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Binary symmetric channel (BSC)

• Each bit transmitted has an independent chance of being 
received correctly with probability p and incorrectly 
received with probability q=1-p.
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• Can we transmit m bits more reliably over this channel if 
we have spare bandwidth?
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Error Detection

• Suppose we want to transmit 7 bits with very high 
confidence over a binary symmetric channel.   Even if 
p>.99, we occasionally will make a mistake.

• We can add an eight bit, a check sum, which makes any 
valid eight bit message have an even number of 1’s.  

• We can thus detect a single bit transmission error.  Now 
the probability of a relying on a “bad” message is Perror=1-
(p8+8p7(1-p)) instead of Perror=1-p8.  If p=.99, Perror drops 
from about 7% to .3%.

• This allows us to detect an error and hopefully have the 
transmitter resend the garbled packet.

• Suppose we want to avoid retransmission?
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Error Correction

• We can turn these “parity checks” which enable error detection to error 
correction codes as follows.  Suppose we want to transmit b1b2b3b4.  
Arrange the bits in a 2 x 2 rectangle:
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b1 b2 c1=b1+b2

b3 b4 c2=b3+b4

c3=b1+b3 c4=b2+b4 c5=b1+b2+b3+b4

• We transmit  b1b2b3b4c1c2c3c4c5.
• The receiver can detect any single error and locate its position.

• Another simple “encoding scheme” that corrects errors is the following. 
We can transmit each bit three times and interpret the transmission as 
the majority vote.  Now the chance of correct reception is 
Pcorrect=p3+3p2q>p and the chance of error is Perror=3pq2+q3<q.  For 
p=.99, Perror= 0.000298 and Pcorrect= .999702.  
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Codewords and Hamming distance
• To correct errors in a message “block,” we increase the number of bits 

transmitted per block.  The systematic scheme to do this is called a 
code, C.

•
• If there are M valid messages per block (often M=2m) and we transmit 

n>lg(M) bits per block, the M “valid” messages are spread throughout 
the space of 2n elements. 

• If there are no errors in transmission, we can verify the message is 
equal to a codeword with high probability.

• If there are errors in the message, we decode the message as the 
codeword that is “closest” (i.e.-differs by the fewest bits) from the 
received message. 

• The number of differences between the two nearest codewords is 
called the distance of the code or d(C).
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Hamming distance

• The best decoding strategy is to decode a message as the codeword 
that differs least from a codeword.  So, for a coding scheme, C, if 
d(C)=2t+1 or less bits, we can correct t or less errors per block.

• If d(C)=s+1, we can detect s or fewer errors.

• The Hamming distance, denoted Dist(v, w), between two elements v, 
wGF(2)n is the number of bits they differ by.   The Hamming distance 
satisfies the usual conditions for a metric on a space.

• The Hamming weight of a vector vGF(2)n , denoted, ||v|| is the 
number of 1’s. 

• If v, wGF(2)n, Dist(v, w),= ||vw||.
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Definition of a Code

• In the case of the “repeat three times” code, Crepeatx3, M=1 and n=3.  
There are two “codewords,” namely 111 and 000.  d(Crepeatx3)=3, so 
d=2t+1 with t=1.  

• In general,  a C(n,M,d) denotes a code in GF(2)n with M codewords
with d(C)=d the minimum distance, n is dimension.  

• As discussed, such codes can  correctly decode transmissions 
containing t errors or less.

• The rate of the code is (naturally) R=lg(M)/n.

• Error correcting codes strive to find “high rate” codes that can 
efficiently encode and decode messages with acceptable error.

JLM 20081102



8

Example rates and errors
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Code n M d R p1 p2 P1,e P2,e

Repetition x 3 3 2 3 1/3 3/4 7/8 0.156 0.043
Repetition x 5 5 2 5 1/5 3/4 7/8 0.103 0.016
Repetition x 7 7 2 7 1/7 3/4 7/8 0.071 0.006
Repetition x 9 9 2 9 1/9 3/4 7/8 0.049 0.004
Hamming(7,4) 7 16 3 4/7 3/4 7/8 0.556 0.215
Golay(24,12,8) 24 4096 17 1/2 3/4 7/8

Hadamard
(64,32,16)

64 32 16 3/16 3/4 7/8

RM(4,2) 16 11 4
BCH[7,3,4] 7 8 4 3/7
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Shannon

• Source Coding Theorem: The n random variables can be 
encoded by nH bits with negligible information loss.

• Channel Capacity: C= maxP(x) (H(I|O)-H(I)).  For a DMC, 
BSC with error rate p, this implies CBSC(p)= 1+p lg(p) + q 
lg(q).  So for BSC R=1-H(P).

• Channel Coding Theorem: " R<Cmax, e>0, $ C(n,M,d) of 
length n with M codewords: M2[Rn] and P(i)

errore for 
i=1,2,…,M.

• Translation: Good codes exist that permit transmission 
near the channel capacity with arbitrarily small error. 
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The Problem of Coding Theory

• Despite Shannon’s fundamental results, this is not the end 
of the coding problem!
– Shannon’s proof involved random codes
– Finding the closest codeword to a random point is the 

shortest vector problem, so “closest codeword” 
decoding is computationally difficult.  Codes must be 
systematic to be useful.

– The Encoding Problem:  Given an m bit message, m, 
compute the codeword, t (for transmitted), in C(n,M,d).

– The Decoding Problem: Given an n bit received word, 
r=t+e, where e was the error, compute the codeword in 
C(n,M,d) closest to r.

– General codes are hard to decode
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Bursts

• Bursty error correction: Errors tend to be “bursty” in real 
communications.

• Burst error correcting codes can be constructed by 
“spreading out codewords”.  Let cwi[j] mean bit j of 
codeword i.  Transmit cw1[1] , cw2[1] ,…, cwk[1], cw1[2] ,… 
where k is the size of a “long” error.

• Some specific codes (RS, for example) are good at bursty
error correction.
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Channel capacity for Binary Symmetric 
Channel

• Discrete memoryless channel: Errors independent and 
identically distributed according to channel error rate. (No 
memory).

• Rate for code, RC= lg(M)/n.
• Channel capacity intuition: How many bits can be reliably 

transmitted over a BSC?  
– The channel capacity, c, of a channel is c= supX

I(X;Y), where X is the transmission distribution and Y 
is the reception probability

– Shannon-Hartley: c= Blg(1+S/N),  B is the bandwidth, 
S is the signal power and N is the noise power.

– Information rate, R=rH.
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How much information can be 
transmitted over a BSC with low error?

• How many bits can be reliably transmitted over a BSC?  
Answer (roughly): The number of bits of bandwidth minus 
the noise introduced by errors.

• Shannon’s channel coding theorem tells us we can 
reliably transmit up to the channel capacity.

• However, good codes are hard to find and generally 
computationally expensive.
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Calculating rates and channel capacity

• For single bit BSC, C=1+plg(p)+qlg(q).
• Recall c= supX I(X;Y).  
• The distribution P(X=0)=P(X=1)=1/2 maxmizes this.
• c= 1/2+1/2+plg(p)+qlg(q)
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Linear Codes 

• A [n,k,d] linear code is an k-subspace of an n-space over 
F (usually GF(2)) with minimum distance d. 
– An [n,k,d] code is also a (n, 2k,d) code

• Standard form for generator is G= (Ik|A) with  k message 
bits, n codeword bits.   Codeword c=mG.

• For a linear code, d=minu0, uC {wt(u)}.
– Proof: Since C is linear, dist(u, w)= dist(u-w,0)=wt(u-v).  Since the 

code is linear, u-vC.  That does it.
• Parity check matrix is H: vC iff vHT=0.
• If G is in standard form, H=[-AT|In-k].  Note that GH=0.

• Example: Repetition code is the subspace in GF(2)3

generated by (1,1,1).
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G and H and decoding

• Let r=c+e, where r is the received word, c is the transmitted 
word and e is the error added  by the channel.

• Note codewords are linear combinations of rows of G and 
rHT=cHT+eHT=eHT.

• Coset leader table

Minimum weight
Coset leader Error Syndrone

c1 c2 c3 …           cM 0              0=0HT

c1+e1 c2+e1 c3+e1 …     cM+e1                    e1                       e1HT

c1+e2 c2+e2 c3+e2 …     cM+e2                    e2                       e2HT

…               ….            …            ….
c1+eh-1 c2+eh-1 c3+eh-1 …   cM+eh-1            eh-1 eh-1HT
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Syndrome and decoding Linear Codes

• S(r)= rHT is called the syndrone. 
• A vector having minimum Hamming weight in a coset is 

called a coset leader.
• Two vectors belong to the same coset iff they have the 

same syndrone.

• Now, here’s how to systematically decode a linear code:
1. Calculate S(r).
2. Find coset leader, e, with syndrone S(r).
3. Decode r as r-e.

• This is more efficient than searching for nearest 
codeword but is only efficient enough for special codes.
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Syndrone decoding example (H[7,4])

1 0 0 0 1 1 0             1 1 0 1 1 0 0       1 1 0
G= [I4|A]=  0 1 0 0 1 0 1 = [-AT|I3],  H= 1 0 1 1 0 1 0,   HT= 1 0 1

0 0 1 0 0 1 1             0 1 1 1 0 0 1       0 1 1
0 0 0 1 1 1 1                                 1 1 1

1 0 0
0 1 0
0 0 1

• Message: 1 1 0 0.  
• Codeword transmitted: 1 1 0 0 0 1 1.
• Received: 1 1 0 0 0 0 1. (Error in 6th position)
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Syndrone decoding example (H[7,4])

• Coset table (Left)

Syn Coset Leader
000          0000000 1000011 0100101 1100110 0010110 1010101 0110011 1110000
110          0000001 1000010 0100100 1100111 0010111 1010100 0110010 1110001
101          0000010 1000001 0100111 1100100 0010100 1010111 0110001 1110010
011          0000100 1000111 0100001 1100010 0010010 1010001 0110111 1110100
111          0001000 1001011 0101101 1101110 0011110 1011101 0111011 1111000
100          0010000 1010011 0110101 1110110 0000110 1000101 0100011 1100000
010          0100000 1100011 0000101 1000110 0110110 1110101 0010011 1010000
001          1000000 0000011 1100101 0100110 1010110 0010101 1110011 0110000

• (1 1 0 0 0 1 ) HT= (0 1 0)  which is the syndrone of the seventh row  
whose coset leader is e= (0 0 0 0 0 1 0).  

• Decode message as (1 1 0 0 0 1) + (0 0 0 0 0 1 0) = (1 1 0 0 1 1).
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Syndrone decoding example (H[7,4])

• Coset table (Right)

Syn
0001111 1001100 0101010 1101001 0011001 1011010 0111100 1111111
0001110 1001101 0101011 1101000 0011000 1011011 0111101 1111110
0001101 1001110 0101000 1101011 0011011 1011000 0111110 1111101
0001011 1001000 0101110 1101101 0011101 1011110 0111000 1111011
0000111 1000100 0100010 1100001 0010001 1010010 0110100 1110111
0011111 1011100 0111010 1111001 0001001 1001010 0101100 1101111
0101111 1101100 0001010 1001001 0111001 1111010 0011100 1011111
1001111 0001100 1101010 0101001 1011001 0011010 1111100 0111111
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Bounds: How good can codes be? 

• Let Aq(n,d) denote the largest code with minimum distance d.

• Sphere Packing (Hamming) Bound: If d=2e+1,                            
Aq(n,d) Sk=0

e
nCk(q-1)k qn.

– Proof: Let l be the number of codewords. 
– l(1+(q-1)nC1+(q-1)2

nC2+…+(q-1)e
nCe)qn because the e-spheres 

around the codewords are disjoint.
• GSV Bound: There is a linear [n, k, d] code satisfying the inequality: 

Aq(n,d)2n/(1+(q-1) nC1+(q-1)2
nC2+…+(q-1)d-1

nCd-1)
– Proof: The d-1 columns of the check matrix are linearly independent 

iff the code has distance d.  So qn-k(1+(q-1) nC1+(q-1)2
nC2+…+(q-

1)d-1
nCd-1)

• Singleton Bound:  Mqn-d+1, so R1-(d-1)/n.
– Proof:  Let C be a (n,M,d) code.  Since every codeword differs by at 

least d-1 positions, qn-(d-1)M.
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MDS

• Singleton Bound:  Mqn-d+1, so R1-(d-1)/n.
• Code meeting Singleton bound is an MDS code.
• If L is an MDS code so it L^ .
• If L is an [n,k] code with generator G, L is MDS iff there 

are k linearly independent columns.
• Binary 3-repetition code is an MDS
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Hamming

• A  Hamming code is a [n,k,d] linear code with  
– n= 2m -1, 
– k= 2m -1 -m
– d=3.  

• To decode  r=c+e:
– Calculate S(r)= rHT.
– Find j which is the column of H with the calculated 

syndrome.
– Correct position j.  

JLM 20081102



24

[7,4] Hamming code

• The [7,4] code has encoding matrix G, and parity check H where: 
1 0 0 0 1 1 0                   1 1 0 1 1 0 0

G=   0 1 0 0 1 0 1         H=     1 0 1 1 0 1 0
0 0 1 0 0 1 1                   0 1 1 1 0 0 1
0 0 0 1 1 1 1

• The code words are:
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0000000, weight: 0
1000011, weight: 3
0100101, weight: 3
1100110, weight: 4
0010110, weight: 3
1010101, weight: 4
0110011, weight: 4
1110000, weight: 3

0001111, weight: 4
1001100, weight: 3
0101010, weight: 3
1101001, weight: 4
0011001, weight: 3
1011010, weight: 4
0111100, weight: 4
1111111, weight: 7
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Decoding Hamming code

1 0 0 0 1 1 0                           1 1 0 1 1 0 0            1 1 0
G= [I4|A]=  0 1 0 0 1 0 1 = [-AT|I3],  H=     1 0 1 1 0 1 0,   HT=  1 0 1

0 0 1 0 0 1 1                           0 1 1 1 0 0 1             0 1 1
0 0 0 1 1 1 1                                                            1 1 1

1 0 0
0 1 0
0 0 1

• Message: 1100  1100011.  
• Received as 1100001.  
• 1100001 HT= 010 which is sixth row of HT.  Error in sixth bit.
• 1100001+0000010= 110011
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Dual Code

• If C is an [n,k] linear code, then C^= {u: uc=0, "cC} is 
an [n, n-k] linear code called the dual code.  

• The parity check matrix, H, of a code, C, is the generator 
of its dual code.

• A code is self-dual if C= C^ .

• Weight enumerator:  Let Ai be the number of codewords
in C of weight i, then A(z)= S i Ai zi is the weight 
enumerator.
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Example: dual code of (7,4) 
Hamming code

• G=  1101100
1011010
0111001

Codewords:
0000000         0111001
1101100         1010101
1011010         1100011
0110110         0001111
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Hadamard Code

• Hadamard Matrix: H HT=nIn.  If H is Hadamard of order 
m, J=

H   H
H  -H

is Hadamard of order 2m.
• Hadamard code uses this property.  Generator matrix for 

this code is G= [H|-H]T.  For message I, 0  i <2i send the 
row corresponding to  i.  
– Used on Mariner spacecraft (1969).

• To decode, a 2i bit received word, r, compute di= r  Ri, 
where Ri is the 2i bit row i.  
– If there are no errors, the correct row will have di= 2i-1 and all 

other rows will have di=0.  
– If one error, di= 2i-2 (all dot products but 1 will be ±2), etc.
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Hadamard Code example
• Let hij= (-1)a0 b0 + ... + a4 b4, where a and b index the rows and columns 

respectively.  This gives a 32 times 32 entry matrix, H.  
• H(64, 32, 16): 64=26 bit codewords, 6 messages.  First 32 rows:
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00000000000000000000000000000000  00
01010101010101010101010101010101  01
00110011001100110011001100110011  02
01100110011001100110011001100110  03
00001111000011110000111100001111  04
01011010010110100101101001011010  05
00111100001111000011110000111100  06
01101001011010010110100101101001  07
00000000111111110000000011111111  08
01010101101010100101010110101010  09
00110011110011000011001111001100  10
01100110100110010110011010011001  11
00001111111100000000111111110000  12
01011010101001010101101010100101  13
00111100110000110011110011000011  14
01101001100101100110100110010110  15

00000000000000001111111111111111  16
01010101010101011010101010101010  17
00110011001100111100110011001100  18
01100110011001101001100110011001  19
00001111000011111111000011110000  20
01011010010110101010010110100101  21
00111100001111001100001111000011  22
01101001011010011001011010010110  23
00000000111111111111111100000000  24
01010101101010101010101001010101  25
00110011110011001100110000110011  26
01100110100110011001100101100110  27
00001111111100001111000000001111  28
01011010101001011010010101011010  29
00111100110000111100001100111100  30
01101001100101101001011001101001  31
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Hadamard Code example

• Last 32 rows:
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11111111111111111111111111111111  32
10101010101010101010101010101010  33
11001100110011001100110011001100  34
10011001100110011001100110011001  35
11110000111100001111000011110000  36
10100101101001011010010110100101  37
11000011110000111100001111000011  38
10010110100101101001011010010110  39
11111111000000001111111100000000  40
10101010010101011010101001010101  41
11001100001100111100110000110011  42
10011001011001101001100101100110  43
11110000000011111111000000001111  44
10100101010110101010010101011010  45
11000011001111001100001100111100  46
10010110011010011001011001101001  47

11111111111111110000000000000000  48
10101010101010100101010101010101  49
11001100110011000011001100110011  50
10011001100110010110011001100110  51
11110000111100000000111100001111  52
10100101101001010101101001011010  53
11000011110000110011110000111100  54
10010110100101100110100101101001  55
11111111000000000000000011111111  56
10101010010101010101010110101010  57
11001100001100110011001111001100  58
10011001011001100110011010011001  59
11110000000011110000111111110000  60
10100101010110100101101010100101  61
11000011001111000011110011000011  62
10010110011010010110100110010110  63
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Hadamard Code example
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• Suppose received word is: 

• 11001100110011000011001100110001

• Dot product with rows of matrix is:

• 00: 002, 01: 002, 02: -02, 03: -02, 04: -02, 05: -02, 06: 002, 07: 002.
• 08: -02, 09: -02, 10: 002, 11: 002, 12: 002, 13: 002, 14: -02, 15: -02. 
• 16: -02, 17: -02, 18: -30, 19: 002, 20: 002, 21: 002, 22: -02, 23: -02. 
• 24: 002, 25: 002, 26: -02, 27: -02, 28: -02, 29: -02, 30: 002, 31: 002. 
• 32: -02, 33: -02, 34: 002, 35: 002, 36: 002, 37: 002, 38: -02, 39: -02. 
• 40: 002, 41: 002, 42: -02, 43: -02, 44: -02, 45: -02, 46: 002, 47: 002. 
• 48: 002, 49: 002, 50: 030, 51: -02, 52: -02, 53: -02, 54: 002, 55: 002. 
• 56: -02, 57: -02, 58: 002, 59: 002, 60: 002, 61: 002, 62: -02, 63: -02.

• So we decode as 50 and estimate 1 error.
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The amazing Golay code

• Golay Code G24 is a [24, 12, 8] linear code. 
• G= [I12 |C0 | N] = [I12 |B] 

– C0 = (1,1,1,1,1,1,1,1,1,1,1,0)T .

– N is formed by circulating (1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0) 
11 times and appending an row of 11 1's.

• The first row of N corresponds to the quadratic residues 
(mod 11).

• Note that wt(r1+r2) = wt(r1)+ wt(r2)- 2[r1·r2], all codewords
have weight divisible by 4 and d(C)=8.  

• G24 = G24 
^ .  To decode Golay, write G=[I12 | B] and BT= 

(b1, b2 , ..., b12) with bi a column vector.
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G for G(24,12, 8)

1   2   3   4   5   6   7   8   9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1         1   0   0   0   0   0   0   0   0   0   0   0   1   1   1   0   1   1   1   0   0   0   1   0
2         0   1   0   0   0   0   0   0   0   0   0   0   1   0   1   1   0   1   1   1   0   0   0   1    
3     0   0   1   0   0   0   0   0   0   0   0   0   1   1   0   1   1   0   1   1   1   0   0   0
4         0   0   0   1   0   0   0   0   0   0   0   0   1   0   1   0   1   1   0   1   1   1   0   0    
5         0   0   0   0   1   0   0   0   0   0   0   0   1   0   0   1   0   1   1   0   1   1   1   0
6 0   0   0   0   0   1   0   0   0   0   0   0   1   0   0   0   1   0   1   1   0   1   1   1 
7 0   0   0   0   0   0   1   0   0   0   0   0   1   1   0   0   0   1   0   1   1   0   1   1
8 0   0   0   0   0   0   0   1   0   0   0   0   1   1   1   0   0   0   1   0   1   1   0   1
9         0   0   0   0   0   0   0   0   1   0   0   0   1   1   1   1   0   0   0   1   0   1   1   0
10        0   0   0   0   0   0   0   0   0   1   0   0   1   0   1   1   1   0   0   0   1   0   1   1
11 0   0   0   0   0   0   0   0   0   0   1   0   1   1   0   1   1   1   0   0   0   1   0   1
12 0   0   0   0   0   0   0   0   0   0   0   1   0   1   1   1   1   1   1   1   1   1   1   1
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Properties of the Golay code

• The Golay code G(24,12, 8) is self dual.  Thus, 
GGT=I+BBT=0

• Other properties:
– Non-zero positions form a (24, 8, 5) Steiner system.
– Weights are multiples of 4.
– Minimum weight CW is 8 (hence d=8).
– Codewords have weights 0, 8, 12, 16, 24.
– Weight enumerator is 1+(759)x8+(2576)x12+(759)x16+x24.

• Voyager 1, 2 used this code.
• Get G(23,12, 7) is obtained by deleting last column.  It is 

a remarkable error correcting code.  7= 2 x 3 + 1, so it 
corrects 3 errors.  It does this “perfectly.”
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The Golay code G(23,12, 7) is perfect!

• There are 212 code words or sphere centers.
• There are 23C1=23 points in Z23 which differ by one bit from a 

codeword.
• There are 23C2=253 points in Z23 which differ by two bits from a 

codeword.
• There are 23C3=1771 points in Z23 which differ by two bits from a 

codeword.
• 212 (1+23+253+1771)= 212(2048)=212 x 211= 223.
• 23 bit strings which differ by a codeword by 0,1,2 or 3 bits partition 

the entire space.

• The three sporadic simple Conway’s groups are related to the lattice 
formed by codewords and provided at least one Ph.D. thesis.
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Decoding G(24,12, 8)

• Suppose r=c+e is received.  G= [I12 | B]=[c1, c2, …, c24] and 
BT= [b1, b2, …, b12].  

• To decode:
1. Compute s= rGT, sB, s+ci

T, 1 l i  24 and sB+bj
T, 1  j  12.

2. If wt(s)3, non-zero entries of s correspond to non-zero entries of e.
3. If  wt(sB)3, there is a non-zero entry in the k-th position of sB if the 

k+12-th position of e is non-zero.   
4. If wt(s+ci

T) 2, for some j, 13  j24 then ej=1 and non-zero 
entries of s+ej

T are in the same positions as non-zero entries of e.
5. If wt(sB+bj

T)  2, for some j, 1  j l 12 then ej=1 and non-zero 
entries of sB+bj

T at position k correspond to non-zero entries of 
ek+12.

JLM 20081102



37

Decoding G(24,12, 8) example

• G is 12 x 24.  G=[I12|B]= (c1, c2, …, c24).
• BT=(b1, b2, …, b12).
• m=(1,1,0,0,0,0,0,0,0,0,0,1,0).
• mG=(1,1,0,0,0,0,1,0,1,0,1,1,0).
• r=(1,1,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,1,0).
• s=(011110110010).
• sB=(101011001000).
• Neither has wt3, so we compute s+cj

T, sB+bj
T.

• s+b4
T=(0,0,0,0,0,0,0,1,0,1,0,0)

• c= r+(0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0)
• c= (1,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,1,0,1,1,0)
• m=(1,1,0,0,0,0,0,0,0,0,0,1,0).
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Cyclic codes

• A  cyclic code, C, has the property that if (c1, c2, ... , cn)C 
then (cn, c1, ... , cn-1)C.  

• Remember polynomial multiplication in F[x] is linear over 
F.

• Denoting Un(x)= xn -1 we have

• Theorem: C is a cyclic code of length n iff its generator  
g(x)= a0 + a1 x + ... + an-1xn-1 | Un(x) where codewords c(x) 
have the form m(x) g(x).  Further, if Un(x)= h(x)g(x), c(x) in 
C iff h(x)c(x) = 0  (mod Un(x)).
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Cyclic codes

• Let C be a cyclic code of length n over F, and let a=(a0, a1, 
… , an-1)C be associated with the polynomial 
pa(x)=a0+a1x+ … +an-1xn-1.  Let g(x) the polynomial of 
smallest degree over such associated polynomials the g(x) 
is the generating polynomial of C and

1.g(x) is uniquely determined.
2.g(x)|xn-1
3.C: f(x)g(x) where deg(f(x))n-1-deg(g)
4.If h(x)g(x)=xn-1, m(x)C iff h(x)m(x)=0 (mod xn-1).

• The associated matrices G and H are on the next slide.
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G, H for cyclic codes

• Let g(x) be the generating polynomial of the cyclic code C. 

G= g0 g1 g2 …      …    …   …   gk 0    0   0    0
0   g0 g1 g2 …      …    …   …   gk 0    0   0   
0   0   g0 g1 g2 …      …    …   …   gk 0    0 

…        …             …           …
0   …  0    0     g0 g1 g2 …      …    …   …   gk

H= hl hl-1 hl-2 …      …    …   …   h0 0    0   0    0
0    hl hl-1 hl-2 …      …    …   …   h0 0    0   0

…   …                              …               …
0    0   0    0    hl hl-1 hl-2 …      …    …   …   h0
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Cyclic code example

• g(x)= 1+x2+x3, h(x)= 1+x2+x3+x4, g(x)h(x)= xn-1, n=7.
• Message 1010 corresponds to m(x)= 1+x2.
• g(x)m(x)=c(x)= 1+x3+x4+x5, which corresponds to the 

codeword 1001110.
• G, H are
• Codewords are

– 1011000 0101100 0010110 0001011 1110100 0111010 0011101 1001110
– 0100111 1100010 0110001 1101001 1010011 1000101 1101001 1111111
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BCH Codes

• Cyclic codes; so generator, g(x) satisfies g(x) | xn – 1.
• Theorem: Let C be a cyclic [n, k, d] code over Fq, q=pm.  Assume p 

does not divide n and g(x) is the generator.  Let a be a primitive root 
of xn-1 and suppose that for some l, d, we have g(a l)= g(a l+1)= … = 
g(a l+d)=0, then dd+2.

• Constructing a BCH code:
1. Factor xn-1= f1(x) f2(x)…fr(x), each fi(x), irreducible.
2. Pick a , a primitive root of 1. 
3. xn-1= (x- a)(x- a2)…(x- an-1) and fi(x)= P t(x-a j(t)).
4. qj(x)= fi(x), where fi(a)=0. qj(x) are not necessarily distinct.
5. BCH code at designed distance d has generator 

g(x)=LCM[qk+1(x),…, qk+d-1(x)].
• Theorem:  A BCH code of designed distance d has minimum 

weightd.  Proof uses theorem above.
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Example BCH code 

• F=F2, n=7.
• x7-1=(x-1)(x3+x2+1)(x3+x+1)
• We pick a , a root of (x3+x+1) as a primitive element.
• Note that a2 and a4 are also primitive roots of (x3+x+1), so 

x3+x+1=(x-a)(x- a2)(x- a4) and x3+x2+1=(x- a3)(x- a6)(x- a6)
• q0(x)=x-1, q1(x)= q2(x)= q4(x)= x3+x2+1.
• k= -1, d=3, g(x)=[x-1, x3+x2+1]= x4+x3+1.
• This yields a [7,3,4] linear code.
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Decoding BCH Codes

• For r=c+e: 
1.Compute (s1, s2)= rHT, 
2. If s1 =0, no error, 
3. If s1 0 put  s2/s1= a j-1, error is in  position j (of p 2, 

ei =  s1/a (j-1)(k+1),  
4.c=r-e.
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Example Decoding a BCH Code

• x7-1, a , a root of x3+x+1=0.  This is the 7-repetition code.
• rHT= (1,1,1,1,0,1,1,1) HT=(a+a2, a)
• H=    1,  a , a2, a3, a4,  a5,  a6

1, a2, a4, a6, a8, a10, a12

• s1= a+a2 =1+a+a2+a3+a4+a5+a6

• s2= a=1+a2+a4+a6+a8+a10+a12

• s1/s2=a4 , j-1=4, j=5, e=(0,0,0,0,1,0,0).
• s1= eja (j+1)(k+1)

• s2= eja (j+1)(k+2)
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Reed Solomon

• Reed-Solomon code is BCH code over Fq with n= q-1. 
Let a be a primitive root of 1 and choose d: 1d<n with 
g(x)= (x-a) (x- a2) ... (x-ad-1).  
– Since g(a) = g(a2) = … =g(ad-1)=0, BCH bound shows 

d(C)d.
– Codewords are g(x)f(x), deg(f(x))n-d.  There are qn-

d+1 such polynomials so qn-d+1 codewords.
– Since this meets the Singleton bound, the Reed 

Solomon code is also an MDS code.
– The Reed Solomon Code is an [n,n-d+1,d] linear code 

for these parameters
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Reed Solomon example

• Example:
– F=GF(22)={0,1,w ,w 2}
– n=q-1=3, a= w . 
– Choose d=2, g(x)= (x-w ). 
– G=   w  1    0

0     w  1
• Code consists of all 16 linear combinations of the 

rows of G.
• For CD’s:

– F=GF(28), n= 28-1=255, d=33.
– 222 information bytes.33 check bytes.
– Codewords have 8 x 255 = 2040 bits.
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Polynomials and RM codes

• R(r,m) has parameters [n=2m , k= 1 + mC1 + ... + mCr d=2m-r], it 
consists of boolean functions whose polynomials are of degree  m. 

• RM(r,m)^ = RM(m-r-1,m).

• RM(0,m)= {0 , 1}, RM(r+1, m+1)=  RM(r+1, m) * R(r, m).

• RM(n,0) is a repetition code with rate 1/n.

• Min distance in R(r,m)= 2m-r.

G(r+1,m)    G(r+1,m)
• G(r+1, m+1)=                 0      G(r,m)
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RM(4,0) and RM(4,1)

• n=24=16.
• Constants

– 0000 0000 0000 0000, 1111 1111 1111 1111.
• Linear

– 1010 1010 1010 1010, 0101 0101 0101 0101,
– 0000 1111 0000 1111, 0000 0000 1111 1111
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RM(r,4) code example

1                   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
x4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
x3x4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
x2x4 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
x1x4 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
x2x3 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
x1x3 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1
x1x2 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
x2x3x4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
x1x3x4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
x1x2x4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
x1x2x3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
x1x2x3x4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

JLM 20081102



51

McEliece Cryptosystem

• Bob chooses G for a large [n, k, d] linear code, we particularly want 
large d (for example, a [1024, 512, 101] Goppa code which can 
correct 50 errors in a 1024 bit block).  Pick a k x k invertible matrix, S, 
over GF(2) and P, an n x n permutation matrix, and set G1=SGP.  G1 
is Bob’s public key; Bob keeps P, G and S secret.

• To encrypt a message, x, Alice picks an error vector, e, and sends 
y=xG1+e (mod 2).

• To decrypt, Bob, computes y1=yP-1 and e1=eP-1, then y1=xSG+e1.  
Now Bob corrects y1 using the error correcting code to get x1.  
Finally, Bob computes x=x1S-1.

• Error correction is similar to the “shortest vector problem” and is 
believed to be “hard.”  In the example cited, a [1024, 512, 101] 
Goppa code, finding 50 errors (without knowing the shortcut) 
requires trying 1024C50>1085 possibilities. 

• A drawback is that the public key, G1, is largest.
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McEliece Cryptosystem example - 1

• Using the [7, 4] Hamming code,  G=  
1  0  0  0  1  1  0
0  1  0  0  1  0  1
0  0  1  0  0  1  1
0  0  0  1  1  1  1

• m=1011.

• S= 1  0  0  1             P=  0  0  1  0  0  0  0
1  1  0  1                   1  0  0  0  0  0  0
0  1  0  1                   0  0  0  0  1  0  0
1  1  1  0                   0  0  0  0  0  1  0

0  0  0  0  0  0  1
0  1  0  0  0  0  0
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McEliece Cryptosystem example - 2

• G1=  
0  0  1  1  0  1  0
1  0  1  0  0  1  1
1  1  0  0  0  1  0
1  0  1  0  1  0  0

• e= (0 1 0 0 0 0 0)
• y1= yP-1= (0 0 1 0 0 0 1)
• x1= (0 0 1 0 0 1 1)
• x0= (0 0 1 0)
• x= x0S-1= (1 0 1 1)
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End
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