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Schedule
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Date Topic/Speaker
Jan 5, 2009 John: Error Correcting Codes and McEliece's Public Key System

Jan 12, 2009 John: Boolean Functions
Jan 19, 2009 No class, MLK day.
Jan 26, 2009 MOV attack. Dustin Moody. Guest lecture. 
Feb 2, 2009 Linear and differential cryptanalysis of DES. Slava Chernyak, 

Sourav Sen Gupta.
Feb 9, 2009 Algebraic attacks, Paul Carr. MOV computation, Dan Shumow, 

Feb 16, 2009 No class.

Feb 23, 2009 No class (Hash workshop in Cologne).
March 2, 2009 Attacks on MD4 and MD5. Owen Anderson. Factoring attacks. 

Wenhan Wang. 
March 9, 2009 Attacks on stream ciphers. Karl Koscher (CSE). 
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Cryptanalytic Motivation

• Let E(k, p)= c be an enciphering operation and D(k, c)= p the 
corresponding deciphering operation with kGF(2)k and p, cGF(2)n.   
There are two canonical ways to “solve” the cryptanalytic problem for 
(E, D) under the chosen/corresponding plaintext attack:
1. For fixed key, k, given corresponding plain and ciphertext pairs 

(p1, c1), (p2, c2), …, (pt, ct), find a function (program, procedure) 
which inverts E for an arbitrary ciphertext c.  That is, find g, such 
that g(c)=p, if E(k, p)= c . (“Find the Inverse Function”).

2. Given corresponding plain and ciphertext pairs (p1, c1), (p2, c2), 
…, (pt, ct), find a function (program, procedure) that solves for k, 
that is, find h such that h((p1, c1), (p2, c2), …, (pt, ct))= k.   In the 
simplest case, find h such that if  E(h(p,c),p)-c =0. (“Find the 
Implicit Function”).

• Either provides a “full service” break subject to the computational 
efficiency of finding and applying h and g respectively.

JLM 20081102



4

The Real World

• Inverse Function Theorem: Suppose f : Rn  Rn is 
continuously differentiable and |det(f’(a))|0. $Vopen, 
Wopen and f-1, such that aV, f(a)W and f-1:W V.  
Further, f-1(f(x))=x. 

• Implicit Function Theorem: Suppose f:Rn x Rm  Rn is 
continuously differentiable in an open set containing (a, 
b) and f(a, b) = 0 with M = (Dn+j(fi(a))) with 1i, j m.  If 
det(M)0, $ AopenRn and BopenRm with aA, bB such 
that "xA there is a unique g(x)B satisfying               
f(x, g(x))=0. 

• Lesson: Differentiability and continuity make things 
simple in R.

JLM 20081102
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Boolean Functions are different from 
real functions

1. The concept of differentiability is different (and less useful) in finite 
fields.

2. Things change “discontinuously” so the existence proofs for the 
inverse and implicit function theorems don’t carry over from the real 
case.

3. When inverses and implicit functions exist, they are not always easy 
to specify because they are not “continuous.”

4. All functions over finite fields can be represented as polynomials that 
is not true in the field of real numbers.

5. We can, in principle, construct a finite set containing every possible 
boolean function (for a fixed number of input and output variables), so 
we can in principle answer existence questions by exhaustive search 
of this list.

6. Constructing a “model” of how hard the inverse and implicit functions 
are to calculate is subtle in finite fields.

JLM 20081102
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But wait…

• Not only “exact” solutions are useful.  Even functions 
which meet the conditions of the implicit inverse function 
or implicit function theorem with high probability are quite 
valuable.

• Invariants or “constraints” of the form a1k1 + … + amkm= 
f(p, c) can help identify key bits even if they are right 
“slightly more frequently” than 1/2 .  This represents a 
correlation between key bits and plain/cipher bits.

JLM 20081102
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Simple examples of functional analysis

• We’ve used these ideas before opportunistically:
– Linear solution to cipher systems.
– Reduction to parallel systems with independent keys 

or plaintext segments.
– Solving sparse equations over “linearized” variables to 

obtain inverses.
– Using invariants to reduce key space searches in both 

linear and differential cryptanalysis.

• Now its time for a more systematic examination.  This will 
allow us to completely determine inverse functions, 
implicit functions, correlations and invariant relationships.

JLM 20081102
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Related Cryptosystems
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• We can map an iterative cipher 
into a related cipher that is 
easier to solve.

• We did this in the case of 
“parallel” cryptosystems
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Correlation coefficients

• Consider f: GF(2)n  GF(2) and g: GF(2)n GF(2).

• Define C(f,g)= 2 Prob(f(x)=g(x))-1. C(f,g) describes the 
correlation between f and g.

• Now put N=2n.
– We can describe f as a vector in GF(2)N by setting 

f=(f(0,0,…,0), f(0,0,…,1),…, f(1,1,…,1)).  
– We can also embed f naturally in RN: as follows:
– fR= ((-1)f(0), (-1)f(1), ... , (-1)f(N-1)).

JLM 20081102
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Boolean Functions in Real Space

• Again let f:GF(2)n GF(2) and g: GF(2)n GF(2).

• Consider the two real vectors, in RN , representing f 
and g.  Define <f,g>= (fR,gR) and ||f||= <f,f>.  With this 
notation, C(f,g)= <f,g>/(||f|| ||g||).

• The vectors (-1)w= (-1)wx as x varies over GF(2)n are 
called the linear parities and form an orthogonal basis 
for RN.   Thus we can express any real function as a 
linear combination of the parities.

JLM 20081102
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Boolean Functions and polynomials

• For Boolean f, V=GF(2)m, f(v1, v2 , ... , vm ) = P aV g(a) 
v1

a1 v2
a2... vm

am

• g(a)= Sb a f(b1 , b2 , ... , bm ) (subset means positions of 
1's in a is a subset of b positions of 1's in b.)

• Theorem:  If f is balanced, Sw F(w) = ±2n.
• Proof:

Sw F(w)= Sw Sx (-1)f(x)+wx= Sx (-1)f(x) (Sw (-1)wx)=
Sx (-1)f(x) 2n dw,x, so
Sx (-1)wx+c =  (-1)c 2n, w =0, 0, w0.
Let F(w,c)= Sx (-1)f(x+wx+c) then Sw,c F(w,c)= 0.

JLM 20081102
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Balance

• Theorem:  If f:GF(2)n-1 GF(2) is any boolean function, g(x1, ..., xn)= 
f(x1, ..., xn-1)+xn is balanced.

• A balanced boolean function is uncorrelated with either constant 
function.

• Note that all balanced boolean functions can be obtained by applying 
a permutation in SN to a sequence of N/2, 1's and N/2, 0's.

• If EK: GF(2)n GF(2)n, represents a block cipher, each component 
function must be balanced, that is have an equal number of 1 and 0 
outputs in order to be invertible.

• Generalized Balance Theorem: For each 1n128 and each 1
b1<b2< ... <bn128 and fixed  k, (Eb1(k, x), Eb2(k, x), ... , Ebn(k, x)) 
takes each value in GF(2)n as x varies over GF(2)n.  So does any 
non-trivial sum of any of these functions.

• Theorem:   A Boolean transformation is invertible iff every output 
parity is a balanced binary boolean function of the input bits. 

JLM 20081102
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Correlation matrices

• The correlation matrix, C, for a boolean function f, is a 
row matrix (indexed by w) defined by 

C(f(x), wx)=<(-1)f(x), (-1)wx> .  

• A boolean transformation is a function f:GF(2)n
GF(2)m.   The definition of a correlation matrix can be 
extended to the vector valued boolean transformation f
(consisting of m boolean functions) and, in this case, the 
correlation matrix, C, is a 2m x 2n matrix.  
– This matrix has entries Cuw= C(uh(a), wa) where u indexes the 

rows and w indexes the columns; thus the u row can be 
represented as (-1)uh(a)= Sw C(h)

u,w(-1)wa.
– To emphasize the association with f, we sometimes write the 

correlation matrix as C(f).

JLM 20081102
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Walsh transforms and correlation

• For boolean function,  f: GF(2)n GF(2), define
– F(w)= 2-n Sx (-1)f(x)+wx=C(f(a),wa) 
– We say W(f)=F and call W the normalized Walsh or 

Hadamard transform. 
– The term “Walsh Transform” is also used for the 

operation without the 2-n, we will describe this as the 
“un-normalized” Walsh transform.

– We’ve used Walsh transforms before to find the best 
affine approximators to boolean functions.

• Entries of the correlation matrix are Walsh transforms of 
component functions.

JLM 20081102
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Walsh transforms:  basic results

• Parseval: Sw F(w)2= 1.
• Convolution: f*g(a)= Sx f(x) g(x+a). 
• W-1(F)(x)= f(x)= 2-n S t F(t) (-1)xt. 
• W(f*g)= W(f)W(g).
• If f(x)= g(Mx+b), M, invertible, the absolute value of the 

spectrums of F and G are the same.
• dist(f(v), uv)= ½ (2n - 2nF(u)).
• dist(f(v), u v+1 )= 1/2(2n + 2nF(u)).
• W(f g)= W(f)W(g)= Sv F(vw) G(v).  
• W(fg)= ½ (d(w)+W(f)+W(g)–W(fg)).

JLM 20081102



16

Fast Hadamard Transform

• Define AB = (aij B).  

• The operation is associative but not commutative.
• N=2m, I= 2i.
• HN = H2HN/2.
• HN = M(1)

N M(2)
N... M(m)

N,
• M(i)

N/2IN/2 H2IIN/2.

JLM 20081102
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Properties of component functions

• Let f is a Boolean Function define S0
f= {x: f(x)=0 } and 

S1
f {x: f(x)=1}.  

• If ei(x)= Ei(k,x) then |Sb
e1Sb

e2...Sb
ek|=2n-k.  

• Note that all balanced boolean functions can be 
obtained by applying a permutation in SN to a sequence 
of N/2, 1's and N/2, 0's.

• Counting Results: Let N=2n and BF(n) denotes the set 
of boolean functions on n-bit values then |BF(n)|= 2N. 
M=2m. Let BBF(n) be the balanced functions on n bits 
then |BBF(n)|= NCN/2, |GA(n)| ~ 2M+m.

JLM 20081102
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A correspondence 

• The natural isomorphism L: GF(2)n  RN by a(-1)ax.

• L(a+b)= L(a) L(b) by pointwise multiplication.  

• Almost directly from the definitions, we get:

• Theorem: C(h)(L(a))= L(h(a)).

JLM 20081102
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Composition of Correlation Matrices

• If h(x)= f(g(x)) then  C(h)= C(f) C(g)

• Proof
– (-1)uh(a) = Sv C(f)

u,v (-1)vg(a)=Sv C(f)
u,v (Sw C(g)

v,w(-1)wa).

• If h is invertible, (C(h))-1= (C(h))T.  Correlation matrices of 
invertible boolean transformations are thus orthogonal.

• Proof: 
– Let g(y)= h-1(y).
– For a bijection, C(uh-1(a), wa)= C(ub, wh(b))= 

C(wh(b), ub)T, so, C(g)= (C(h))-1

JLM 20081102
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Invertible Boolean Transformations

• Theorem: A boolean transformation is invertible iff its 
correlation matrix is invertible.
– The  direction follows from the inverse formula 

above.
– The proof of : (-1)uh(a) = Sw C(h)

u,v (-1)wa. 
– If C(h)

u,v is invertible,(-1)wa = Su [(C(h)
u,v)-1]w,u (-1)uh(a).  

– If exists xy: h(x) = h(y), substituting into the equation 
above, (-1)wx=(-1)wy and that is just wrong.

JLM 20081102
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Correlation matrices for standard functions

• Support: Vf= {w: F(w)0}.  Result: Vfg= Vf+Vg.

• If h(x)= x+k, Cu,u= (-1)uk

• If h(x)= Mx, Cu,w= d(MTuw).

• If h(x)= (b(1), b(2) ,... , b(n)), b(i)= h(i)(a(i)) and C(i)= Ch(i) then 
Cu,w= P i C(i)

u(i),w(i) (uses disjunct support).

• If h(x)= g(x)+wx, H(u)=G(uw); if Vf Vg=, wVf, uVg, 
H(uw)= F(w)G(u).

JLM 20081102
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Correlation Matrix for Transposition
• g(x)= s f(x) where s = (a, b).
• C(g)= C(s )C(f).
• (C(s ))uv= 2-n [Sxa,b (-1)ux+vx +(-1) ub+va +(-1) ua+vb]
• (C(s ))uv= 2-n[ Sx (-1)ux+vx -(-1) ua+va -(-1) ub+vb +(-1) ub+va +(-1) ua+vb]

• a= 010, b=101, u=010, v=011
• (C(s ))010,011= 2-3[-(-1)0-(-1)1+(-1)1+(-1)0] = -1+1-1+1=0

• a= 010, b=101, u=100, v=001
• (C(s ))100,001= 2-3 [-(-1)0-(-1)0+(-1)1+(-1)1] =(-1-1-1-1/)8= -0.50

JLM 20081102

x1,x2,x3 000 001 010 011 100 101 110 111
f(x1,x2,x3) 000 001 101 011 100 010 110 111
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Example Correlation Matrix for s

JLM 20081102

Calculate Correlation matrix of 3 bit Boolean transform: 0 1 5 3 4 2 6 7 

000=u: 0 0 0 0 0 0 0 0 

000=v: 00000000 1.00000

001=v: 01010101 0.00000

010=v: 00110011 0.00000

011=v: 01100110 0.00000

100=v: 00001111 0.00000

101=v: 01011010 0.00000

110=v: 00111100 0.00000

111=v: 01101001 0.00000

001=u: 0 1 1 1 0 0 0 1 

000=v: 00000000 0.00000

001=v: 01010101 0.50000

010=v: 00110011 0.50000

011=v: 01100110 0.00000

100=v: 00001111-0.50000

101=v: 01011010 0.00000

110=v: 00111100 0.00000

111=v: 01101001 0.50000
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Example Correlation Matrix for s
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Calculate Correlation matrix of 3 bit Boolean transform: 0 1 5 3 4 2 6 7 

010=u: 0 0 0 1 0 1 1 1 

000=v: 00000000 0.00000

001=v: 01010101 0.50000

010=v: 00110011 0.50000

011=v: 01100110 0.00000

100=v: 00001111 0.50000

101=v: 01011010 0.00000

110=v: 00111100 0.00000

111=v: 01101001-0.50000

011=u: 0 1 1 0 0 1 1 0 

000=v: 00000000 0.00000

001=v: 01010101 0.00000

010=v: 00110011 0.00000

011=v: 01100110 1.00000

100=v: 00001111 0.00000

101=v: 01011010 0.00000

110=v: 00111100 0.00000

111=v: 01101001 0.00000
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Example Correlation Matrix for s
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Calculate Correlation matrix of 3 bit Boolean transform: 0 1 5 3 4 2 6 7 

100=u: 0 0 1 0 1 0 1 1 

000=v: 00000000 0.00000

001=v: 01010101-0.50000

010=v: 00110011 0.50000

011=v: 01100110 0.00000

100=v: 00001111 0.50000

101=v: 01011010 0.00000

110=v: 00111100 0.00000

111=v: 01101001 0.50000

101=u: 0 1 0 1 1 0 1 0 

000=v: 00000000 0.00000

001=v: 01010101 0.00000

010=v: 00110011 0.00000

011=v: 01100110 0.00000

100=v: 00001111 0.00000

101=v: 01011010 1.00000

110=v: 00111100 0.00000

111=v: 01101001 0.00000
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Example Correlation Matrix for s
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Calculate Correlation matrix of 3 bit Boolean transform: 0 1 5 3 4 2 6 7 

110=u: 0 0 1 1 1 1 0 0 

000=v: 00000000 0.00000

001=v: 01010101 0.00000

010=v: 00110011 0.00000

011=v: 01100110 0.00000

100=v: 00001111 0.00000

101=v: 01011010 0.00000

110=v: 00111100 1.00000

111=v: 01101001 0.00000

111=u: 0 1 0 0 1 1 0 1 

000=v: 00000000 0.00000

001=v: 01010101 0.50000

010=v: 00110011-0.50000

011=v: 01100110 0.00000

100=v: 00001111 0.50000

101=v: 01011010 0.00000

110=v: 00111100 0.00000

111=v: 01101001 0.50000
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Example Correlation Matrix for s
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Calculate Correlation matrix of 3 bit Boolean transform: 0 1 5 3 4 2 6 7 

Correlation Matrix (low order first):

1.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

0.000  0.500  0.500  0.000 -0.500  0.000  0.000  0.500 

0.000  0.500  0.500  0.000  0.500  0.000  0.000 -0.500 

0.000  0.000  0.000  1.000  0.000  0.000  0.000  0.000 

0.000 -0.500  0.500  0.000  0.500  0.000  0.000  0.500 

0.000  0.000  0.000  0.000  0.000  1.000  0.000  0.000 

0.000  0.000  0.000  0.000  0.000  0.000  1.000  0.000 

0.000  0.500 -0.500  0.000  0.500  0.000  0.000  0.500 
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Multiplying Correlations Matrices

• Theorem: C(h)
uv,x= Sw C(h)

u,wx C(h)
v,w.  

• Proof:
– W((uv)h(a)) = W(uh(a))(vh(a));
– Note that first transform on right is C(h)

u,w and second 
is C(h)

v,w.  One consequence is: Cu  v, 0= Sw Cu,w Cv,w

• If u and w are parities then and Fu denotes the 
normalized Walsh transform of uf, while Gw denotes the 
normalized Walsh transform of wg(x) then  (C(f, g))u,w= 
Sv Fu(v) Gw(v).

JLM 20081102
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Correlation matrix for invertible 
transformations

• Theorem:   A Boolean transformation is invertible iff every 
output parity is a balanced binary boolean function of the 
input bits. 

• Proof
: If h is invertible, C CT = I, C00=1 and the norm of every row and 

column is 1.  C(uh(a),0) = d(u); all rows except row 0 are 
correlated to 0 hence the function is balanced for u0. S v Fu(v) 
Gw(v).

: The condition on output parities being balenced is Cu,0=0, u0. 
i.e.- C is orthogonal. C CT =I  S w Cu,w Cv,w= d(uv) (*) also S w
Cu,w Cv,w = Cuv,0 but Cu,0=0, u0 and C00=1 so * holds for all u,v
hence C is orthogonal.  Let  f and g be two surjective boolean
transformations on n variables and define C(f, g) in the obvious 
way.

JLM 20081102
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Possible Spectrums

• Theorem: The correlation coefficients and spectrum 
values for a boolean function over GF(2) are integer 
multiples of 21-n.  

– Proof: Let h[r]= h(r).  The values are of the form k+(2n-k)(-1)=2k-
2n which is even.  Given f:GF(2)nGF(2)m , let the restriction to 
n-1 bits be specified by vT a = emodelled by a'=h(r)(a), ai'=a_i if 
is and as'= vaas.  Cw,w

h[r]=1, Cvw,w
h[r])=(-1)e , if ws=0, C'u,w= 

Cu,w  v+(-1)e Cv,w, ws= 0, 0 if ws= 1. S w (F(w) F(wv))2 =2.  
Colliding pairs are rare (probability is 2-nk)

JLM 20081102
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Constructing Boolean Transformations

• Each possible Boolean transformation on n bits is a 
permutation on the 2n, n-bit values and so listing them in 
order, the columns are the possible f vectors 
representing the component functions.  

• If we label these as points in GF(2)N and draw an edge 
for allowable co-components with the edges labelled by 
the correlation between these vectors, any allowable n 
boolean functions form a complete graph with the label 0 
on each edge.

JLM 20081102
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More properties of correlation entries

• Let N=2n.  Theorem: The elements of a correlation matrix 
corresponds to an invertible transform of n-bit vectors are 
integer multiples of 2N.  
– The proof uses the restriction map and the fact that S

(F(w)+F(w+v))2 = 2.

• All correlation matrices are doubly stochastic.
• Correlation matrices for involutions are symmetric.
• W(uh)= u[i]=1 Hi.

JLM 20081102
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Relationships among invertible 
transformation components

• Suppose F: GF(2)n GF(2)n is a bijection and fi= pi(F) then C(fi,0)= 
C(fj,1)=0= C(fi, fj).  wt(fi)=2n-1, wt(fifj)=2n-2, etc.

• C(fifj, fk)= ½, C(fifjfk, fl)= C(fifj, fkfl)= C(fifjfk, fl).

• Theorem 1: C(fi,1)= C(fi,0)=0, C(fi, fj)=0, ij, wt(fi)= 2n-1, for all i, wt(fi fj) 
= 2n-2, ij and in general, wt( fi1 fi2... fik)= 2n-k.  Further, C(fi fj, fk)= 1/2 , 
C(fi, fj, fk fl) = C(fi fj fk, fil) and in general  C(fi1 fi2 ... fik, fl)= 2n-k-1. 

• Theorem 2:  Let f be a boolean function.  The N functions fi1, fi2 ... fik
form a basis for the space of boolean functions; that is, for any 
boolean function g, exists a(g)

i1, i2, ..., ik such that g(x)= S 1i1< i2< ... < ik=n
a(g)

i1, i2, ..., ik fi1 fi2 ... fik.  In particular, there are such coefficients such 
that xi= S1i1<i2< ... <ik=n a(xi)

i1, i2, ..., ik fi1 fi2 ... fik .  

• Define  Appxi(f)= {g: dist(f,g)i}, then |Appxi(f)|= S j=0
I

NCi.

JLM 20081102
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Classifying boolean functions

• Let f,g: GF(2)n  GF(2).  f and g are said to be affinely
equivalent if f(M1x)+M2x=g(x) for invertible linear 
transformations M1 and M2.

• The spectra of affinely equivalent functions have the 
same absolute values.

• Affine equivalence induces an equivalence relation 
among the set of boolean functions.

• RM(1,5) has 48 inequivalent affine classes for example.

JLM 20081102
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Bent Functions

• Bent functions are furthest from linear.

• All Hadamard transform values of bent functions are 
equal to ±2m/2 and hence the distance to any affine 
function is 2m±2m/2-1.  

• If f(x1, x2, ..., xm) is bent and m6 then f is 
indecomposable.  

• f(u1, u2, ..., um, v1, v2, ..., vm) = g(v1, v2, ..., vm) + S i ui vi are 
bent.

• If f(u1, u2, ..., um, v1, v2, ..., vm)=  S i ui vi , then f+u1u2u3, 
f+u1 u2u3u4, ...,f+u1 u2u3... um are all inequivalent bent 
functions
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How many Boolean Matrices are invertible

• Let rn be the ratio of the number of invertible matrices to the 
number of matrices.  rn approaches .288 and n .
– Proof:  
– The number of boolean matrices is 2N, N= n2.  
– The number of invertible matrices is tn= (2n-1)(2n-2)…(2n-2n-1).  
– tn= 2M(2n-1)(2n-1-1)…(2-1) where M=(n(n-1))/2.  
– Define sn= (2n-1)(2n-1-1)…(2-1).  
– Note that tn+1= 2M’ sn+1= 2M’ sn (2n+1-1) where M’=(n(n+1))/2.  As a 

result, tn+1= 2M’ 2-M (2M sn)(2n+1-1)= 2M’-M tn (2n+1-1)= 2n(2n+1-1) tn.  
– Combining these we get, rn+1= tn+1/2N’= 2n(2n+1-1)(tn/2N)2N’-N, where 

N’= (n+1)2.   
– So rn+1= rn(2n-(2n+1) (2n+1-1)= rn(1-2-(n+1)).  
– Using this recurrence: rn= P i=1

n (1-2-n).  
– The product approached 0.288---.
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Orthogonal Transformations

• Since the Walsh transform determines the best linear approximator of a 
function, so the correlation matrix gives the best linear approximation 
among any linear combination of the components of a boolean
transformation.  

• Here is a motivating example in R3:

cos(j)  sin(j)  0              1       0         0
• R=  -sin(j)  cos(j)  0        T=  0     cos(q)  sin(q)

0         0        1               0   -sin(q)  cos(q)

cos2(j)+cos(q)sin2 (j)           cos(j)sin(j)-cos(q)cos(j)sin(j)  -sin(j)sin(q) 
R-1TR=   -cos(j) sin(j)+cos(q)cos(j)    sin(j), sin2 (j)+cos(q)cos2 (j) sin(j)sin(q)

sin(j)sin(q)                          -cos(j)sin(q)                                  cos(q)
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Feistel transformations

• A typical round of DES consists of two involutions: t and 
s k. s k(L,R)= (Lf(R,k), R), f(x,k)= P S1 S2 ... S8 (E(x)+k)).  
t(L,R)= (R,L).

• First line of s k is 
– y9= x9S1

1(x64+k1,x33+k2,x34+k3, x35+k4, x36+k5, x37+k6)
– y17= x17S1

2(x64+k1,x33+k2,x34+k3, x35+k4, x36+k5, x37+k6)
– y23= x23S1

2(x64+k1,x33+k2,x34+k3, x35+k4, x36+k5, x37+k6)
– y31= x31S1

2(x64+k1,x33+k2,x34+k3, x35+k4, x36+k5, x37+k6)
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Calculating correlation for DES
• If a transformation is a composition of a sequence of 

transformations, the correlation matrix of DES is a 
product of the per round function correlation matrices.

• To calculate the round correlation for DES, decompose it 
into three involutions.  
– The first, adds output from odd numbered S-boxes but is 

otherwise the identity.  The second, adds output from even 
numbered S-boxes but is otherwise the identity.  

– The third transposes L and R.  
– The first and second involutions don't overlap on input variables 

to the S-boxes so the Walsh transforms of components of the S-
boxes are all that is needed.  

– In both the first and second transformations, each position 
affected by an S-box is multiplied by (-1)wk (i.e. - ±1) for the 
relevant round keys.
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Calculating correlation for DES

• t(L,R)= (R,L)
• Let  Ti(kr, x)= Si[(E(x)+kr)6(i-1)+1…6i].
• s kr

1(L,R)= L(T1(kr, R), 0, T3(kr, R), …, T7(kr, R), 0)
• s kr

2(L,R)= L(0, T2(kr, R), 0, T4(kr, R), …, T8(kr, R))
• ri(L,R)= t(s kr

2 (s kr
1 (L,R))) is equation for round I of DES.

• Calculate the correlation matrix for each of the three 
transformations and multiply them together.
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Correlation Matrix for …
• Let f(x1,x2,x3,x4)= (x1+f1(x3,x4), x2+f2(x3,x4),x3,x4).
• h(x3,x4)= f1(x3,x4)+f2(x3,x4).

C(f)=
1    0     0     0    0     0     0     0    0     0     0     0     0     0     0     0     
0    1     0     0    0     0     0     0    0     0     0     0     0     0     0     0     
0    0     1     0    0     0     0     0    0     0     0     0     0     0     0     0     
0    0     0     1    0     0     0     0    0     0     0     0     0     0     0     0     
0    0     0     0  F2(0) F2 (1) F2(2) F2(3)  0     0     0     0     0     0     0     0     
0    0     0     0  F2 (1)F2 (0)F2(3)  F2(2)  0     0     0     0     0     0     0     0     
0    0     0     0  F2(2) F2(3) F2(0)  F2(1)  0     0     0     0     0     0     0     0     
0    0     0     0  F2(3) F2(2) F2(1)  F2(0)  0     0     0     0     0     0     0     0     
0    0     0     0    0     0     0    0   F1(0) F1(1) F1(2) F1(3)    0     0     0    0     
0    0     0     0    0     0     0    0   F1(1) F1(0) F1(3) F1(2)    0     0     0     0     
0    0     0     0    0     0     0    0   F1(2) F1(3) F1(0) F1(1)    0     0     0     0     
0    0     0     0    0     0     0    0   F1(3)  F1(2)F1(1) F1(0)    0     0     0     0     
0    0     0     0    0     0     0    0     0     0     0    0     H(0)  H(1)  H(2) H(3)     
0    0     0     0    0     0     0    0    0     0     0     0     H(1) H(0) H(3) H(2)
0    0     0     0    0     0     0    0     0     0     0    0     H(2) H(3) H(0) H(1)     
0    0     0     0    0     0     0    0     0     0     0    0     H(3) H(2) H(1) H(0)
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Correlation Matrix for Swap

• Define t(x1, x2, x3, x4)= (x3, x4, x1, x2)
• C(t)=

1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0
0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0
0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0
0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0
0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0
0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1
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Correlation Matrix tf

• C(tf)=
1    0    0    0      0        0       0       0       0       0       0       0       0      0      0      0
0    0    0    0 F2(0) F2(1) F2(2) F2(3)     0       0       0       0       0      0      0      0
0    0    0    0      0        0       0       0   F1(0) F1(1) F1(2) F1(3)   0      0      0      0
0    0    0    0      0        0       0       0       0       0       0       0   H(0) H(1) H(2) H(3)
0    1    0    0      0        0       0       0       0       0       0       0       0      0      0      0
0    0    0    0 F2(1) F2(0) F2(3) F2(2)     0       0       0       0       0      0      0      0
0    0    0    0      0        0       0       0 F1(1) F1(0) F1(3) F1(2      0      0      0      0
0    0    0    0      0        0       0       0       0       0       0       0   H(1) H(0) H(3) H(2)
0    0    1    0      0        0       0       0       0       0       0       0       0      0      0      0
0    0    0    0 F2(2) F2(3) F2(0) F2(1)     0       0       0       0       0      0      0      0
0    0    0    0      0        0       0       0 F1(2) F1(3) F1(0) F1(2)     0      0      0      0
0    0    0    0      0        0       0       0       0       0       0       0   H(2)  H(3) H(0) H(2)
0    0    0    1      0        0       0       0       0       0       0       0       0      0      0      0
0    0    0    0 F2(3) F2(2) F2(1) F2(0)     0       0       0       0       0      0      0      0
0    0    0    0      0        0       0       0 F1(3) F1(2) F1(1) F1(0)     0      0      0      0
0    0    0    0      0        0       0       0       0       0       0       0   H(3) H(2) H(1)  H(0)
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Linear trails

• A linear trail is  U= (u(0), u(1), ..., u(r)) associated with a 
composite function b= r(0) r(1) ... r(r) with correlation 
contribution at each step of C((u(i)) r(i)(a), u(i-1)a) and 
overall  correlation of Cp(U)= P i [Cr(0)]u(i), u(i-1).

• Theorem:  C(ub(a), wa)= SU, u(0)=u, u(r)=w Cp(U).

• Truncating Function: Let a'=h(r)(a), h[r]=h(r) and h[r]:GF(2)n-1 GF(2)n

be defined by ai'=ai for is and as'= vaas where vTa=e  defined the 
restriction.  Then 
– Ch[r]

w,w=1
– Ch[r]

vw,w= (-1)e, for all w: ws=0; note there are the non-zero entries 
both of amplitude 1.  

– If C'= C Ch(r), C'u,w= Cu,w(-1)e Cu,vw if ws=1 and 0 if ws=0.
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Long Range correlation

• Put u[i]= u(i), k[i]=k(i), D[U]= dU  i(u(i))T k(i), s[i]= si, 
D[U,K]= dUUTK.

• For key alternating ciphers, Cp(U)= P i (-1)D[U] |Cp(U)|. 

• Put si= UTKdU, C(vb(a), wa)= SU, u(0)=u, u(r)=w (-1)D[U,K]

|Cp(U)|.

• Cp(U)= (-1)s[i] Ci , averaging over the round keys we get 
E(Ct

2)= 2-nk Sk (S i (-1)s[j] Ci )2. 

• After reduction, average correlation potential is E(Ct
2)= S i

Ci
2, note that Ci Cj = 2nK d(ij)
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Key Schedule and Correlation

• Let U[j]= Uj, d[U,j]= dU[j], h[r]= h(r).  C[h,r]= Ch[r]).  
D= (d[U,i]d[U,j])T MC[h,r]kd[U,i]d[U,j].  F= 
(d[U,i]d[U,j])T fk(k)d[U,i]d[U,j].

• For key schedule K=Mkk, 
– E(Ct

2)= 2-nK S i S j (S k (-1)D)Ci Ci.
• The inner sum simplifies to  (-1)d[U,i]d[U,j]2nK d(Mk

T(UiUi)). 
• f key schedule is not linear K=fk(k), the coefficient of the 

mixed term is (-1)F .
• The probability that a multi-round expression holds is 

1/2(1+Cp(U)) for the associated trail
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Take home on linear propagation
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• Correlation matrix completely determines linear 
propagation.

• Individual round as composition of key xor, linear and 
bricklayer functions are easy to compute.

• Linear trails provide link between individual 
approximations and full cipher.

• Key schedule only effects sign of contribution.
• Keys select constructive or destructive interference.
• Most reasonable key schedules provide destructive 

interference.
• The probability that a multi-round expression holds is 

1/2(1+Cp(U)) for the associated trail.
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Differentials

• A similar theory applies to differentials.

• Definition: The difference propagation probability, 
denoted by Rp(a’ h b'), is defined by 

Probh(a',b')= 2-n S a d(b'h(aa')h(a)).

• We have 0Rp(a' h b')1.  wr(a'h b')= -lg(Rp(a'h b')) 
(restriction weight reflect loss of entropy).  

• wc(U)= -lg(|Cp(U)|) (correlation weight).

• For bricklayer function, Probh(a', b')= P i Probh(i)(a'(i), b’(i)) 
and wr(a', b')= S i wr(a'(i), b’(i)).
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Differential trails

• Theorem:  Probf(a', 0)= 1/2 (1 + S w (-1)wa’ F(w)2).  The 
differential probability and correlation potential table of a 
boolean function satisfy Prob(a', b')= 2-m S u, w (-1)wa'ub'

Cu,w
2

• A differential trail is Q= (q(0), q(1), ..., q(r)) with steps (q(i-1), 
q(i)) having weight  wr

r(i)(q(i-1), q(i)) have trail weight wr(Q)= 
S i wr

r(i)(q(i-1), q(i)). 
• Prob(a',b')= S q(i-1)=a', q(r)=b' Prob(Q).  
• For a differential trail, Q, with weight <(n-1), 

Prob(Q) ~2-wr(Q).  
• For a differential trail, Q, with weight wr(Q)>(n-1), for 

expected proportion 2n-1-wr(Q) of keys, there will be a right 
pair.
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Take home on differential 
propagation

JLM 20081102

• Correlation matrix completely determines differential
propagation characteristics.

• Individual round as composition of key xor, linear and 
bricklayer functions are easy to compute.

• Differential trails provide link between individual 
approximations and full cipher.

• Weights for differential trails are good approximation for 
differential characteristics.
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Rijndael Design Principles - motivation

• The theory of linear and differential trails informed the 
design of Rijndael.

• To eliminate low weight trails, there are two strategies:
1. Choose S-boxes with difference propagations that 

have high  restriction weight and input-output 
correlations with high correlation weights; or, 

2. Design round transformations so that only trails with 
many S-boxes occur.

• Rijndael picks 2.
• Wide trails strategy implements this.
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Rijndael Design Principles - continued

• Linear cryptanalysis requires correlation > 2-nb/2 over 
most rounds.  This can't happen if we choose the number 
of rounds so that there are no such linear trails with 
correlation contribution >nk-1 2-nb/2.  Each output parity is 
correlated to an input parity since S w F(w)2=1 but if it 
occurs by constructive interference over many trails that 
share input/output selection then any such  must be the 
result of at least nk linear trails which are unlikely to be 
key dependent.

• Differential cryptanalysis requires input to output 
difference propagation with probability >21-nb.  If there are 
no differential trails with low weight, difference 
propagation results from multiple trails which again will 
not likely be key dependent.
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Rijndael Design Principles

• Choose number of rounds so that there is no correlation 
over all but a few rounds with amplitude significantly  
larger than 2nb/2 by insuring there are no linear trails with 
correlation contribution above nk-1 2nb/2and no differential 
trails with weight below nb.

• Rijndael also insures that the diffusion layer provides that 
no multiple round trails have few active S-boxes.  This 
guarantees no iteratively constructed correlation exists 
over several rounds.
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Amplitudes 

• Examine round transformations r= lg, where l is the mixing 
function and g is a bricklayer function that  acts on bundles of nt
bits.  Block size is nb=m nt.  

• The correlation over g is the product of correlations over different 
S-box positions for given input and output patterns.  

• Define weight of correlation as -lg(Amplitude).
• If output selection pattern is 0, the S-box is active.  Looking for 

maximum amplitude of correlations and maximum difference 
propagation probability.

• The weight of a trail is the sum of the weights of the selection 
patterns or the sum of the active S-box positions it is greater than 
the number of active S-boxes times the minimum correlation 
weight per S-box.

• Wide trail: Design round transformations so there are no trails with 
low bundle weight.
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Branching and wide trails

• Define wb(a) as the bundle weight of a.  Let C(a , b, f, x)= 
a , b, C(ax, b f(x))0.

• Bd(f)= mina, ba (wb(ab)+wb(f(a)(b))).
• Bl(f, a)= minC(a , b, f, x) (wb(a)+wb(b)).

• Theorem: In an alternating key block cipher with g l round 
functions, the number of active bundles in a two round 
trail is  the bundle branch number of l. If y= g q g l is a 
four round function, B(f) B(l) x Bc(q) where B can be 
either the linear or differential branch number.  

• The linear and differential branch numbers for an AES 
round is 5.
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Rijndael local safety results
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• No 4 round differential occurs with probability greater 
than 2-150.

• No 8 round differential occurs with probability greater 
than 2-300.

• No 4 round I/O correlation occurs with probability 
greater than 2-75.

• No 8 round I/O correlation occurs with probability 
greater than 2-150.
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Rijndael diffusion safety results
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• 4 round versions have more than 25 active S-boxes.
• The weight of a two round differential trail with Q 

active columns at the input of the second round is 
5Q.

• In a two round trail, the sum of the active columns at 
the input and output is 5.

• Net effect is that there are not enough pairs in the I/O 
of Rijndael to permit a linear or differential attack in 
time better than exhaustive search.

• Best 14 round DES correlation is ½ ±1.19 x 2-21.
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End
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Some example functions

• ab = abab as a boolean function. 
• Let x= (x4, x3, x2, x1) with  x1 the least significant bit. 
• F(x)=(F4(x), F3(x), F2(x), F1(x)).
• If r= (0000, 0001) then Fi

r(x)= xi, i>1 and 
• Fi

r(x)= ((x2x3x4) (x11)(x2x3x4) x1= 1x1x2x3
x4x2x3x2x4x3x4x2x3x4

• If s = (0000, 0001, ... , 1111), then 
– F1

s (x)= x1  1,  
– F2

s (x)= x1(x21)(x1)x2 = x1x2,
– F3

s (x)= (x1x2) (x31)((x1x2)))x3 = x1x2x3,
– F4

s (x)= (x1x2x3) (x41) 
– F4

s (x)= (x1x2x3) (x41)((x1x2x3))x4= x1x2x3x4.
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Ideas to study

• Suppose the Boolean Transformation: Is there an easy to compute 
function, TK, obviously non-linear, so that TK EK TK 

-1 has good linear 
approximations?

• How do you find such TK?
• Finding the best approximation reduces to finding an orthogonal 

transformation that maximizes the largest entry.  Suppose T is such 
a matrix; if T has all bad affine approximations

• is it possible that there is another orthogonal transformation, R with
• TR= R-1 T R such that maxij (|(TR)ij|)> maxij (|(T) ij|)?
• If  r1, r2, ... , rn is a series of such transformations (like the iterated 

components of a block cipher), note that R-1EK(x) R=  R-1r1R R-1r2R 
… R-1rnR thus raising the possibility of better per round 
approximations on a related cipher.
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Correlations and AES
• Tr(C(AES)) is the number of fixed points of AES. 

• Since Tr(AB)=Tr(BA),
• Tr(CAES))= Tr(Ck14) C(k13)) ... C(k1) C(RS) (C(MRS))13).

• NL(f) 2n-1- 2n/2 -1, 
• NL(f)2n-1+(2n + maxe0 (F(De(f))), where De f = f(x) 

f(xe).
• What does eigenvalue of correlation matrix mean?
• If l is an eigenvalue, l2=1.
• When is a correlation matrix blocky?
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Correlations and AES
• Tr(C(AES)) is the number of fixed points of AES. 

• Tr(AB)=Tr(BA):
• Tr(CAES))= Tr(Ck14) C(k13)) ... C(k1) C(RS) (C(MRS))13).

• NL(f)2n-1- 2n/2 -1, 
• NL(f)2n-1+(2n + maxe0 (F(De(f))), where Def = 

f(x)f(xe).
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The Trace

• Let e(i)= 2i.
• For Fq, q=2n, TrFq/F2(x)=Tr(x)= S i=0

n-1 xe(i).

• Theorem: Tr(x)  0 for some x.
– Tr(x+y)= Tr(x)+Tr(y).
– Tr(x2)= Tr(x).
– Tr(x) in F2.
– Tr(w x) is linear in x.
– Tr(w 1x)= Tr(w 2x)  w 1 = w 2.
– Tr(w x) are exactly the linear functions.
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Distance between functions

• NL(f)  2n-1-2n/2-1,  NL(f)2n-1 + (2n + maxe0 (F(De(f))), 
where De f = f(x)f(xe).

• Theorem (Rothaus): Let n4 of even algebraic degree 
then any bent function on GF(2)n has degree  n/2. An n-
Boolean function, f, is m-resilient iff f is balanced and 
F(u)=0, for all u: wt(u)  m. 

•
• Maiorana-MacFarland class M = {f: f(x,y)=x p(y)g(y)} 

where p is a permutation on GF(2)n/2 and g is affine.  

• |M|= (2n/2)! 2n/2

• For Bent Quadratics: 1 i,j n aij xi xjh(x), h, affine.
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Correlation Immunity

• In this paragraph, F denotes the unnormalized Walsh transform of f.  
• A function z=f(x1, x2, ..., xn) on n variables  x1, x2, ..., xn is m-th order 

correlation immune if for every subset of these variables or size m, 
I(z; xi1, ..., xim)=0. Equivalently, f is correlation immune of order m: 
F(w )=0 "w : 1wt(w )m. 

• If f has correlation immunity m and non-linear order k, m+kn, let 
Nab(w )= | { x: z=f(x)=a, w x = b } | then F(w )= N10(w ) - N11(w ).

• Denote pa = P(z=a) then P(w x = b | z=a)=P(w x=b, z=a)/P(z=a)= pa
-

12-n Nab(w ). 
• We obtain the following:

– P(w x=0 | z=1)= ½ + p1
-1 2-n-1F(w ),

– P(w x=1 | z=1)= ½  - p1
-1 2-n-1 2-n-1F(w ),

– P(w x=0 | z=0)= ½ + p0
-1 2-n-1} 2-n-1F(w ),

– P(w x=1 | z=0)= ½ - p0
-1 2-n-1} 2-n-1 F(w ).

• Let h(t)= - t lg(t) - (1-t) lg(1-t).  
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Correlation Immunity based attack
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Algebraic Immunity

• Low degree approximations exists g0: fg= 0 and fg has 
low degree deg(fg)deg(f).  |Sd|= S i=0

d
nCi.

• Let f be a boolean function of n variables.  The annihilator 
ideal of f,  AN(f) = {g: g(x) f(x)=0}, for all x in GF(2)n, 
ANd(f) = {g AN(f): deg(g(x))d}.  

• The algebraic immunity, AI(f) is the smallest degree non-
zero polynomial in AN(f)AN(1+f).  AI(f) [n/2].
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Shift registers and immunity
• Suppose L is an n-bit NLFSR based filter generator with filter 

function f and that L takes the current n-bit state to the next n-bit 
state. Suppose the initial state is x0, the generated keystream is st = f 
(Lt(x0)). st=1 if $ gANd(f): g(Lt(x0))=0, st=0 if $ hANd(1+f): 
h(Lt(x0))=0.

• Collect all functions of degreed for N known keystream bits; then,
1. g(Lt(x1, x2, ..., xn)): "gANd(f), forall 0  t < N: st=1; and, 
2. h(Lt(x1, x2, ..., xn)): "gANd(1+f), " 0 t< N: st=0.  

• Using linearization to solve these equations requires identifying  the 
subset of monomials forming a linear system of up to S i=1

d
nCi

variables.
• Gaussian reduction on this system takes time O((S i=1

d
nCi)w )~nw d

where w ~2.37 and the number of monomials is  
~2nd/(d!(dim(ANd(f))+ dim(ANd(1+f))).
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Sensitivity

• For this section, f:GF(2)mGF(2).  The sensitivity of v is 
defined by S(v) = |{ v': f(v)f(v'), dist(v,v‘)=1}|.  The 
average sensitivity  S(f)= 2-m Sv S(v).  The “influence'' of xi
is defined by I(xi)= Prob(f(x1,...,xi-1, y, xi+1,..., xm), the 
probability that the function is determined no matter what 
y is.

• Theorem:  Let f be a boolean function of n variables with 
average sensitivity aS(f)=k.  Let e>0 and M= k/e then
$$ $ h depending on  exp((2+((2 log(4M))/ M) M) 

variables such that Prob(fh)e; and,
$$ $ g of degree at most exp((2+2 log(4M))/ M))M) 

such that Prob(fg)e/2.
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