 2: Note that it is possible to implement this modified FTRL algorithm by storing only a single vector
in R

n, or two vectors in R
n, if using adaptive per-coordinate learning rate. Thus, both FTRL and CO-OGD

have the same storage requirements.

Remark 3: [Geometrical interpretation of the stabilization penalty] After t rounds, the cumulative stabilization
penalty is given as

r1:t(ω) =

t∑

s=1

σs

2
‖ω − ωs‖

2.

This stabilization penalty corresponds to a slowly decreasing learning rate, which can geometrically be
represented as depicted in Figure 2, where ωi denotes the predictor value in the current round.

2

�0

�1

�2

r0

r1

r2

Figure 2: Geometrical interpretation of the stabilization penalty.

3 The FTRL Algorithm with Strongly Convex Proximal Regular-

izers

We next analyze the FTRL algorithm with a strongly convex proximal regularizer, and derive its regret
bounds. As a part of our regret analysis, we also show a simple way of defining general convex feasible sets.
We start by defining strongly convex functions.

3.1 Strongly Convex Functions

Definition 1. A convex function, f , is σ− strongly convex with respect to some norm, ‖ · ‖, over a set
W if for all u,w ∈ W, and every g such that g ∈ ∂f(w) it holds that

f(u) ≥ f(w) + g · (u− w) +
σ

2
‖u− w‖2. (6)

A graphical interpretation of strong convexity is depicted in Figure 3.

w u

f(w)

f(u)
�

2
||u -w||2

f(w
) +

 (u
-w

)T

¨f(w
)

Figure 3: A graphical interpretation of strong convexity.

Remark 4: Strongly convex functions can be thought of as functions that, in addition to a linear lower bound,
also have a quadratic lower bound.

3

Remark 5: We will almost always work with strongly convex regularization functions, but we will not assume
the same about the loss functions.

Example: Function f(w) = 1
2
‖w‖22 is 1-strongly convex with respect to Euclidean norm.

Proof. Function f(w) is differentiable, so its subdifferential consists of only one element, ∇f(w) = w. Now,
for some points u,w ∈ R, we can write:

1

2
u2 ≥

1

2
w2 + w(u− w) +

1

2
(u− w)2,

1

2
u2 ≥

1

2
u2.

Lemma 2. Let W be a nonempty convex set, and let f : W → R be a σ−strongly convex function over W
with respect to a norm ‖ · ‖. Further, let w∗ be the minimizer of f over W, w∗ = argminv∈W f(v). Then for
every u ∈ W it holds that

f(u)− f(w∗) ≥
σ

2
‖u− w∗‖2. (7)

Proof. (Proof adapted from [2]) Let’s first assume f is differentiable and w∗ is in the interior of W. Then
∇f(w) = 0 and from the definition of strong convexity it follows that

∀u ∈ W, f(u)− f(w∗) ≥
σ

2
‖u− w∗‖2, as required.

Let’s now consider the case when w∗ is on the boundary ofW. We still have that for all u ∈ W,∇f(w∗)T (u−
w∗) ≥ 0, otherwise w∗ wouldn’t have been optimal since we could make a small step in the direction u−w∗

and decrease the value of f . So, the desired inequality still holds.
Finally, let’s consider the case when f is not differentiable. Let g : Rd → R

⋃
{∞} be such that g(w∗) =

f(w∗) if w∗ ∈ W and g(w∗) = ∞ otherwise. We can therefore rewrite w = argminv g(v). Since g a proper
convex function (never receives value −∞), we know that 0 ∈ ∂g(w∗). Thus, the inequality (7) follows using
the strong convexity of g.

3.2 Regret Analysis of the FTRL Algorithm with Strongly Convex Regularizers

We next proceed with the regret analysis of the FTRL algorithm with the following update rule

ωt+1 = argmin
ω∈Rn

f1:t(ω) + r1:t(ω).

We further assume the following about loss and regularization functions:

• The loss ft is Lt− Lipschitz and convex,

• The regularization function is σt− strongly convex

• 0 ∈ ∂rt(ωt)

Lemma 3 (FTRL lemma). The regret of the FTRL algorithm with a strongly convex regularizer, compared
to some predictor, w∗, satisfies

Regret(FTRL) ≤

T∑

t=1

(ft(wt)− ft(wt+1)) + r1:T (w
∗). (8)

Proof. The proof is analgous to the simpler version of the lemma with a single fixed regularizer r.

4

Theorem 4. Let f1, . . . , fT be a sequence of convex functions such that ft is Lt− Lipschitz with respect
to some norm ‖ · ‖. Assume that the FTRL algorithm is run on the sequence with a regularization function
which is σ−strongly convex with respect to the same norm. Then, for all u ∈ W

RegretT (u) ≤
T∑

t=1

L2
t

σ1:t

+ r1:T (ω
∗). (9)

Proof. Let’s first recall the regret bound for the FTRL algorithm that we derived in Lemma 3

T∑

t=1

(ft(ωt)− ft(u)) ≤

T∑

t=1

(ft(ωt)− ft(ωt+1)) + r1:T (ω
∗). (10)

If the loss function, ft, is Lt−Lipschitz with respect to a norm ‖ · ‖, then:

ft(ωt)− ft(ωt+1) ≤ Lt‖ωt − ωt+1‖. (11)

Thus, in order to achieve a small regret, we need to ensure that ‖ωt − ωt+1‖ is small. If the regularization
function is strongly convex with respect to the same norm, that is indeed the case, since ωt is close to ωt+1.

To show that ωt is close to ωt+1, let’s fix t and let’s define a helper function, ht, as

ht(ω) = f1:t−1(ω)
︸ ︷︷ ︸

t−1 losses

+ r1:t−1(ω) + rt(ω)
︸ ︷︷ ︸

t regularizations

. (12)

By assumption, 0 ∈ ∂rt(ωt). This implies that ht is σt− strongly convex, and the update rule for ωt can be
rewritten using the helper function, ht

ωt = argmin
w

ht(ω).

Similarly, let’s also rewrite the update rule for ωt+1

ωt+1 = argmin
ω

ht(ω) + ft(ω).

Since the sum of a convex and a strongly convex function remains strongly convex [2], we know ht(ωt) and
ht(ωt+1) are σ1:t− strongly convex. We can thus apply Lemma 2 to ht (with minimizer ωt)

ht(ωt+1)− ht(ωt) ≥
σ1:t

2
‖ωt − ωt+1‖

2. (13)

Repeating the same argument for the helper functions ht+1, we can write

ht+1(ωt)− ht+1(ωt+1) ≥
σ1:t

2
‖ωt − ωt+1‖

2. (14)

Summing inequalities (13) and (14), we obtain

ft(ωt)− ft(ωt+1) ≥ σ1:t‖ωt − ωt+1‖
2. (15)

Now, using the Lipschitzness of the loss function ft (inequality (11)), we obtain

Lt‖ωt − ωt+1‖ ≥ ft(ωt)− ft(ωt+1). (16)

Combining inequalities (15) and (16), we can further write

‖ωt − ωt+1‖ ≤
Lt

σ1:t

. (17)

5

Now, combining inequalities (16) and (17), we get

ft(ωt)− ft(ωt+1) ≤
L2
t

σ1:t

. (18)

Combining inequality (18) with the regret bound (10), we get

RegretT (u) ≤

T∑

t=1

L2
t

σ1:t

+ r1:T (ω
∗). (19)

Inequality (19) completes the proof.

Let’s now choose regularization function as rt(ω) = σt

2
‖ω − ωt‖

2. The cumulative sum of regularizers
becomes

r1:T (ω
∗) =

T∑

t=1

σt

2
‖ω − ωt‖

2.

Let’s further assume that for every ω ∈ W ⇒ ‖ω‖2 ≤ R. It follows that the cumulative sum is upper-bounded
by

r1:T (ω
∗) =

T∑

t=1

σt

2
‖ω − ωt‖

2 ≤
T∑

t=1

σt

2
(2R)2 = 2σ1:TR

2.

The regret bound (9) can now be rewritten as

Regret ≤

T∑

t=1

L2
t

σ1:t

+ 2σ1:tR
2. (20)

Taking a learning-rate schedule ηt for gradient descent, we can choose σt such that

1

σ1:t

= ηt,

where ηt denotes the learning rate. The regret bound (20) now becomes

Regret ≤

T∑

t=1

L2
t
η2
t
+

2R2

ηT
. (21)

Note that if ft(ω) = gtω, then ‖gt‖ = Lt. Thus, the lower bounds on the regret of the OGD algorithm with
adaptive learning rates and the regret of the FTRL algorithm with strongly convex proximal regulizers differ
by at most factor of 1

2
.

Remark 6: The scaling parameter σt now becomes a part of the regret function. Larger σt (smaller learning
rate) produces a more stable algorithm, but it may take longer to move across the feasible set, resulting in
a larger penalty when ω∗ is far away.

6

3.3 Feasible Sets

We can define proximal regularizers rt as 1-strongly convex functions such that 0 ∈ ∂rt(0) (e.g., rt(w) =
1
2
‖w‖2). Let’s rewrite rt as

rt(w) =
σt

2
r(w − wt) + Iw(w), (22)

where IW(x) denotes an indicator function that ensures a player always plays a point form the feasible set
W

IW(w) =

{

0, w ∈ W,

∞, otherwise.

Such an indicator function works for an arbitrary convex sets and does not hurt the regret bound.
Let’s now apply this same idea on the FTRL algorithm; given a loss function ft(ω) = ℓt(ω)+λ‖ω‖1, let’s

redefine it as
f̂t(ω) = ℓt(ωt) + gt(w − wt) + λ‖ω‖1,

where gt(·) denotes a subgradient approximation of ℓt, gt := ∇ℓt(ωt). We can run the FTRL algorithm using

f̂t(w) and get the same regret bound, since:

• f̂t(ωt) = ft(ωt)

• f̂t(ω
∗) ≤ ft(ω

∗)

Since constants do not contribute to the optimization, without loss of generality, we can write

f̂t(ω) = gtω + λ‖ω‖1. (23)

So, we get
f̂1:t(ω) = g1:t(ω) + tλ‖ω‖1, (24)

and for such a loss function, we get the same update as with the FTRL algorithm.

References

[1] N. Cesa-Bianchi and G. Lugosi, “Prediction, Learning, and Games”, Cambridge University Press, 2006.

[2] S. Shalev-Shwartz, “Online Learning and Online Convex Optimization”, Foundations and Trends in
Machine Learning, 2012.

[3] H. B. McMahan, “Follow-the-Regularized-Leader and Mirror Descent: Equivalence Theorems and L1

Regularization”, Proceedings of the 14th International Conference on Artificiall Intelligence and Statis-
tics (AISTATS), 2011.

7

