
Network verification
and synthesis

CSE 599N1

Sep 25, 2019

Who are we?

Ratul Mahajan
● UW → MSR → Intentionet → UW
● One of the first paper was “Understanding BGP misconfiguration” (2002)

Ryan Beckett
● Princeton → MSR
● Recently finished thesis: Network Control Plane Synthesis and Verification

○ Won the ACM SIGCOMM dissertation award and ACM Honorable Mention

What is verification?

“Mathematical analysis of a system to determine
rigorously if it meets some end-to-end goal”

Why bother with verification?
Mission critical systems

Ariane-5 self-destruction
software interface issue

Northeast Blackout
power control software

Boeing 737 Max crash
control software bug

Why bother with network verification?

Why bother with network verification?

[A]n unplanned data center outage costs companies more than $7,900 per
minute, and the cost continues to rise. The cost of downtime per minute has risen
an incredible 41% since 2010…the average cost per incident is now at a
staggering $690,200.

“Networks have become the infrastructure for the infrastructure… the cloud is
holding up the computation that supports the planet so it is mission critical and
can not have glitches.” -- Albert Greenberg (head of Azure)

https://www.youtube.com/watch?v=b94Iv-oN91s

https://www.youtube.com/watch?v=b94Iv-oN91s

Course Logistics

Why this course?
Lots of research activity in the past few years

● Has opened a new sub-field of networking
● Hard to make sense of it all

Important (and fun!) topic

● Combines networking with formal methods and programming languages

Course goals
We will collectively

● Synthesize work in this area
● Identify open research problems and promising new directions

Stretch goal: Write a survey paper with our experience and findings

Course organization
Primarily paper reading and projects

● One main paper per lecture
○ Each student will lead the discussion of at least one paper

■ Sign up now! Via Canvas → Collaborations → Paper signup

● Highly encourage you to read additional material

● Projects in groups of 2-3
○ Follow recommended plan (next slide)
○ Or, you may pick your own -- come talk to us first

Recommended project plan
Based on a small language for data plane and control plane (later today)

1. Dataplane verification [2 weeks]
2. Incremental or scalable dataplane verification [2 weeks]
3. Control plane simulation [2 week]
4. Control plane verification [2 weeks]
5. Control plane synthesis [2 weeks]

(Deadlines will go on the Web page soon)

Turning in projects
Code (pointer) and a short report

● Ideal: host on GitHub with a README.md
○ We should be able to clone and run (easily)

● Report should be no more than 2 pages
○ Detail the approach you took
○ Benchmark performance as a function of network size

Grades
Class participation: 40%

● Offline and in-class discussion
○ Additional reading is excellent fodder for offline discussion

● Paper presentation

Projects: 60%

Networking Background

Networking primer

How to get data packets across the network

How to get bits across a wire reliably

How to transport across electrical or mechanical interface

How to translate data for the application

How to set up and terminate application conversations

How to get data across the network reliably

How to enable human interaction with applications

Networking primer

How to get data packets across the network

Networking primer

How to get data packets across the network

Rich policies
● Business preferences
● Security
● Traffic engineering
● Fault tolerance

Complications
● Distributed protocols
● Complex interactions
● Vendor languages
● Middleboxes

Networking primer

Model Checking

SAT

SMT

BDDs

Abstract Interpretation

Symmetry reduction Bisimulation

Ternary symbolic execution

Formal Methods Toolbox

Assignment 1

Our dataplane language
Dataplane:
● Abstracts away many details
● Topology, forwarding tables, ACLs
● YAML based format

Specification:
● Collection of reachability statements
● Specifies packet headers, ingress + egress locations
● YAML based format

Fields are always fully specified for simplicity

Dataplane format

Device interfaces

Forwarding table rules
as an ordered list Access control lists

Query format

If a packet enters one of
these ingress interfaces

Then the packet must
exit one of these egress
interfaces

So long as the
packet has one of
these headers

Questions?

