
From Online Softmax to FlashAttention
by Zihao Ye

Email: zhye@cs.washington.edu

May 11, 2023

UW CSE 599M Spring 2023: ML for ML Systems

The key innovation of FlashAttention [1] is using an idea similar to Online Softmax [3] to tile
the self-attention computation, so that we can fuse the entire multi-head attention layer without
accessing GPU global memory for intermediate logits and attention scores. In this note I'll briefly
explain why tiling self-attention computation is non-trivial, and how to derive FlashAttention
computation from online softmax trick.

We thank Andrew Gu for proofreading this note.

1 The Self-Attention

The computation of Self-Attention can be summarized as (we ignore heads and batches because
computation on these dimensions are fully parallel, we also omit details such as attention masks
and scale factor 1

D
p for simplicity):

O= softmax(QKT)V (1)

where Q; K; V ; O are both 2D matrix with shape (L; D), where L is the sequence length and
D is the dimension per head (a.k.a. head dimension), the softmax applies to the last dimension
(columns).

The standard approach to computing self-attention is to factorize the computation into several
stages:

X = QKT (2)
A = softmax(X) (3)
O = AV (4)

We call X matrix the pre-softmax logits, A matrix the attention score and O matrix the output.

One amazing fact about FlashAttention is that we don't need to materialize X and A matrices
on global memory, instead we fuse the entire computation in formula 1 in a single CUDA kernel.
This requires us to design an algorithm that carefully manages on-chip memory (like stream
algorithms) because NVIDIA GPU's shared memory is small.

For classical algorithms such as matrix multiplication, tiling is used to ensure that on-chip
memory does not exceed hardware limits. Figure 1 provides an example of this. During kernel exe-
cution, only 3T 2 elements are stored on-chip, regardless of the matrix shape. This tiling approach
is valid because addition is associative, allowing for the decomposition of the entire matrix multi-
plication into the sum of many tile-wise matrix multiplications.

However, Self-Attention includes a softmax operator that is not directly associative, making it
hard to simply tile Self-Attention like in Figure 1. Is there a way to make softmax associative?
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Figure 1. The figure about briefly explains how to tile input and output matrices for matrix multiplication
C =A�B, the matrices are partitioned to T � T tiles. For each output tile, we sweep the related tiles in
A for left to right, and related tiles in B for top to down, and load the values from global memory to on-
chip memory (colored in blue, the overall on-chip memory footprint is O(T 2)). For tile-wise partial matrix
multiplication, for position (i; j), we load A[i; k] and B[k; j] (colored in red) for all k inside the tile from on-
chip memory, then aggregate A[i; k]�B[k; j] to C[i; j] in on-chip memory. After the commputation of a
tile is complete, we write the on-chipC tile back tomainmemory andmove on to the processing the next tile.

Tiling in real world application is much more complicated, you can refer to Cutlass implementation of
matrix multiplication on A100 [2].

2 (Safe) Softmax

Let's recall the softmax operator first, below is the generic formula of softmax computation:

softmax(fx1; : : : ; xNg)=
(

exiP
j=1
N exj

)
i=1

N

(5)

Note that xi might be very large and exi can easily overflow. For instance, the maximum number
that float16 can support is 65536, which means that for x>11, ex would exceed the effective range
of float16.

To mitigate this issue, mathematical software often employs a trick known as the �safe� softmax:

exiP
j=1
N exj

= exi¡mP
j=1
N exj¡m

(6)

where m=maxj=1N (xj), so that we can confirm each xi¡m6 0, which is safe because the expo-
nential operator is accurate for negative inputs.
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Then we can summarize the computation of safe softmax as the following 3-pass algorithm:

Algorithm 3-pass safe softmax

Notations
fmig: maxj=1i fxjg, with initial value m0=¡1.

fdig:
P

j=1
i

exj¡mN, with initial value d0=0, dN is the denominator of safe softmax.
faig: the final softmax value.

Body
for i 1; N do

mi max (mi¡1; xi) (7)

end
for i 1; N do

di di¡1+ exi¡mN (8)

end
for i 1; N do

ai 
exi¡mN

dN
(9)

end

This algorthm requires us to iterate over [1; N ] for 3 times. In the context of self-attention in
Transformer, the fxig are pre-softmax logits computed by QKT . This means if we don't all logits
fxigi=1N (we don't have large enough SRAM to fit all of them), we need to access Q and K three
times (to re-compute logits on-the-fly), which is not I/O efficient.

3 Online Softmax

If we fuse the equation 7, 8 and 9 in a single loop, we can reduce the global memory access time
from 3 to 1. Unfortunately, we cannot fuse equation 7 and 8 in the same loop because 8 depends
on mN, which cannot be determined until the first loop completes.

We can create another sequence di0 :=
P

j=1
i e

xj¡mi as a surrogate for original sequence di :=P
j=1
i

exj¡mN to remove the dependency on N , and the N -th term of these two sequence are
identical: dN=dN0 , thus we can safely replace dN in equation 9 with dN0 . We can also find a recurrence
relation between di

0 and di¡1
0 :

di
0 =

X
j=1

i

exj¡mi

=

0@X
j=1

i¡1

exj¡mi

1A+ exi¡mi

=

0@X
j=1

i¡1

exj¡mi¡1

1Aemi¡1¡mi+ exi¡mi

= di¡1
0 emi¡1¡mi+ exi¡mi (10)

This recurrent form only relies on mi and mi¡1, and we can compute mj and dj
0 together in the

same loop:
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Algorithm 2-pass online softmax

for i 1; N do

mi  max (mi¡1; xi)
di
0  di¡1

0 emi¡1¡mi+ exi¡mi

end
for i 1; N do

ai 
exi¡mN

dN
0

end

This is the algorithm proposed in Online Softmax paper [3]. However, it still requires two passes
to complete the softmax calculation, can we reduce the number of passes to 1 to minimize global
I/O?

4 FlashAttention

Unfortunately, the answer is �no� for softmax, but in Self-Attention, our final target is not the
attention score matrix A, but the O matrix which equals A�V . Can we find a one-pass recurrence
form for O instead?

Let's try to formulate the k-th row (the computation of all rows are independent, and we explain
the computation of one row for simplicity) of Self-Attention computation as recurrence algorithm:

Algorithm Multi-pass Self-Attention

Notations
Q[k;: ]: the k-th row vector of Q matrix.
KT [:; i]: the i-th column vector of KT matrix.
O[k;: ]: the k-th row of output O matrix.
V [i;: ]: the i-th row of V matrix.
foig:

P
j=1
i ajV [j ;: ], a row vector storing partial aggregation result A[k;: i]�V [: i;: ]

Body
for i 1; N do

xi  Q[k;: ]KT [:; i]
mi  max (mi¡1; xi)
di
0  di¡1

0 emi¡1¡mi+ exi¡mi

end
for i 1; N do

ai  
exi¡mN

dN
0 (11)

oi  oi¡1+aiV [i;: ] (12)

end

O[k;: ] oN
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Let's replace the ai in equation 12 by its definition in equation 11:

oi :=
X
j=1

i �
exj¡mN

dN
0 V [j ;: ]

�
(13)

This still depends on mN and dN which cannot be determined until the previous loop completes.
But we can play the �surrogate� trick in section 3 again, by creating a surrogate sequence o0:

oi
0 :=

0@X
j=1

i
exj¡mi

di
0 V [j ;: ]

1A
The n-th element of o and o0 are the identical: oN0 = oN, and we can find a recurrence relation
between oi0 and oi¡10 :

oi
0 =

X
j=1

i
exj¡mi

di
0 V [j ;: ]

=

0@X
j=1

i¡1
exj¡mi

di
0 V [j ;: ]

1A+ exi¡mi

di
0 V [i;: ]

=

0@X
j=1

i¡1
exj¡mi¡1

di¡1
0

exj¡mi

exj¡mi¡1

di¡1
0

di
0 V [j ;: ]

1A+exi¡mi

di
0 V [i;: ]

=

0@X
j=1

i¡1
exj¡mi¡1

di¡1
0 V [j ;: ]

1Adi¡1
0

di
0 emi¡1¡mi+ exi¡mi

di
0 V [i;: ]

= oi¡1
0 di¡1

0 emi¡1¡mi

di
0 +e

xi¡mi

di
0 V [i;: ] (14)

which only depends on di
0, di¡10 , mi, mi¡1 and xi, thus we can fuse all computations in Self-

Attention in a single loop:

Algorithm FlashAttention

for i 1; N do

xi  Q[k;: ]KT [:; i]
mi  max (mi¡1; xi)
di
0  di¡1

0 emi¡1¡mi+ exi¡mi

oi
0  oi¡1

0 di¡1
0 emi¡1¡mi

di
0 +e

xi¡mi

di
0 V [i;: ]

end
O[k;: ] oN

0

The states xi, mi, di0, and oi0 have small footprints that can easily fit into GPU shared memory.
Because all operations in this algorithm are associative, it is compatible with tiling. If we compute
the states tile-by-tile, the algorithm can be expressed as follows:

Algorithm FlashAttention (Tiling)

New Notations
b: the block size of the tile
#tiles: number of tiles in the row, N = b�#tiles.
xi: a vector storing the Q[k]KT value of the i-th tile [(i¡ 1) b: i b].
mi
(local): the local maximum value inside xi.
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Body
for i 1;#tiles do

xi  Q[k;: ]KT [:; (i¡ 1) b: i b]

mi
(local) = max

j=1

b
(xi[j])

mi  max
¡
mi¡1;mi

(local)�
di
0  di¡1

0 emi¡1¡mi+
X
j=1

b

exi[j]¡mi

oi
0  oi¡1

0 di¡1
0 emi¡1¡mi

di
0 +

X
j=1

b
exi[j]¡mi

di
0 V [j+(i¡ 1) b;: ]

end
O[k;: ] oN/b

0

The figure 2 illustrate how to map this algorithm to hardware.

Figure 2. The diagram above illustrates how FlashAttention is computed on hardware. The blue-colored
blocks represent the tiles that reside in SRAM, while the red-colored blocks correspond to the i-th row. L
denotes the sequence length, which can be quite large (e.g., 16k), D denotes the head dimension, which is
usually small in Transformers (e.g., 128 for GPT3), and B is the block size that can be controlled.

Notably, the overall SRAM memory footprint depends only on B and D and is not related to L. As a
result, this algorithm can scale to long context without encountering memory issues (GPU shared memory
is small, 228kb/SM for H100 architecture). During the computation, we sweep the tiles from left to right
for KT and A, from top to bottom for V , and update the state of m, d, and O accordingly.
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