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1 Introduction

For all the algorithms we have studied in this class so far, we have evaluated regret relative to the best arm
in hindsight. In some situations trying to pick just one arm is an inappropriate model. As an example,
let’s consider a music recommendation system. Spotify should not recommend the same song all year long;
we might expect that love songs are popular in February, party music in the summer, and holiday music in
the winter. This reflects changing preferences over time. A more appropriate regret model in this cases is
relative to the best arm at each time step. Let’s formalize this notion: at each time t = 1, . . . , T , each of
the arms a = 1, . . . ,K has some true (unknown to the learner) mean µt(a). The learner’s notion of regret
compares to the best arm at every time step,

RT :=

T∑
t=1

max
a∈[K]

µt(a)− E

[
T∑
t=1

µt(at)

]
(1)

where at is the arm selected by the algorithm at time t. We will measure regret in terms of the number
of switches L, where a switch occurs whenever some arm’s mean changes (even if that doesn’t change the
identity of the best arm). The regret in (1) is known as the dynamic regret, in contrast to the static regret
in stationary MAB problems.

Do our traditional multi-armed bandit algorithms work in the context of this regret? The answer is no.
As an example, let’s take a look at what happens if we try standard UCB on a switching instance, shown in
Figure 1. In this instance, all reward is on arm 1 in the first half, and all on arm 0 in the second half. We can
see that UCB quickly updates its estimate of arm 0’s mean after the switch to align well with the true mean,
but it does not make a corresponding shift for arm 1. This is reflected in climbing regret after the halfway
point, and we can see the fraction of pulls allocated to each arm converges to be equal by the end of the run.
The core problem here is that traditional multi-armed bandit approaches do not forget old information —
we’ll need new approaches that are able to adapt to switches. In order to evaluate any new approaches, we
should first understand the limits of how well any algorithm could hope to do in the switching setting.

2 Lower Bounds - Stochastic is as hard as adversarial

In this section, we will consider the following simplified version stochastic switching bandit model,

Xt(a) = µt(a) + ηt, ηt
i.i.d.∼ N (0, 1), (2)

where µt(a) is the mean reward of arm a ∈ 1, . . . ,K at time t = 1, . . . , T , and the player observes the reward
Xt(a). Given a list of actions at and reward vector µ, we will measure the performance of algorithms using
the dynamic or non-stationary regret

RT (µ) =

T∑
t=1

max
i∈[k]

µt(i)− E

[
T∑
t=1

µt(at)

]
, (3)

where the expectation is taken over randomness of the noise ηt in (2) and the action sequence at, t = 1, . . . , T .
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Theorem 1 (Theorem 31.2 in Lattimore and Szepesvári (2020)). Let K = 2, and fix ∆ ∈ (0, 1) and a policy
π. Consider the two-arm stochastic bandit problem with the following mean reward vector µ: µt(i) = µi, i =
1, 2 is constant for both arms, and ∆ = µ1 − µ2 > 0. If the expected regret RT (µ) of π on bandit µ satisfies
RT (µ) = o(T ), then for sufficiently large T , there exists a non-stationary bandit µ′ with at most two change
points and mint∈[T ] |µ′t(1)− µ′t(2)| ≥ ∆ such that RT (µ′) ≥ T/(22RT (µ)).

Before proving Theorem 1, we remark that it is quite insightful despite the simple set-up. In particular,
Theorem 1 implies that if a policy enjoys log T regret (e.g., UCB in the stochastic MAB setting), then its worst
case regret against non-stationary bandits with at most two changes in the mean reward is lower bounded by
Ω(n/ log n). Similarly, if a policy enjoys RT (µ) = O(

√
T ), then its minimax regret is at least Ω(

√
T ) on some

non-stationary bandit. In particular, this implies that even in the asymptotic sense, algorithms like Exp3.S
(Auer et al., 2002) is optimal. An informal intuition for the pessimistic result is that any algorithm that
anticipates the possibility of an abrupt change in the optimal arm must frequently explore all sub-optimal
arms to ensure that no change has occurred.

We need the following Lemmas to prove Theorem 1.

Lemma 2 (Theorem 14.2 in Lattimore and Szepesvári (2020)). Let P and Q be probability measures on the
same measurable space (Ω,F), and let A ∈ F be an arbitrary event. Then,

P (A) +Q(Ac) ≥ 1

2
exp (−D(P‖Q)), (4)

where D(P‖Q) is the Kullback-Leibler divergence between P and Q.

Lemma 3 (Lemma 15.1 in Lattimore and Szepesvári (2020)). Let ν = (P1, . . . , Pk) be the reward distribution
associated with one k-arm bandit, and ν′ = (P ′1, . . . , P

′
k) be the reward distribution associated with another

k-arm bandit. Fix some policy π and let Pν (and Pν′) denote the probability measures on the stochastic bandit
models induced by T -round interactions of π and ν (and ν′, respectively). Then

D(Pν‖Pν′) =

k∑
i=1

Eν [Ti]D(Pi‖P ′i ), (5)

where Ti is the number of times the arm i was pulled by policy π.

We now proceed to prove Theorem 1.

Proof. Consider a partition (Sj)
L
j=1 of [n] into L intervals of equal elements. Let Pµ,Eµ denote the prob-

abilities and expectations with respect to the model (2) with mean reward µ, and let Pµ′ ,Eµ′ denote the
probabilities and expectations with respect to the model (2) with mean reward µ′.

Let Ti =
∑T
t=1 1{at = i} be the number of times the algorithm chooses action i, we have

Eµ[T2] = Eµ

[
T∑
t=1

1{at = 2}

]
= Eµ

 L∑
j=1

∑
t∈Sj

1{at = 2}

, (6)

which implies that there exists j∗ ∈ [L] such that

Eµ

 ∑
t∈Sj∗

1{at = 2}

 = min
j∈L

Eµ

∑
t∈Sj

1{at = 2}

 ≤ 1

L
Eµ

 L∑
j=1

∑
t∈Sj

1{at = 2}

 =
Eµ[T2]

L
. (7)

Now define the mean reward µ′ such that µ′t(1) = µt(1),∀t ∈ [T ], and µ′t(2) =

{
µt(2) + ε if t ∈ Sj∗
µt(2) otherwise

,

where ε =
√

2L
Eµ[T2] . Then, we have

Pµ

 ∑
t∈Sj∗

1{at = 2} ≥ |Sj
∗ |

2

+ Pµ′

 ∑
t∈Sj∗

1{at = 2} < |Sj
∗ |

2

 1.

≥ 1

2
exp (−D(Pµ‖Pµ′))

2.

≥ 1

2
exp

(
−Eµ[T2]ε

2

2L

)
3.
=

1

2e
,

(8)
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where 1. follows from Lemma 2, and 2. follows from Lemma 3 and applying the facts that (i) the expected
number of pulls of arm 2 is Eµ[T2]/L, and (ii) D(N (µ(2), I),N (µ′(2), I)) = ||µ(2) − µ′(2)||22. Finally, 3.
follows from our choice of ε.

Moreover,

Pµ

∑
t∈Sj∗

1{at = 2} ≥ |Sj
∗ |

2

 1.
≤ 2

|Sj∗ |
Eµ

∑
t∈Sj∗

1{at = 2}

 2.
≤ 2Eµ[T2]

L|Sj∗ |
3.
≤ 1

∆2|Sj∗ |
. (9)

Here, 1. follows from Markov’s inequality; 2. follows from the linearity of expectation. In 3., we choose
L = d2∆2Eµ[T2]e and take T large enough so that L ≤ T . In particular, this choice of L implies that ε ≥ 2∆
so that µ′ satisfies mint∈[T ] |µ′t(1)− µ′t(2)| ≥ ∆.

Therefore,

RT (µ′)
1.
≥ (ε−∆) · Eµ′

 ∑
t∈Sj∗

1{at 6= 2}

 2.
≥ (ε−∆) · Pµ′

∑
t∈Sj∗

1{at 6= 2} ≥ |Sj
∗ |

2

 · |Sj∗ |
2

3.
≥ (ε−∆)|Sj∗ |

2

(
1

2e
− 1

∆2|Sj∗ |

)
4.
≥
⌊
T

L

⌋
∆

4e
− 1

2∆

5.
≥ 1

8e

T

∆Eµ[T2]
− 1

2∆
. (10)

Here, 1. follows from only considering the regret for t ∈ S∗j and 2. follows from Markov’s inequality. In step
3., we combine the results in (8) and (9). Finally, we apply the definition of the partition Sj and L in steps
4 and 5, respectively.

Recall that RT (µ) = ∆Eµ[T2]; therefore if RT (µ) = o(T ), then we know that for sufficiently large T , we
have RT (µ′) ≥ 1

d8ee
T

RT (µ) = 1
22

T
RT (µ) .

3 A Breif History of Non-Stationary Bandits

Interactive learning in non-stationary context has been a problem of interest for decades. An early line
of work to explicitly frame this as a bandit problem was initiated by Gittins (1974), which simplified the
problem by assuming that only the current best arm could change. This avoids the difficulties of sampling
non-optimal arms without accruing too much regret. The restless bandit problem (Whittle, 1988) does
not make this simplifying assumption, instead assuming that all of the means can change by some known
stochastic process. This is a “known hard problem.” In 2002, Auer (Auer et al., 2002) re-framed non-
stationarity as an adversarial process — now there did not need to be any statistical process or distribution
behind the changes. In addition to introducing the concept of best-arm-in-hindsight regret to make the fully
adversarial case tractable, he also introduced the notion of measuring regret against an arbitrary baseline
policy, which could be parameterized by a hardness measured by the number of times the baseline switches
which arm it is pulling. This is the first instance of what was later formalized by Yu and Mannor (2009)
and Garivier and Moulines (2011a) as “switching regret.” Other branches of work measure regret relative to
absolution variation of arm means (Slivkins and Upfal, 2008; Besbes, Gur, and Zeevi, 2014), which coined
“dynamic regret.” To differentiate it from the switching case. In this document we use “dynamic regret”
to refer to the switching case, following our textbook. Until recently, algorithms that solve the switching
bandit problem (see Table 1) have required parameter tuning with advanced knowledge of the number of
switches in order to achieve optimal regret. Recently, several works (see Table 2) have attempted to drop this
requirement, at the expense of suboptimal regret. AdSwitch (Auer et al., 2019), and concurrent work (Chen
et al., 2019) are the first works to achieve optimal regret without needing this additional information.

AdSwitch builds on insights from much previous work, each of which solves an additional layer of prob-
lems. The first is that in a switching bandit, any arm could change, so we need to sample non-optimal arms
more frequently to see if they get better. In Auer et al. (2002), EXP3.S is proposed, which adds an extra
uniform term to each arm’s weight at every step of EXP3 to encourage more exploration. The knowledge
of the number of switches is needed to tune this weight; intuitively, more switches means you need to check
sub-optimal arms more frequently. As we saw with the UCB example earlier, just sampling sub-optimal
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Algorithm Regret
Required

knowledge
EXP3.S

(Auer et al., 2002)
O
(√

KLT log(KT )
)

L

O
(
L
√
KT log(KT )

)
EXP4 O

(√
KLT log (KT/L)

)
L

Online
Mirror Descent

O
(√

KLT log (KT/L)
)

L

O
(
L
√
KT log(KT/L)

)
Discounted UCB

(Kocsis and Szepesvári, 2006; Garivier and Moulines, 2011b)
O
(
K
√
LT log T

)
L

Sliding-window UCB
(Garivier and Moulines, 2011b)

O
(
K
√
LT log T

)
L

ADSWITCH
(Auer et al., 2019)

O
(√
KLT log T

)
Table 1: A selected summary of existing results on non-stationary multi-arm bandit problem. Here, we
denote by T the number of rounds, L the number of changes in the mean reward, and K the number of
arms. We note that a known lower bound for any policy is Ω(

√
KLT ).

arms does not necessarily stop us from getting stuck on old best-arms. To do this you need some sort of
forgetting, either down-weighting (Kocsis and Szepesvári, 2006) or throwing out (Garivier and Moulines,
2011a) older samples in case they are out-of-date. Again, knowing the number of switches in advance lets
you tune how much or how frequently to forget. The problem with dropping out old samples is that it makes
our estimates less accurate — ideally we should only be throwing out information when there actually is a
switch. Detecting these switches is the domain of Change Point Analysis; a topic too broad to cover here,
we refer the reader to Aminikhanghahi and Cook (2017) for a survey of methods. In the context of switch-
ing bandits, Hartland et al. (2006) used change point detection to predict when a switch occurs, and tried
both down-weighting and dropping older samples, which they evaluated empirically. Later, Yu and Mannor
(2009), Karnin and Anava (2016), Auer, Gajane, and Ortner (2018), and Luo et al. (2018) incorporated
change point detection into their bandit algorithms with regret guarantees.

Change point detection is not infallible, and it can be susceptible to problems if changing arms are
sampled too infrequently so that an actual switch is within the uncertainty of the mean given how many
samples we have. To circumvent this, Karnin and Anava (2016) sample the same arm consecutively to get
a good current mean estimate (for 2-armed contextual bandits), under the assumption that switches in the
middle of a consecutive sampling are unlikely. Luo et al. (2018) extend this idea to multi-armed contextual
bandits. The final key contribution that AdSwitch builds on is the realization that we only care about
changes to an arm larger than their optimality gap, and that the number of samples needed to detect a
change is smaller for larger gaps, which presents an opportunity to balance sampling of suboptimal arms
based on their gap sizes. This was used to get optimal regret for the 2-arm case by Auer, Gajane, and Ortner
(2018), the direct predecessor to AdSwitch.

4 Adaptively Tracking the Best Bandit Arm with an Unknown
Number of Distribution Changes

This paper improves upon past results by achieving O(
√
KLT log T ) regret (which matches the lower bounds

up to logarithmic factors) without knowledge of the number of switches. Recall the core challenge of the
switching bandits setting: you must sample suboptimal arms frequently enough to know whether they have
changed, but not so frequently that you incur large regret when they have stayed suboptimal. Attaining the
lower bound without knowing the number of switches is difficult because, at first glance, it seems like you
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Algorithm Regret MAB Variant

Karnin and Anava (2016) O
(
V .82T .18 + T .77

)
2-armed Contextual

Luo et al. (2018) O
(
L1/4T 3/4V 1/5T 4/5T 3/4

)
Contextual

Auer, Gajane, and Ortner (2018) O
(√

LT
)

2-arm

Cheung, Simchi-Levi, and Zhu (2019) O
(
V 1/3T 2/3 + T 3/4

)
Linear

O
(√

LT + T 3/4
)

General

Table 2: A selected summary of existing results on non-stationary multi-arm bandit problem. Here, we
denote by T the number of rounds, L the number of changes in the mean reward (or V the total variation,
see Equation (18)), and K the number of arms. We note that a known lower bound for any policy is

Ω(
√
KLT ) or Õ

(
V

1
3T

2
3

)
.

must know the total number of switches in order to choose a sampling rate. For example, suppose an arm has
a suboptimality gap of ∆ compared with the best arm. In order to balance the regret due to sampling that
arm with probability p when it doesn’t change (pT∆K over all K arms) against the regret due to missing
out on sampling that arm if it became the best arm (L∆ 1

p∆2 across all L changepoints), it would suggest a
sampling rate that sets these two quantities equal:

p =

√
L
KT

∆
. (11)

4.1 The AdSwitch Approach

What can be done in the absence of knowledge of L? This paper addresses this question by providing
an elimination-style algorithm in which eliminated arms are occasionally checked for changes. This paper
contains three main innovations:

• Instead of sampling each suboptimal arm with some probability, and waiting for those samples to
accumulate to detect a change, this paper introduces the notion of sampling obligations. With some
probability, the algorithm decides to take enough samples to detect a change in a given suboptimal
arm. These samples are collected nearly sequentially, which reduces the chance that a changepoint
occurs in the middle of sampling the arm. The frequency of enqueueing sampling obligations is the
second innovation.

• If an eliminated arm improves by twice as much, it should be sampled twice as often, but it only
requires a quarter as many samples to identify the change. We can hedge against any size change in
the suboptimal arms by sampling for a change of 2m∆ in (2m∆)−2 steps, which means we can sample
for a change of size 2m∆ with probability proportional to 2m∆, and if m = 0, 1, 2, . . ., the number of
samples we spend on suboptimal arms is a summable sequence.

• Finally, to decide with what probability to check a suboptimal arm for a gap of size ε, this paper uses

pε =

√
`
KT

∆
(12)

where `, the number of changepoints detected so far, replaces L, the known number of changepoints, in
Equation (11). Even though ` is an underestimate of L, the authors show that this sampling schedule
is sufficient to get optimal regret.

An annotated version of the algorithm is shown in Figure 2. We also note that this algorithm has high com-
putational complexity, driven by the O(Kt3) complexity of a naive implementation of changepoint detection
for good arms. This can be reduced with caching, or by discretizing time into intervals for the purpose of
changepoint detection.
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4.2 Proof Sketch and Analysis Details

We begin with an interesting analysis technique from the paper: the idea of “intervals without change.”
Recall that one innovation of this paper was to enqueue an entire sampling obligation at once to detect a
change of size ε in a suboptimal arm, instead of sampling each arm with some probability at every time. The
purpose was to roughly sample arms consecutively, so that arms didn’t change between samples. However,
there is still no way to ensure that the arms don’t change within a single “check” of a bad arm. The analysis
addresses this by dividing the time horizon into “intervals of no change” - defined as time intervals where
the means don’t switch and the algorithm does not detect a changepoint (therefore starting a new episode).
The claim is that there are at most 2L such segments, so running the analysis over these intervals (instead
of the L intervals where the arms are not changing) only increases the regret by a factor of 2. We sketch the
argument below:

Proposition 1. If the good event holds (ie, all estimated quantities stay within their confidence intervals),
there are no false positive changepoint detections.

Proof. The proof follows immediately from the way we set up changepoint detection - confidence intervals
are constructed on the means of an arm for subsets of the episode, and a changepoint is declared if the
confidence intervals on means at different time intervals do not overlap.

Proposition 2. If there are L changepoints and the good event holds, then there are at most 2L “intervals
of no change,” in which there is no changepoint and the algorithm does not start a new episode.

Proof. This hinges on the absence of false positive changepoint detections; we know there are at most L
changepoints detected, and each changepoint can only add at most one interval without change to the total.
See Figure 3 for a sketch.

The following proof sketch proceeds over these intervals of no change. The full analysis includes several
cases detailing the possible ways the arms can switch, but in this treatment, we just consider regret incurred
from sampling suboptimal arms, and from failing to detect changed arms.

Proposition 3. If the good event holds (all estimates stay within their confidence intervals), the total regret
is Õ(

√
LKT ).

Sketch. We consider two cases: regret incurred by sampling suboptimal arms when they have not changed,
and regret incurred by failing to sample an eliminated arm that is now good.

We begin with the first case. If the arm is ∆-suboptimal, and the algorithm takes nε ≈ ε−2 samples with

probability pε ≈ ε
√

`
KT at every time step, then the regret incurred is

∑
ε=∆,2∆,4∆,...

pεTnε∆ ≈
∑

ε=∆,2∆,4∆,...

∆

ε

√
`T

K
(13)

=

√
`T

K

∑
m=1,2,4,...

1

m
(14)

≤ 2

√
`T

K
(15)

Summing over K inferior arms, the regret is Õ(
√
`KT ), which, since ` ≤ L, is also Õ(

√
LKT ).

The second source of regret we consider is the regret that comes from failing to sample an eliminated
arm that has become the best arm since its elimination. In this case, we will incur regret until we perform
a sampling obligation that detects this change. A change of size ε will be detected if we perform a check
for gaps ≤ ε, which happens with probability of order pε. Therefore, the regret incurred while waiting to
perform this check is ∑

`∈[L]

ε · 1

pε
≈
∑
`∈[L]

√
KT

`
(16)

.
√
KTL. (17)
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We conclude that the regret from these two sources is Õ(
√
LKT ).

4.2.1 Other Cases

We will not cover other three cases, since that analysis is more verbose. However, in all three cases we
assume that arm at is a bad arm.

2. We are coming back to a bad arm to see if it became optimal, and the gap between it optimal arm has
not changed much.

3. We are coming back to a bad arm to see if it became optimal, and it got worse than when we evicted
it. We want to minimize sampling in this case, since we suffer large regret, but we still have to check
these arms.

4. We are coming back to a bad arm to see if it became optimal, and the best arm got better than when
arm at was evicted. We also want to minimize sampling in this case, since we suffer large regret.
However, since we might choose arm at (due to initial estimate of the gap being small) that change in
arm mean should be fast to detect.

As we can see in all cases we want to limit the number of times arm is pulled. However, in case 2nd case
we limit that number, and show that suffered regret is still Õ(

√
KLT ). In cases 3rd and 4th case we show

that the change is quickly detected and the algorithm starts a new episode, where arm is quickly eliminated,
thus reducing the regret.

5 Other Topics in Non-Stationary Bandits

5.1 Measuring Non-Stationarity

The works we have discussed so far use L, the total number of switches, to measure the non-stationarity of
nature. The tacit assumption is that means are changing abruptly at discrete point in time. Another view
of non-stationarity says that means are changing gradually but frequently. Works that take this view use V ,
the total variation of the reward µ, as a measure of non-stationarity (Besbes, Gur, and Zeevi, 2014):

V :=

T∑
t=1

sup
k∈[K]

|µt(k)− µt+1(k)|. (18)

Table 2 contains a few selected results with V as the measure of non-stationarity; we remark that a

corresponding lower bound in this case is Õ
(
V

1
3T

2
3

)
(Lattimore and Szepesvári, 2020).
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Figure 1: UCB applied to a switching instance.
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Figure 2: An annotated copy of the AdSwitch algorithm. AdSwitch is an elimination-style algorithm in
which arms are sampled round-robin (line 13) until they are eliminated (lines 22-25). In contrast with a
typical elimination algorithm, eliminated arms are occasionally tested to ensure that they have not changed
(lines 10-11). Whenever an arm is sampled, changepoint detection is run to test whether the arm mean has
changed (lines 15-21). When a changepoint is detected, all history is forgotten and arm means are reset.

Figure 3: A sketch arguing that, as long as changepoint detection has no false positives, there are at most
2L intervals without change.
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