Routing Algebras

What are routing algebras?

- Created to study properties of routing protocols
 - Does the routing protocol converge?
 - Does the routing protocol compute optimal paths?
- Separates the routing data & algorithm
 - Data \rightarrow what routes are exchanged, how they are updated
 - Logic \rightarrow how to compute paths (Dijkstra's, Bellman Ford, ...)

What are routing algebras?

Computing shortest paths

```
def ROUTING(G, d):
  for each node v ∈ V do
     dist[v] \leftarrow INT.MAX
  end
  dist[d] \leftarrow INT. MIN
  Q \leftarrow \{d\}
  while Q \neq \emptyset do
     u \leftarrow EXTRACT(Q)
     for each node v \in N(u) do
        dist[v] = min(dist[v], dist[u] + weight(u, v))
       if dist[v] changed do
          \mathbf{Q} \leftarrow \mathbf{Q} \cup \{\mathbf{v}\}
        end
     end
  end
end
```


Computing shortest paths

```
def ROUTING(G, d):
  for each node v ∈ V do
     dist[v] \leftarrow \infty
  end
  dist[d] \leftarrow 0
  Q \leftarrow \{d\}
  while Q \neq \emptyset do
     u \leftarrow EXTRACT(Q)
     for each node v \in N(u) do
       dist[v] = dist[v] \oplus (f_{(u,v)}(dist[u]))
       if dist[v] changed do
          Q \leftarrow Q \cup \{v\}
       end
     end
  end
end
```


Shortest path algebra

R = natural numbers $f_e(x) = x + weight(e)$ $x \bigoplus y = min(x, y)$ 0 = 0 $\infty = \infty$

 $SP = (Nat, F_+, min, 0, \infty)$

Other examples of algebras

R	\oplus	F	$\overline{\infty}$	$\overline{0}$	Use
\mathbb{N}_{∞}	min	F_+	∞	0	shortest paths
\mathbb{N}_{∞}	max	F_+	0	∞	longest paths
\mathbb{N}_{∞}	max	F_{\min}	0	∞	widest paths
[0, 1]	max	$F_{ imes}$	0	1	most reliable paths

"Asynchronous Convergence of Policy Rich Distributed Bellman-Ford Routing Protocols"

"Algebra and Algorithms for QoS Path Computation and Hop-by-Hop Routing in the Internet"

Properties of routing algebras

selectivity: $(a \bigoplus b) \in \{a, b\}$ we say $a \le b \Leftrightarrow a \bigoplus b = a$

monotonicity: $a \le f(a)$ or **strict monotonicity** a < f(a) the cost of paths does not decrease or increases

isotonicity: $a \le b \Rightarrow f(a) \le f(b)$ relative cost of two paths will not flip when extended

Results from routing algebras

for path vector protocols:

- 1. always converge \Leftrightarrow the algebra is strictly monotone
- 2. always optimal \Leftrightarrow the algebra is strictly monotone & isotone

Convergence of protocols

"Metarouting, Timothy Griffin 2005"