Review

- 1. Symmetric ciphers, asymmetric ciphers, cryptographic hashes: design requirements, computational margins.
- 2. Kinds of attacks: Cipher-text only, corresponding plaintext/ciphertext, chosen cipher-text.
- 3. Classical Crypto
 - a. Frequency curves
 - b. Multialphabetic substitutions: aligning alphabets.
 - c. One time pads
 - d. IC
 - e. Runs
 - f. Group theory: Decomposing complex transformations into simple ones
 - g. Cycle structure and similarity
 - h. Enigma
 - i. Probable Words
- 4. Information theory and Unicity
 - a. Entropy
 - b. Mutual information
- 5. Euclidean algorithm and equation solving
- 6. Stream Ciphers
 - a. LFSRs as recurrence
 - b. Breaking LSFRs and non-linear filter SRs: correlation attacks.
 - c. Berlekamp-Massey.
- 7. Block ciphers
 - a. Confusion and diffusion.
 - b. Simple attacks: parallel systems, mixing.
 - c. Feistel Ciphers
 - d. DES
 - e. DES expressed as basic transformations
 - f. AES
 - g. Field inversion and high degree substitutions
 - h. Linear and differential attacks.
 - i. Functions as polynomials.
 - j. Walsh transformations and linear approximation.
 - k. Balance.
 - I. Berlekamp factoring
- 8. Time Memory Trade-offs, Man in the Middle Attacks (especially for Diffie Hellman).
- 9. Factoring based public key methods
 - a. Addition, multiplication, exponential mod p
 - b. RSA algorithm.
 - c. Chinese remainder Theorem
 - d. Inverses mod p, mod $\phi(p)$, solving equations in the integers.

- e. Glitching attacks, common modulus attack.
- f. Montgomery multiplication.
- g. Primality testing.
- h. Prime number theorem.
- i. Fermat/Euler's theorem.
- j. Quadratic reciprocity.
- k. Quadratic sieve.
- I. Universal exponents
- m. Factoring: $x^2-y^2=(x-y)(x+y)$
- n. Pollard p-1
- o. Lattice and lattice attacks
- p. Timing attacks
- q. Factor Bases

10. Discrete Log problem

- a. El Gamal
- b. Diffie Hellman
- c. Primitive elements.
- d. Baby step Giant step
- e. Qquare root mod p, mod n (CRT)
- f. NP completeness
- g. Index calculus

11. Cryptographic Hashes

- a. 1-wayness
- b. Collision resistance.
- c. SHA-1, SHA-2, MD4/5.
- d. Multicollisions.
- e. Birthday attacks.

12. Elliptic curves.

- a. Group structure: adding and subtracting, tangents.
- b. The Elliptic Group
- c. Point counting
- d. Picking curves
- 13. Solving equations.
 - a. SAT
 - b. Linear equations