
CSE599s Spring 2012 - Online Learning
Homework Exercise 2 - due 4/26/12

1. The doubling trick You are given an online algorithm A that guarantees Regret ≤
T p, for some p ∈ (0, 1), but it has parameters that must be chosen as a function of
T . Using this algorithm as a black-box, we will construct an algorithm with a regret
bound O(T p) that holds simultaneously for all T . In particular, we will analyze the
following transformation:

for epoch m = 0, 1, 2, . . . do
Reset A with parameters chosen for T = 2m

for rounds t = 2m, . . . , 2m+1 − 1 do
Run A

Essentially, the algorithm initially guesses T = 1, and when it observes this guess was
too low, it doubles it’s initial guess and re-starts A. Hence, this is called the “doubling
trick.”

To show the desired regret bound, consider any T , and

(a) Show that the regret on rounds 1 through T is less than or equal to the regret on
epochs m = 0 through the end of epoch mT = dlog2(T )e. Then, use the regret
bound for A to bound the cumulative regret for these epochs.

(b) Simplify the bound from (a) to show that it is upper bounded by a constant times
T p. Hint: Use the fact that for x 6= 1,

n∑
k=0

xk =
xn+1 − 1

x− 1
.

2. Constructing a transformation to get stronger bounds In class we considered
a one dimensional problem with linear loss functions ft(w) = gtw, where the adversary
chooses gt ∈ [−1, 1]. The goal was low regret with respect toW = [−1, 1]. The Follow-
The-Leader (FTL) algorithm did very badly when the adversary played gt according to
the sequence (0.5, 1,−1, 1,−1, . . . ). We then showed that with an appropriate regular-
ization term, the Follow-The-Regularized-Leader (FTRL) for linear functions achieves
Regret ≤

√
2T against the best fixed w∗ ∈ [−1, 1] (since G = 1 and R = 1).
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However, in hindsight, one might not feel that competing with a fixed point is so
great; after all a simple alternating strategy (playing 0,−1, 1,−1, 1, . . . ) would have
achieved loss O(−T ), while any fixed strategy has loss O(1). Show a transformation
(using the FTRL algorithm as a subroutine) that gives a no-regret algorithm against
a competitor set W ′ that includes this alternating strategy. Give the regret bound
for this algorithm, and compare it to the regret bound achieved by applying FTRL
directly to the problem.

Hint: Use a transformation that takes the original one-dimensional problem, and maps
it into a two-dimensional online linear optimization problem. You will need to trans-
form both the loss functions and the points played.

3. Convex functions and global lower bounds Recall that a function f is convex if

f(αw + (1− α)w′) ≤ αf(w) + (1− α)f(w′)

for any α ∈ [0, 1] and for all w and w′ in f ’s domain. One of the key properties of convex
functions is that a (sub)gradient of the function at a particular w gives information
about the global structure of the function. In particular:

(a) Prove that for a differentiable convex function f : Rn → R, for all w and w0 in the
domain of f ,

f(w) ≥ f(w0) + Of(w0)(w − w0), (1)

where Of(w0) is the gradient of f evaluated at w0. That is, a first-order Taylor
expansion of a convex function gives a lower bound on the function. Hint: Use the
fact that

Of(w) · w′ = lim
δ→0

f(w + δw′)− f(w)

δ
.

(b) Show that the previous condition is sufficient, that is, any function f : Rn → R
such that Eq. (1) holds for all w,w0 in the domain of f is convex. Hint: Apply
Eq. (1) twice at a carefully chosen point.

(c) Consider a convex f and assume a w∗ ∈ arg minw f(w) exists. (Aside: often
we write w∗ = arg minw f(w), but this is sloppy, because the arg min need not be
unique. This sloppiness is usually fine, because we don’t care which argmin we get.
Technically, we define arg minw∈W f(w) = {w∗ ∈ W | f(w∗) ≤ f(w),∀w ∈ W}.)
Show that by evaluating f and computing its gradient at any point w, we can find
a half-space that contains w∗ (and hence a half-space that does not contain w∗).
Recall that a half-space is a set of points {w | a · w ≥ b} for some a ∈ Rn and
b ∈ R.

(d) Consider a convex f in one dimension, defined on [0, D], such that there exists a
w∗ ∈ arg minw∈[0,D] f(w). Show that we can find a w′ such that |w∗ − w′| ≤ ε by

making only blog2
D
ε
c queries to an oracle that computes Of(w).
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(e) Suppose ~0 ∈ Rn is a subgradient of a convex function f : W → Rn at w∗ with
f(w∗) finite. Show that w∗ ∈ arg minw∈W f(w).

4. Convex sets and randomization A set C is convex if for any w1, w2 ∈ C, and any
α ∈ [0, 1], we have αw1 + (1− α)w2 ∈ C.

(a) Let W ⊆ Rn be a convex set, with w1, . . . , wk ∈ W , and let θ1, . . . , θk ∈ R that
satisfy θi ≥ 0 and

∑k
i=1 θi = 1. Show that w̄ =

∑k
i=1 θixi is also in W . We say

that w̄ is a convex combination of the wi.

(b) Now, let w1, . . . , wk ∈ Rn be arbitrary points, and let

∆k =
{
θ ∈ Rk | θi ≥ 0,

k∑
i=1

θi = 1
}

bet the k-dimensional probability simplex (the set of probability distributions on
k items). Show that the convex hull of the wi,

conv(w1, . . . , wk) = {θ · w | θ ∈ ∆k}

is in fact a convex set.

(c) Let w1, . . . , wk ∈ Rn be arbitrary points, letW = conv(w1, . . . , wk), and let f(w) =
g · w be a linear loss function on W . Show that for any w ∈ W , there exists a
probability distribution such that choosing a wi according to the distribution and
then playing the chosen wi against f produces the same expected loss as just
playing w. Conversely, show that for any probability distribution on w1, . . . , wk,
there exists a w ∈ W that gets the same expected regret. When might it be
preferable to represent such a strategy as a distribution θ ∈ ∆k, and when might
it be preferable to represent such a strategy as a point w ∈ W? (Hint: consider n
and k).
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