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Dramatis persona

Users
• Alice (party A)
• Bob (party B)
• Trent (trusted authority)
• Peggy and Victor 

(authentication participants)

Users Agents
• Cryptographic designer
• Personnel Security
• Security Guards
• Security Analysts

Adversaries
• Eve (passive eavesdropper)
• Mallory (active interceptor)
• Fred (forger)
• Daffy (disruptor)
• Mother Nature
• Users (Yes Brutus, the fault lies 

in us, not the stars)

Adversaries Agents
• Dopey (dim attacker)
• Einstein (smart attacker --- you)
• Rockefeller (rich attacker)
• Klaus (inside spy)
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Adversaries and their discontents
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Claude Shannon
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Information Theory Motivation

• How much information is in a binary string?
• Game: I have a value between 0 and 2n-1 (inclusive), find 

it by asking the minimum number of yes/no questions.
• Write the number as [bn-1bn-2…b0]2 .
• Questions: Is bn-1 1?,  Is bn-2 1? , … ,  Is b0 1?

• So, what is the amount of information in a number between 
0 and 2n-1? 
• Answer: n bits
• The same question: Let X be a probability distribution taking on  

values between 0 and 2n-1 with equal probability.  What is the 
information content of a observation?

• There is a mathematical function that measures the information in 
an observation from a probability distribution.  It’s denoted H(X).

• H(X)= S i –pilg(pi)
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What is the form of H(X)?

• If H is continuous and satisfies:
– H(1/n, …, 1/n)< H(1/(n+1), …, 1/(n+1))
– H(p1,p2,…,pj,…,pn)=H(p1,p2,…, qpj, (1-q)pj,…,pn)
– H(p1,p2,…,pj,…,pn)= 1 if pj= 1/n for all j
then  H(p)= S i=1

n -pilg(pi).

• H(p1,p2,…,pj,…,pn) is maximized if pj= 1/n for all j
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Information Theory

• The “definition” of H(X)  has two desireable
properties:
• Doubling the storage (the bits your familiar with) doubles the 

information content
• H(1/2, 1/3, 1/6)= H(1/2, 1/2) + ½ H(2/3,1/3)

• It was originally developed to study how efficiently one can 
reliably transmit information over “noisy” channel.

• Applied by Shannon to Cryptography (BTSJ, 1949) 
• Thus information learned about Y by observing X is 

I(Y,X)= H(Y)-H(Y|X).
• Used to estimate requirements for cryptanalysis of a cipher.
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Sample key distributions

• Studying key search
• Distribution A: 2 bit key each key equally likely
• Distribution B: 4 bit key each key equally likely
• Distribution C: n bit key each key equally likely
• Distribution A’: 2 bit key selected from distribution (1/2, 1/6, 1/6, 

1/6)
• Distribution B’: 4 bit key selected from distribution (1/2, 1/30, 1/30, 

…, 1/30)
• Distribution C’: n bit key selected from distribution (1/2, ½ 1/(2n-

1),…, ½ 1/(2n-1))
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H for the key distributions

• Distribution A: H(X)= ¼ lg(4) + ¼ lg(4) + ¼ lg(4) +1/4 lg(4) = 2 bits

• Distribution B: H(X)= 16 x (1/16 lg(16))= 4 bits

• Distribution C: H(X)= 2n x (1/2n) lg(2n) = n bits

• Distribution A’: H(X) = ½ lg(2) + 3 x(1/6 lg(6))= 1.79 bits

• Distribution B’: H(X) = ½ lg(2) + 15 x(1/30 lg(30))= 2.95 bits

• Distribution C’: H(X) = ½ lg(2) + 1/2 2n-1 x(1/(2n-1) lg(2n-1)) n/2+1
bits
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Some Theorems

• Bayes:  P(X=x|Y=y) P(Y=y)= P(Y=y|X=x) P(X=x)= P(X=x, Y=y)
• X and Y are independent iff P(X=x, Y=y)= P(X=x)P(Y=y)

• H(X,Y)= H(Y)+H(X|Y)
• H(X,Y) < H(X)+H(Y)
• H(Y|X) < H(Y) with equality iff X and Y are independent.

• If X is a random variable representing an experiment in selecting one 
of N items from a set, S, H(X) < lg(N) with equality iff every selection is 
equally likely (Selecting a key has highest entropy off each key is 
equally likely).

mailto:~!@�
mailto:~!@�
mailto:~!@�
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Huffman Coding

• Uniquely readable
• Average length, L, satisfies 

– H(X) < L < H(X)+1

S1

S2

S3

S4

.2

.05

.35

.4

0

1.0
10

110

111
11

1

.25

.6

A . - N - .
B - . . . O - - -
C - . - . P . - - .
D - . . Q - - . -
E . R . - .
F . . - . S . . .
G - - . T -
H . . . . U . . -
I . . V . . . -
J . - - - W . - -
K - . - X - . . -
L . - . . Y - . - -
M - - Z - - . .

Morse Code

H(X)= -(.4lg(.4)) + .35 lg(.35) + .2 lg(.2) + .05 lg(.05))
H(X)= 1.74, [H(X)]= 2.  [y] means the ceiling function, 
the smallest integer greater than or equal to y.

mailto:~!@�
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Long term equivocation

• HE= Lim nS (x[1],…,x[n]) (1/n)Pr(X=(x[1],…,x[n])) 
lg(Pr(X=(x[1],…,x[n]))) 

• For random stream of letters 
• HR= S i(1/26)lg(26)=4.7004

• For English
• HE = 1.2-1.5 (so English is about 75% redundant)
• There are approximately T(n)= 2nH n symbol messages that can 

be drawn from the meaningful English sample space.
• How many possible cipher-texts make sense?

• H(Pn)+H(K) > H(Cn)
• nHE + lg(|K|) > n lg(|S|) 
• lg(|K|)/(lg(|S|)- HE)>n
• R = 1- HE /lg(|S|)
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Unicity and random ciphers

Question: How many messages do I need to trial decode so 
that  the expected number of false keys for which all m 
messages land in the meaningless subset is less than 1?

Answer:  The unicity point.  

Nice application of Information Theory.

Theorem:  Let H be the entropy of the source (say English) 
and let S be the alphabet.  Let K be the set of 
(equiprobable) keys.  Then u= lg(|K|)/(lg(|S|)-H).
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Unicity for random ciphers

Cipher Messages
|S|n Non-Meaningful Messages

Meaningful Messages
2Hn

Decoding with correct key

Decoding with incorrect key
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Unicity distance for mono-alphabet

HCaeserKey= Hrandom = lg(26)= 4.7004
HEnglish 1.2.

• For Caeser, u lg(26)/(4.7-1.2) 4 symbols, for ciphertext
only attack.  For known plaintext/ciphertext, only 1 
corresponding plain/cipher symbol is required for unique 
decode.

• For arbitrary substitution, u lg(26!)/(4.7-1.2) 25 
symbols for ciphertext only attack.  For corresponding 
plain/ciphertext attack, about  8-10 symbols are required.

• Both estimates are remarkably close to actual experience. 
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Information theoretic estimates
to break mono-alphabet

Cipher Type of Attack Information 
Resources

Computational 
Resources

Caeser Ciphertext only U= 4.7/1.2=4 
letters

26 computations

Caeser Known plaintext 1 corresponding 
plain/cipher pair

1

Substitution Ciphertext only ~30 letters O(1)

Substitution Known plaintext ~10 letters O(1)
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One Time Pad (OTP)

• The one time pad or Vernam cipher takes a plaintext 
consisting of symbols p= (p0, p1, …, pn) and a keystream k= 
(k0, k1, …, kn) where the symbols come from the alphabet 
Zm and produces the ciphertext c= (c0, c1, …, cn) where ci = 
(pi + ki) (mod m).

• Perfect security of the one time pad:  If P(ki=j)=1/m and is 
iid, 0<=j<m, then H(c|p)=H(p) so the scheme is secure.

• m=2 in the binary case and m=26 in the case of the roman 
alphabet.

• Stream ciphers replace the ‘perfectly random’ sequence k 
with a pseudo-random sequence k’ (based on a much 
smaller input key ks and a stream generator R).



One-time pad alphabetic encryption

Plaintext +Key (mod 26)= Ciphertext
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B  U  L  L W  I N  K  L  E  I  S  A  D  O  P  E
1 20 11 11 22 08 13 10 11 04 08 18 00 03 14 15 04

14  8 07 19 14 01 20 14 04 12 20 22 05 17 05 15 15
O  S  H  T  0  B  U  O  E  M  U  W  F  R  F  P  P

N  O  W  I  S  T  H  E  T  I  M  E  F  O  R  A  L
13 14 22 08 18 19 07 04 19 08 12 04 05 14 17 00 11

Ciphertext

Plaintext

Key

A  B  C  D  E  F  G  H  I  J  K  L  M  
00 01 02 03 04 05 06 07 08 09 10 11 12
N  O  P  Q  R  S  T  U  V  W  X  Y  Z
13 14 15 16 17 18 19 20 21 22 23 24 25

Legend



One-time pad alphabetic decryption

Ciphertext+26-Key (mod 26)= Plaintext
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B  U  L  L W  I N  K  L  E  I  S  A  D  O  P  E
1 20 11 11 22 08 13 10 11 04 08 18 00 03 14 15 04

14  8 07 19 14 01 20 14 04 12 20 22 05 17 05 15 15
O  S  H  T  0  B  U  O  E  M  U  W  F  R  F  P  P

N  O  W  I  S  T  H  E  T  I  M  E  F  O  R  A  L
13 14 22 08 18 19 07 04 19 08 12 04 05 14 17 00 11

Ciphertext

Plaintext

Key

A  B  C  D  E  F  G  H  I  J  K  L  M  
00 01 02 03 04 05 06 07 08 09 10 11 12
N  O  P  Q  R  S  T  U  V  W  X  Y  Z
13 14 15 16 17 18 19 20 21 22 23 24 25

Legend



Binary one-time pad

Plaintext ⊕ Key = Ciphertext
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10101110011100000101110110110000 

Ciphertext

Plaintext

Key

Ciphertext ⊕ Key = Plaintext

Plaintext

00101010011010110001010110010111

10100100000110110100100000100111

Key00101010011010110001010110010111

10101110011100000101110110110000 
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The one time pad has perfect 
security

• E is perfect if H(X|Y)=H(X) where X is a plaintext distribution and Y is the 
ciphertext distribution with respect to a cipher E.  

• To show a one time pad on a (binary) plaintext message of length L with 
ciphertext output a message of length L with keys taken from a set K consisting 
of 2L keys each occurring with probability 2-L, we need to show H(X|Y)=H(X). 

Proof:
H(X|Y) = -Sy in Y P(Y=y) H(X|Y=y)) = -Sy in Y P(Y=y) Sx in X P(X=x|Y=y) lg(P(X=x|Y=y)).
P(X=x|Y=y) P(Y=y)=  P(X=x, Y=y) and  P(X=x,Y=y) =  Pr(X=x, K=x+y)= P(X=x)P(K=k).

So H(X|Y) =  -Sy in Y, x in X P(X=x,Y=y) [lg(P(X=x,Y=y) – P(Y=y)] 

=  -Sy in Y, x in X P(X=x, Y=y) lg(P(X=x, Y=y)) +Sy in Y, x in X P(X=x,Y=y) lg(P(Y=y))

=  -Sx in X, y in Y P(X=x)P(K=x+y)lg(P(X=x) - Sx in X, y in Y P(X=x) P(Y=x+k)lg(P(Y=x+k)

+Sy in Y, x in X P(X=x) P(Y=Y)lg(P(Y=y))
= H(X)
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Mixing cryptographic elements to produce 
strong cipher

• Diffusion – transposition
– Using group theory, the action of a transposition t on a1 a2 …ak could be 

written as at(1) at(2) …at(k) .

• Confusion – substitution
– The action of a substitution s on a1 a2 …ak can be written as s (a1) s (a2) … 
s (ak) .

• Transpositions and substitutions may depend on keys.  Keyed 
permutations may be written as s k(x).  A block cipher on b bits is nothing 
more than a keyed permutation on 2b symbols.

• Iterative Ciphers – key dependant staged iteration of combination of 
basic elements is very effective way to construct cipher.  (DES, AES)
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Linear Feedback Shift Registers



Binary one-time pad

Plaintext ⊕ Key = Ciphertext
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10101110011100000101110110110000 

Ciphertext

Plaintext

Key

Ciphertext ⊕ Key = Plaintext

Plaintext

00101010011010110001010110010111

10100100000110110100100000100111

Key00101010011010110001010110010111

10101110011100000101110110110000 
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Linear Feedback Shift Registers (LFSR)

• State at time t: S(t)= <z0, z1, …, zm-1>=<st, st+1, …, st+m-1>.   
• Recurrence is sj+1= c1sj + … + cm sj-m-1,  
• At time t, LFSR outputs z0 =st, shifts, and replaces zm-1 with 

c1zm-1 + … + cm z0.

&

…z2 z3z0 z1 zm-2 zm-1……

…Cm-2cm Cm-1 c2 c1………

& & &&

⊕ ⊕ ⊕ ⊕

Out
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LFSR as linear recurrence

• G(x) is power series representing the LFSR, coefficients are outputs.
• G(x)= a0 + a1 x + a2 x2 + … + ak xk + …
• Let c(x)= c1 x + … + cm xm.

• Because of the recurrence,  at+m = S 0<i<m+1 ci at+m-i,
– G(x)=  a0 + a1 x + a2 x2 + … + am-1 xm-1 + xm (c1 am-1 + …+cma0)+ xm+1 (c1 am + 

…+cma1)+ xm+2 (c1 am+1 + …+cma2)+…
– After some playing around, this can be reduced to  an equation of the form G(x)= 

K/(1-c(x)), where K is a constant that depends on initial state only.  Let f(x)= 1-c(x) 
be the called the connection polynomial. [1-c(x)=1+c(x) (mod 2), of course].

– If the period of the sequence is p, G(x)= (a0 + a1 x + … + ap-1 xp-1)+ xp(a0 + a1 x + 
… + ap-1 xp-1) + …= (a0 + a1 x + … + ap-1 xp-1)(1+xp +x2p + …)

• We get (a0 + a1 x + … + ap-1 xp-1)/(1-xp)= K/(f(x)) so  f(x) | 1-xp and f(x) 
is the equation for a root of 1.  If f(x) is a primitive root of 1 p will be as 
large as possible, namely, p=2m-1.
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LFSR performance metrics

• The output sequence of and LFSR is periodic for all 
initial states.  The maximal period is 2m-1.

• A non-singular LFSR with primitive feedback polynomial 
has maximal period of all non-zero initial states

• A length m LFSR is determined by 2m consecutive 
outputs

• Linear complexity of sequence z0, z1, …, zn is the length 
of the smallest LFSR that generates it

• Berlekamp-Massey: O(n2) algorithm for determining 
linear complexity
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Linear Complexity, simple O(n3) algorithm

• There is a non-singular LFSR of length m which generates 
s0, s1, …, sk… iff there are c1, …, cm such that:

sm+1= c1 sm+ c2 sm-1 + …+ cm s1

sm+2= c1 sm+1+ c2 sm + …+ cm s2

…
s2m= c1 s2m-1+ c2 s2m-2 + …+ cm sm+1

• To solve for the ci’s just use Gaussian Elimination (see 
math summary) which is O(n3).

• But there is a more efficient way!
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Berlekamp-Massey
• Given output of LFSR, s0, s1, …, sN-1 , calculate length, L, of smallest 

LFSR that produces <si>.  Algorithm below is O(n2).  In the algorithm 
below, the connection polynomial is: c(x) = c0 + c1 x + … + cLxL and 
c0=1 always.

c(x)=1; L= 0; m= -1; b(x)=1;
for(n=0; n<N; n++)

d= sn + Si=1
L-1 ci sn-i //  d is the “discrepency”

if(d!=0) {
t(x)= c(x);
c(x)= c(x) + b(x) xn-m;
if(L<=n/2)) {

L=n+1-L;
m= n;
b(x)= t(x);
}

}
}
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Berlekamp-Massey example
• s0, s1, …, sN-1 = 001101110, N=9

n sn t(x) c(x) L m b(x) d
- - - 1 0 -1 1 -
0 0 - 1 0 -1 1 0
1 0 - 1 0 -1 1 0
2 1 1 1+x3 3 2 1 1
3 1 1+x3 1+x+x3 3 2 1 1
4 0 1+x+x3 1+x+x2+x3 3 2 1 1
5 1 1+x+x2+x3 1+x+x2 3 2 1 1
6 1 1+x+x2+x3 1+x+x2 3 2 1 0
7 1 1+x+x2 1+x+x2+x5 5 7 1+x+x2 1
8 0 1+x+x2+x5 1+x3+x5 5 7 1+x+x2 1
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Linear complexity and linear profile

• “Best” (i.e.-highest) linear complexity for SN= s0, s1, …, sN-1
is L=N/2. 

• Complexity profile for S is the sequence of linear 
complexities L1, L2, …, LN-1 for S1, S1, … , SN.

• For a “strong” shift register, we want not just large L but 
large Lk for subsequences (thus hug the line L= N/2).

• E(L(< s0, s1, …, sN-1>))= N/2+ (4+(S i=0
N-1 si) (mod 2))/18- 2-N(N/3+2/9)
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Example: Breaking a LFSR
• zn+1= c1zn + … + cm zn-m-1.  m=8. 
• Plain: 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1

• Cipher:               1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 0 1 0

• LFSR Output:     0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1

c8 c7 c6 c5 c4 c3 c2 c1

i Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Si+8

0 0 1 1 0 0 1 1 1 1

1 1 1 0 0 1 1 1 1 1

2 1 0 0 1 1 1 1 1 0

3 0 0 1 1 1 1 1 0 1

4 0 1 1 1 1 1 0 1 1

5 1 1 1 1 1 0 1 1 1

6 1 1 1 1 0 1 1 1 1

7 1 1 1 0 1 1 1 1 0

• GE gives solution (c1, c2,…, c8): 10110011
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Geffe Generator 

• Three LFSRs of maximal periods (2a-1), (2b-1), 
(2c-1) respectively.  

• Output filtered by f(xa, xb, xc)= xa xb + xb xc + xc

• Period: (2a-1)(2b-1)(2c-1) 
• Linear complexity: ab+bc+c
• Simple non-linear filter.
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Geffe Generator 

LFSRa
State at t: Sa(t)

LFSRb
State at t: Sb(t)

LFSRc
State at t: Sc(t)

f(xa, xb, xc)= xa xb + xb xc + xc

y(t)

xa xb xc f(xa, xb, xc)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

• Note that  xc and f(xa, xb, xc) agree 75% of the time.
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Correlation attack: breaking Geffe
• Guess Sc(0) and check the agreement of Sc(t)out and y(t).

– If guess is right, they will agree much more often than half the time
– If guess is wrong, they will agree about half the time
– In this way, we obtain Sc(0).

• Now guess Sb(0). 
– Compare y(t) and xa Sb(t)out+Sb(t)out Sc(t)out+Sc(t)out.
– If guess is right they will agree much more often than half the time.
– If not they will agree about half the time.
– In this way, we obtain Sb(0).

• Now guess Sa(0). 
– y(t) and Sa(t) Sb(t) out + Sb(t) out Sc(t)out + Sc(t)out will be the same as y(t) 

for the correct guess.

• Complexity of attack (on average) is about 2a-1+ 2b-1+ 2c-1 

rather than about 2a+b+c-1 which is what we’d hoped for.
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Shrinking Generator

• Two LFSRs of maximal periods (2s-1), (2a-1) 
respectively.  (a,s)=1.

• Output is output of A clocked by S.
• Period: (2s-1-1)(2a-1).
• Linear Complexity: a2s-2<c<a2s-1

• SEAL cipher from Coppersmith.
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Observations

• Matching Alphabets as monotonic process.  
• Statistics and Hill climbing.
• Polynomials over finite fields are easier to solve because 

there are no round-off errors.
• Polynomials over finite fields are harder to solve 

because there is no intermediate value theorem.
• We’ll stop here with classical ciphers although we could 

go much further by examining some other systems like 
Lorenz, Purple, M-209 and SIGABA.
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Applying Shannon’s Design 
Principles

• Two basic building blocks for any cryptographic system
• Diffusion

– statistical structure of the plain text is dissipated into long-range 
statistics of the ciphertext

– each plaintext digit affects many ciphertext digits
– each ciphertext digit is affected by many plaintext digits
– achieved using permutation (P)

• Confusion 
– make the relationship between the statistics of the ciphertext and 

the value of the encryption key as complex as possible
– this is achieved by the complex subkey generation algorithm and 

non-linear substitutions
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Rise of the Machines
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The “Machine” Ciphers 

• Simple Manual Wheels
– Wheatstone
– Jefferson

• Rotor
– Enigma
– Heburn
– SIGABA
– TYPEX

• Stepping switches
– Purple 

• Mechanical Lug and cage
– M209
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Jefferson Cipher

I’d vote for Jefferson.  The French have another name for 
this cipher.  They liked Jefferson too but not that much.
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Enigma



Enigma Cryptographic Elements
(Army Version)

• Three moveable rotors
– Select rotors and order
– Set initial positions

• Moveable ring on rotor
– Determine rotor ‘turnover’

• Plugboard (Stecker)
– Interchanges pairs of letters

• Reversing drum (Umkehrwalze)
– Static reflector
– See next page

Three Rotors on axis

JLM 20080915 43
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Diagrammatic Enigma Structure

Message flows right to left
U: Umkehrwalze (reversing drum)
N,M,L: First (fastest), second
third rotors

S: Stecker (plugboard)

U L M N S

Lamps

Keyboard

B

L

Diagram courtesy of Carl Ellison
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Enigma Data

Rotors

Input        ABCDEFGHIJKLMNOPQRSTUVWXYZ
Rotor I EKMFLGDQVZNTOWYHXUSPAIBRCJ
Rotor II AJDKSIRUXBLHWTMCQGZNPYFVOE
Rotor III BDFHJLCPRTXVZNYEIWGAKMUSQO
Rotor IV ESOVPZJAYQUIRHXLNFTGKDCMWB
Rotor V VZBRGITYUPSDNHLXAWMJQOFECK
Rotor VI JPGVOUMFYQBENHZRDKASXLICTW
Rotor VII NZJHGRCXMYSWBOUFAIVLPEKQDT

Reflector B    (AY) (BR) (CU) (DH) (EQ) (FS) (GL) (IP)
(JX) (KN) (MO) (TZ) (VW)

Reflector C    (AF) (BV) (CP) (DJ) (EI) (GO) (HY) (KR)
(LZ) (MX) (NW) (TQ) (SU)

Ring Turnover

Rotor I R
Rotor II F
Rotor III W
Rotor IV K
Rotor V A
Rotors VI A/N
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Group Theory for Rotors

• Writing cryptographic processes as group operation can be very useful.  
For example, if R denotes the mapping of a “rotor” and C=(1,2,…,26),  
the mapping of the rotor “turned” one position is CRC-1.

• A prescription for solving ciphers is to represent the cipher in terms of 
the basic operations and then solve the component transformations.   
That is how we will break Enigma. 

• For most ciphers, the components are substitution and transposition; 
some of which are “keyed”.

• For Enigma, you should know the following:
– Theorem: If s =(a11 a12 … a1i) (a11 … a1j) … (a11 … a1k)then dsd -1= 

(da11 da12 … da1i) (da11 … da1j) … (da11 … da1k).

– When permutations are written as products of cycles, it is very easy to 
calculate their order.  It is the LCM of the length of the cycles.
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Military Enigma

Encryption Equation
• c= (p) PiNP-i PjMP-j PkLP-k U PkL-1P-k PjM-1P-j PiN-1P-i

– K: Keyboard
– P=(ABCDEFGHIJKLMNOPQRSTUVWXYZ)
– N: First Rotor
– M: Second Rotor
– L: Third Rotor
– U: Reflector.  Note: U=U-1.
– i,j,k: Number of rotations of first, second and third rotors 

respectively.

• Later military models added plugboard (S) and additional 
rotor (not included).  The equation with Plugboard is:

• c=(p)S PiNP-i PjMP-j PkLP-k U PkL-1P-k PjM-1P-j PiN-1P-i S-1
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Military Enigma Key Length

• Key Length (rotor order, rotor positions, plugboard)
– 60 rotor orders. lg(60)= 5.9 bits.
– 26*26*26 = 17576 initial rotor positions. lg(17576)= 14.1 bits of key
– 10 exchanging steckers were specified yielding C(26,2) 

C(24,2)…C(8,2)/10! = 150,738,274,937,250.  
lg(150,738,274,937,250)= 47.1 bits as used

– Bits of key: 5.9 + 14.1 + 47.1 = 67.1 bits
– Note: plugboard triples entropy of key!

• Rotor Wiring State 
– lg(26!) = 88.4 bits/rotor.

• Total Key including rotor wiring: 
– 67.1 bits + 3 x 88.4 bits = 312.3 bits
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Method of Batons

• Applies to Enigma 
– Without plugboard
– With fast rotor ordering known and only the fast rotor moving
– With a “crib”

• Let N be the fast rotor and Z the combined effect of the other apparatus, 
then  N-1ZN(p)=c.

• Since ZN(p)=N(c), we know the wiring of N and a crib, we can play the 
crib against each of the 26 possible positions of N for the plaintext and 
the ciphertext.  In the correct position, there will be no “scritches” or 
contradictions in repeated letters.

• This method was used to “analyze” the early Enigma variants used in 
the Spanish Civil War and is the reason the Germans added the 
plugboard.  Countermeasure: Move fast rotor next to reflector.
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Changes German use of Enigma

1. Plugboard added– 6/30
2. Key setting method – 1/38
3. Rotors IV and V – 12/38
4. More plugs - 1/39
5. End of message key pair encipherment – 5/40
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German Key Management before 5/40

• The Germans delivered a global list of keys.  This was big advantage 
in terms of simplicity but introduced a problem.

• Each daily key consisted of a line specifying:
– (date, rotor order, ring settings, plug settings -10)

• Daily keys were distributed on paper monthly by courier. 
• If everyone used the keys for messages, the first letter (and in general 

the kth letter) in every message would form a mono-alphabet which is 
easily broken by techniques we’ve seen. 

• To address this weakness, the Germans introduced ephemeral keys 
as follows:

1. Operator chose a 3-letter sequence (“indicator”).
2. Operator set rotor positions to indicator and encrypted text twice.  
3. Machine rotor positions were reset to indicator position and the 

message encrypted..
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The basic theorems: prelude to the Polish 
attack

• Theorem 1: If S= (a1, a2, …, an1) (b1, b2, …, bn2)… and 
T is another permutation, then the effect of T-1ST, 
operating from the left, is T-1ST = (a1T, a2T, …, an1T) 
(b1T, b2T, …, bn2T)… 

• Theorem 2: Let S be a permutation of even degree.  S 
can be decomposed into pairs of cycles of equal length 
if and only if it can be written as the product of two 
transpositions.
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Plan for the Polish attack

• Define  
E(i,j,k)= PiNP-i PjMP-j PkLP-k U PkL-1P-k PjM-1P-j PiN-1P-i

• Let A= E(1,j,k), B= E(2,j,k), C= E(3,j,k), D= E(4,j,k), E= E(5,j,k), F= 
E(6,j,k) and suppose the six letter indicator for a message is ktz svf.  
Then,
aA=k, aD=s; bB=t, bE=v; and gC=z, gF=f, for unknown letters a, b, g.
Since, A= A-1, etc., we obtain t(AD)=s, v(BE)= z(CF).

• The attack proceeds as follows.  
– Use message indicators to construct (AD), (BE) and (CF).
– Use the knowledge of (AD), (BE) and (CF) to find A, B, C, D, E, F.

• Set
– Set Q= MLRL-1M-1, U= NP-1QPN-1, V= NP-2QP2N-1, W= NP-3QP3N-1, 

X= NP-4QP4N-1, Y= NP-5QP5N-1, Z= NP-6QP6N-1, H=NPN-1.
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Plan for the Polish attack - continued

• Note that
– U=P-1S-1ASP1

– V=P-2S-1ASP2

– W=P-3S-1ASP3

– X=P-4S-1ASP4

– Y=P-5S-1ASP5

– Z=P-6S-1ASP6

• Now suppose we have obtained S somehow (say, by stealing it).  
Then we can calculate:

– UV= NP-1(QP-1QP)P1N-1, VW= NP-2(QP-1QP)P2N-1. 
– WX= NP-3(QP-1QP)P3N-1, XY= NP-4(QP-1QP)P4N-1,
– YZ= NP-5(QP-1QP)P5N-1.
– (VW)= H-1(UV)H, (WX)= H-1(VW)H, 
– (XY)= H-1(WX)H, (YZ)= H-1(XY)H.

• Now we can calculate H and thus N.
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Polish (Rejewski) Attack

• Rejewski exploited weakness in German keying procedure to 
determine rotor wiring

– Rejewski had ciphertext for several months but no German Enigma.
– Rejewski had Stecker settings for 2 months (from a German spy via the 

French in 12/32), leaving 265.2 bits of key (the wirings) to be found.  He 
did.

• Poles determined the daily keys
– Rejewski catalogued the characteristics of rotor settings to detect daily 

settings.  He did this with two connected Enigmas offset by 3 positions (the 
“cyclotometer”).

– In 9/38, when the “message key” was no longer selected from standard 
setting (the Enigma operator to choose a different encipherment start 
called the indicator), Rejewski’s characteristics stopped working.

– Zygalski developed a new characteristic and computation device (“Zygalski
sheets”) to catalog characteristics which appeared when 1st/4th, 
2nd/5th,3rd/6th ciphertext letters in encrypted message keys (“Females”) 
were the same.
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Calculate (AD), (BE), (CF)

c=(p)S PiNP-i PjMP-j PkLP-k U PkL-1P-k PjM-1P-j PiN-1P-I S-1

• Using the message indicators and:
• AD= SP1NP-1QP1N-1P3NP-4QP4N-1P-4S-1. (c1)AD= c4.
• BE= SP2NP-2QP2N-1P3NP-5QP5N-1P-5S-1. (c2)BE= c5.
• CF= SP3NP-3QP3N-1P3NP-6QP6N-1P-6S-1. (c3)CF= c6.

• We can find AD, BE and CF after about 80 messages.
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Calculate A, B, C, D, E, F

• Suppose
– AD= (dvpfkxgzyo)(eijmunqlht)(bc)(rw)(a)(s) 
– BE= (blfqveoum)(hjpswizrn)(axt)(cgy)(d)(k)
– CF= (abviktjgfcqny)(duzrehlxwpsmo)

• Cillies
– syx scw
– Arises from “aaa” encipherments (look for popular indicators)
– (as) in A, (ay) in B, (ax) in C, (as) in D, (ac) in E, (aw) in F
– With Theorem 2, this allows us to calculate A,B,C,D,E,F.
– Example (C): (abviktjgfcqny)(duzrehlxwpsmo)

• abviktjgfcqny
• xlherzudomspw
• C= (ax)(bl)(vh)(ie)(kr)(tz)(ju)

(gd)(fo)(cm)(qs)(np)(yw)
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Calculate A, B, C, D, E, F

A= (as)(bw)(cr)(dt)(vh)(pl)(fq)(kn)(xu)(gm)(zj)(yi)(oe)

B= (dk)(ay)(xg)(tc)(bj)(lh)(fn)(qr)(vz)(ei)(ow)(us)(mp)

C= (ax)(bl)(vh)(ie)(kr)(tz)(ju)(gd)(fo)(cm)(qs)(np)(yw)

D= (as)(bw)(cr)(ft)(kh)(xl)(gq)(zn)(yu)(om)(dj)(vi)(pe)

E= (dh)(xy)(tg)(ac)(qn)(vr)(ez)(oi)(uw)(ms)(bp)(lj)(fh)

F= (co)(qm)(ns)(xp)(aw)(bx)(vl)(ih)(ke)(tr)(jz)(yu)(fd)
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U, V, W, X, Y, Z

• A= SPUP-1S-1 so U= P-1S-1ASP1.  This and similar equations 
yield:

• U= P-1S-1ASP1

• V= P-2S-1BSP2

• W= P-3S-1CSP3

• X= P-4S-1DSP4

• Y= P-5S-1ESP5

• Z= P-6S-1FSP6

• S was obtained through espionage.
• S= (ap)(bl)(cz)(fh)(jk)(qu)

• Putting this all together, we get U,V,W,X,Y,Z.
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U, V, W, X, Y, Z as cycles

U=(ax)(bh)(ck)(dr)(ej)(fw)(gi)(lp)(ms)(nz)(oh)(qt)(uy)

V=(ar)(bv)(co)(dh)(fl)(gk)(iz)(jp)(mn)(qy)(su)(tw)(xe)

W=(as)(bz)(cp)(dg)(eo)(fw)(gj)(hl)(iy)(kr)(mu)(nt)(vx)

X=(ap)(bf)(cu)(dv)(ei)(gr)(ho)(jn)(ky)(lx)(mz)(qf)(tw)
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Calculate (UV), (VW), (WX), (XY), (YZ)

UV= (aepftybsnikod)(rhcgzmuvqwljy)
VW= (ydlwnuakjcevz)(ibxopgrsmtvhq)

VW= (ydlwnuakjcevz)(ibxopgrsmtvhq)
WX= (uzftjryehxdsp)(caqvloikgnwbm)

H= (ayuricxqmgovskedzplfwtnjhb)

N:  abcdefghijklmnopqrstuvwxyz
azfpotjyexnsiwkrhdmvclugbq

N= (a)(bzqhy)(cftvlsmieoknwu)(dpr)(gjx)
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Turing Bombe - Introduction

• Assume we know all rotor wirings and the plaintext for some received 
cipher-text. We do not know plugboard, rotor order, ring and indicator.

• We need a crib characteristic that is plugboard invariant.
Position   123456789012345678901234
Plain Text OBERKOMMANDODERWEHRMACHT
CipherText ZMGERFEWMLKMTAWXTSWVUINZ

Observe the loop A[9]M[7]E[14]A.

• If Mi is the effect of the machine at position i and S is the Stecker, for 
the above we have “E”= (“M”)S M7S and (“E”)M7M9M14=“E”.
This return could happen by accident so we use another 
(E[4]R[15]W[8]M[7]E) to confirm as C(“E”)M4M15M8M7(“E”).
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Turing Bombe – the menu
• Want short enough text for no “turnovers”.

Position   123456789012345678901234
Plain Text ABSTIMMSPRUQYY
CipherText ISOAOGTPCOGNYZ

T A I O R

S P CM

G Y

Y Z

B

4 1 5 10

13

14

8 9
7

6

11

3

2
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Turing Bombe -1

• Each cycle can be turned into a ring of Enigma machines.
• In a ring of Enigmas, all the S cancel each other out!
• The key search problem is now reduced from 67.5 to 20 bits !!!!
• At 10 msec/test, 20 bits takes 3 hours.
• Turing wanted ~4 loops to cut down on “false alarms.” 
• About 20 letters of “crib” of know plaintext were needed to fine enough 

loops.

• Machines which did this testing were called “Bombe’s”.
• Built by British Tabulating Machine Company.

Courtesy of Carl Ellison
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Test Register in Bombes

In the diagram below, each circle is a 26-pin connector and each 
line a 26-wire cable.  The connector itself is labeled with a letter 
from the outside alphabet while its pins are labeled with letters 
from the inside alphabet.  Voltage on X(b) means that X maps to 
b through the plugboard.

M

P A

X

10 1

311

a b c d e f g h i j k l m n o p q r s t u v w x y zX:

12

b

f

d a

Courtesy of Carl Ellison
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Welchman’s Improvement

• With enough interconnected loops, when you apply voltage to X(b), 
you will see one of three possibilities on the pins of connector X:

01000000000000000000000000 X maps to b
11101111111111111111111111 X really maps to d
11111111111111111111111111 wrong Enigma key

• Gordon Welchman realized that if X(b) then B(x), because the 
plugboard was a self-inverse  (S == S-1).

• His diagonal board wired X(a) to A(x), D(q) to Q(d), etc.
• With that board, the cryptanalyst didn’t need loops -- just enough text
• This cut the size of the required crib in half.

Courtesy of Carl Ellison
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Sigaba Wiring Diagram

• Control and 
index rotors 
determine 
stepping of 
cipher rotors

Slide by Mark Stamp
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Purple

• Switched 
permutations
– Not rotors!!!

• S,L,M, and R
are switches
– Each step, one 

of the perms 
switches to a 
different 
permutation

Slide by Mark Stamp



69

Purple

• Input letter permuted 
by plugboard, 
then…

• Vowels and 
consonants sent 
thru different 
switches

• The “6-20 split”

Slide by Mark Stamp
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Purple

• Switch S
– Steps once for each 

letter typed
– Permutes vowels

• Switches L,M,R
– One of these steps for 

each letter typed
– L,M,R stepping 

determined by S

Slide by Mark Stamp
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End
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