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1 Introduction

In this scribe note, we provide an overview of recent work deriving data-dependent bounds for adversarial
bandits. This line of work asks the question of whether improved regret bounds can be obtained when the
loss sequence is not completely adversarial. In other words, while classical algorithms such as Exp3 obtain
worst-case optimal regret of Õ(

√
KT ) where K is the number of actions and T is the time-horizon, this line

of work explores algorithms that can adapt to easier loss sequences and provides regret bounds in terms
of meaningful characteristics of the loss sequence. Deriving results of this nature requires novel algorithms
and analysis methods. In particular, variants of optimistic mirror descent framework have emerged as the
primary algorithmic method that can naturally adapt to easy data with careful choices of the parameters
and the regularization function. We give a high level overview of these methods and highlight main results.

Problem Setup and Regret Definition. For the majority of this document, we consider the standard
adversarial bandit problem with K arms and a time horizon of T . For reasons that become clear later on,
we often represent any arm i by the i-th canonical basis vector ei and the collection of these vectors as the
set X . The convex hull of X denoted by Ω = conv(X ) corresponds to the standard simplex. In general,
the losses at each time are assumed to be bounded. That is, `t,i ∈ [−1, 1] or `t,i ∈ [0, 1] for all times t and
actions i ∈ [K]. The goal is to minimize the regret during the course of the algorithm. The regret is defined
as

R(T ) =

T∑
t=1

`t,it −
T∑
t=1

`t,i∗

where it denotes the arm selection by an algorithm at time t and the i∗ = mini∈[K]

∑T
t=1 `t,i denotes the

best fixed arm in hindsight. The purpose of the line of work reviewed in this document is to obtain expected
regret bounds that replace the usual dependence on T with a data-dependent quantity.

Data-Dependent Quantities. Toward defining key data-dependent quantities, we present notation for
problem and arm-dependent quantities. For any arm i ∈ [K] and round t ∈ [T ], we denote the accumulated

loss by Lt,i :=
∑t
s=1 `s,i, the mean loss by µt,i :=

Lt,i
t , the unnormalized variance byQt,i :=

∑t
s=1(`s,i−µt,i)2,

and the “first-order path length” Vt,i :=
∑t
s=1 |`s,i − `s−1,i|. Existing data-dependent regret bounds for

adversarial bandit problems replace the usual dependence on T with one of the following quantities:

• Variance (unnormalized) of the best arm (non-negative losses):

QT,i∗ =
∑T
t=1(`t,i∗ − µt,i∗)2

• K times the path length of the best arm:

KVT,i∗ = K
∑T
t=1 |`t,i∗ − `t−1,i∗ |

• Sum of the path lengths of all arms:∑K
i=1 VT,i =

∑K
i=1

∑T
t=1 |`t,i − `t−1,i|
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• Best-of-both worlds type of guarantee:

min
{√

KLT,i∗ ,
K
∆

}
= min

{√
K
∑T
t=1 `t,i∗ ,

K
∆

}
where the latter term is applicable when there is an arm whose expected loss is always smaller than
that of all other arms by a fixed gap ∆.

Each of the data-dependent quantities can be O(T ) in the worst-case, but can potentially be much smaller.
In general, the quantities improve over the usual worst-case dependence on T when the loss sequences
(potentially that of the optimal arm) either have low variance or are slowly changing. In the next section, we
present an algorithmic framework which dependent on the parameter choices can obtain regret guarantees
for each of the quantities above. We will focus our presentation on the path-length regret bounds. Following
that, we go into an improved path-length regret bound with slightly different algorithmic techniques. Finally,
we cover application of these methods to the linear bandit problem in the final section.

2 BROAD-OMD Algorithm Framework

In this section, we present the BROAD-OMD algorithmic framework [4]. The BROAD-OMD framework is a
general algorithmic framework based on optimistic mirror descent that can be tweaked to optimize for regret
bounds in terms of particular data-dependent quantities.

The BROAD-OMD framework is based on a randomized algorithm that computes a distribution ωt on
the simplex Ω = conv(X ) over the action set X = {e1, . . . , eK} and then samples an action it ∼ ωt to play at
the given round t ∈ [T ]. Following the action selection the loss of the action taken it given by `t,i is observed
and realized, while the losses of all other actions are not observed. This setup follows the usual approach
for adversarial bandits, where the key distinctions will come from how the distribution ωt is chosen at each
time t ∈ [T ] and also how the losses of actions not taken are estimated which we denote by ˆ̀

t,i.
Toward fully introducing the BROAD-OMD framework, we need to recall the definition of the Bregman

divergence with respect to a regularization function. Let Ψ be a convex function defined on a convex set Ω.
The Bregman divergence between any x, y ∈ Ω with respect to Ψ is defined as

DΨ(x, y) = Ψ(x)−Ψ(y)− 〈∇Ψ(y), x− y〉.

A useful property of the Bregman divergence is the generalized Pythagorean theorem, which says for all
x, y, z ∈ Ω,

〈x− z,∇Ψ(x)−∇Ψ(y)〉 = DΨ(x, y) +DΨ(z, x)−DΨ(z, y).

The generic mirror descent algorithm computes the distribution over actions as follows

ωt = arg min
ω∈Ω

{〈ω, ˆ̀
t−1〉+DΨ(ω, ωt−1)}

where ˆ̀
t−1 denotes the estimates of the last loss for each of the actions. In plain words, the mirror descent

update selects a distribution over actions that minimizes the expected loss over the estimated last loss with
the Bregman divergence term penalizing shifts from the last distribution over actions. Toward analyzing
mirror descent type algorithms, near directly from first-order optimality conditions and the generalized
Pythagorean theorem for Bregman divergence, the generic mirror descent update ensures that for all u ∈ Ω,

〈ωt − u, ˆ̀
t−1〉 ≤ DΨ(u, ωt−1)−DΨ(u, ωt)−DΨ(ωt, ωt−1).

This fact is important to the analysis of mirror descent algorithms, and also plays a key role in the analysis
of the BROAD-OMD framework. The BROAD-OMD framework uses a variant of the usual mirror descent
framework that is known as optimistic mirror descent. The optimistic mirror descent algorithm differs the
usual mirror descent framework by maintaining two separate sequences {ωt} and {ω′t}. The sequence {ωt}
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Algorithm 1 BROAD-OMD

Parameters: Ω = conv(X ) and Ψt(ω) = −
∑K
i=1 η

−1
t,i lnωi.

Initialization: Set ω′1(i) = 1
K ∀i ∈ [K].

for t = 1, 2, . . . , T do
Set ωt = arg minω∈Ω{〈ω,mt〉+DΨt(ω, ω

′
t)}.

Draw arm it ∼ ωt.
Observe and suffer the loss `t,it .

Construct ˆ̀
t as an unbiased estimator of `t

Let

at,i =

{
6ηi,tωt,i(ˆ̀

t,i −mt,i)
2 (Option I)

0 (Option II)

ω′t+1 = arg minω∈Ω{〈ω,mt〉+DΨt(ω, ω
′
t)}

end for

Figure 1: Regret bounds obtained by the BROAD-OMD algorithm with particular parameter choices in the
algorithm. Note that αi(t) denotes the last time that the algorithm selected action i ∈ [K] and µ̃t−1,i is an
unbiased estimate of µt−1,i.

is selected at each time to minimize the expected loss over a prediction of the current loss and a penalty
term, while the sequence {ω′t} is selected at each time to minimize the expected loss over an estimate of
the current loss (potentially with a correction term) and a penalty term. In particular, at the beginning of
each round, optimistic mirror descent takes in a prediction mt of the current loss vector, and computes the
distribution over actions according to

ωt = arg min
ω∈Ω

{〈ω,mt〉+DΨt(ω, ω
′
t)}.

Then, after playing an action it ∼ ωt, observing a loss `t,it , forming an estimated loss vector ˆ̀
t, taking in a

correction term at, the auxillary sequence is updated according to the update

ω′t+1 = arg min
ω∈Ω

{〈ω, ˆ̀
t + at〉+DΨt(ω, ω

′
t)}.

Observe here that the regularization function in the Bregman divergence may be time-dependent.
The key choices in parameterizing the algorithm are the regularization function Ψ, and the methods to

obtain the prediction mt, the loss estimate ˆ̀
t, and the correction term at. These choices will be detailed

shortly and they are informed by the following property of optimistic mirror descent. For optimistic mirror
descent, if

〈ωt − ω′t+1,
ˆ̀
t −mt + at〉 ≤ 〈ωt, at〉,

then for all u ∈ Ω,

〈ωt − u, ˆ̀
t〉 ≤ DΨt(u, ω

′
t)−DΨt(u, ω

′
t+1) + 〈u, at〉 −DΨt(ω

′
t+1, ωt)−DΨt(ω

′
t+1, ωt). (1)
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In the special case, at = 0, then for all u ∈ Ω,

〈ωt − u, ˆ̀
t〉 ≤ DΨt(u, ω

′
t)−DΨt(u, ω

′
t+1) + 〈ωt − ω′t+1,

ˆ̀
t −mt〉 −DΨt(ω

′
t+1, ωt)−DΨt(ω

′
t+1, ωt).

This result by [4] is key to the analysis of optimistic mirror descent and leads to the basic path toward deriving
regret bounds. In particular, summing this inequality over all time gives a bound on the estimate loss of the
algorithm compared to any fixed comparator and then taking the expectation gives a bound on the expected
regret. Typically, the terms DΨt(u, ω

′
t) − DΨt(u, ω

′
t+1) are not the dominating components and simply

telescope with a time-independent regularizer. Moreover, the final terms −DΨt(ω
′
t+1, ωt) − DΨt(ω

′
t+1, ωt)

are negative and may or not be useful in the regret bound or could be simply dropped. Finally, controlling
〈u, at〉 or 〈ωt − ω′t+1,

ˆ̀
t −mt〉 is the key to obtaining desirable regret bounds.

The BROAD-OMD algorithmic framework is presented in Algorithm 1 along with the results obtained for
various parameter choices in Figure 1. A key component of the BROAD-OMD framework is the choice of the
log barrier regularization function. This regularization function may also be time-dependent. In particular,
the log barrier regularizer for any x ∈ Ω is given by Ψt(x) = −

∑K
i=1 η

−1
t,i lnxi and the Bregman divergence

between x, y ∈ Ω is given by DΨt(x, y) = −
∑K
i=1 η

−1
t,i h

(
ui
vi

)
where h(y) = y − 1 − ln y. This regularization

function is key since it makes it so that with proper choice of learning rate the optimistic mirror guarantee
given in (1) holds with appropriate choice of correction term at.

3 Path Length Bound: BROAD-OMD with Option I

In this section, we outline how the regret path-length bound with Option I is obtained with the BROAD-
OMD framework described in Algorithm 1. As described in Figure 1, this regret bound is chosen by selecting

mt,i = `αi(t),i and ˆ̀
t,i =

(`t,i−mt,i)1{it=i}
wt,i

+ mt,i. Thus the prediction is simply the last observed loss for

each action, the estimator is chosen so it is unbiased. The choice of at,i is more complicated and is based
on the following reasoning. In the full information setting, it is typically at,i = ηt,i(`t,i −mt,i)

2, but this is

unknown with bandit feedback. We also cannot replace `t,i directly with ˆ̀
t,i since then (`t,i −mt,i)

2 can be

as big as 1/ω2
t,i. The fix for this is to select at,i = 6ηt,iωt,i(ˆ̀

t,i−mt,i)
2 so that the extra ωt,i term can cancel

the term 1/ω2
t,i in expectation.

Then if we consider bounding the term
∑T
t=1〈u, at〉 that arises from (1) with a constant learning rate of

ηt,i = η, it is possible to show that ∑T
t=1〈u, at〉 ≤ 12ηmaxt ω

−1
t,i VT,i.

Hence,
∑T
t=1〈u, at〉 is close to the desired path-length quantity, except for the leading maxt ω

−1
t,i . In [4] the

fix proposed for this issue is an increasing learning rate schedule. In particular, the term
∑T
t=1DΨt(u, ω

′
t)−

DΨt(u, ω
′
t+1) that arises from (1) can be bounded by

∑T
t=1

∑K
i=1( 1

ηt+1,i
− 1

ηt,i
)h( ui

ω′t+1,i
) which is negative

for an increasing learning rate. Moreover, h( ui
ω′t+1,i

) is close to 1
ωt+1,i

if ui close to 1. Thus, by increasing

the learning rate when 1
ωt+1,i

is big, then
(

1
ηt+1,i

− 1
ηt,i

)
h
(

ui
ω′t+1,i

)
is a negative in terms of −1

ωt+1,i
that

compensates for the positive term coming from
∑T
t=1〈u, at〉 This idea results in expected regret bound that

is Õ(K
√
VT,i∗). Full details can be found in Section 3 of [4].

4 Path Length Bound: BROAD-OMD with Option II

Compared to the BROAD-OMD algorithm with option I, BROAD-OMD algorithm with option II does not
have the correction terms {at}Tt=1 and they have been set equal to zero. Also, for each i ∈ [K] and t ∈ [T ], the
optimistic prediction mt,i = `αi(t),i is chosen to be the observed loss at the last time when arm i was picked.
Otherwise, the algorithm is identical to the BROAD-OMD with option I. [4] used Algorithm 1 to obtain an
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O(
√
K
∑T
t=2 ‖`t − `t−1‖1) regret bound. Compared to the O(K

√∑T
t=2 |`t,i∗ − `t−1,i∗ |) path length bound

obtained earlier using the BROAD-OMD algorithm with option I, the new bound could be O(
√
K) smaller

or O(
√
T ) larger than the earlier result depending on the loss functions.

5 Minimax-optimality of algorithms with Õ(
√
KV1) regret bounds

One might wonder after seeing the adaptive regret bounds of [4] whether they’re optimal. To address this,
Theorem 1 of [3] constructs an adaptive loss sequence that forces any algorithm playing against it to obtain
Ω̃(
√
KV1) regret. The idea comes from the works of Auer and colleagues - for example, a proof sketch is

given in Theorem 6.1 of [2] of the fact that one can always force Ω(
√
KT ) regret. The idea of [3]’s lower

bound is to use the bounds in, e.g., [2], and rephrase them in terms of the path length: if you create a loss
sequence of the form in [2], then ensure that for this sequence you have

V1 =
T∑
t=2

‖lt − lt−1‖1 = O(T ), (2)

then you can use the same argument to get

RT = Ω(
√
KT ) = Ω(

√
KV1), (3)

for any algorithm run against these losses.

6 Algorithm 1 of [3]: bounds in terms of V∞

Algorithm 2 Algorithm 1 of [3]

Define: Ψ(x) = 1
η

∑K
i=1 ln 1

xi
for some learning rate η; parameter α ∈ (0, 1).

Initialize: w1 is the uniform distribution, c0 = 0.
for t = 1, 2, ..., T do

Play it ∼ wt and observe ct = lt,it .

Construct unbiased estimator l̂t s.t. l̂t,i =
lt,i−ct−1

wt,i
1{it = i}+ ct−1 for all i.

Update xt+1 = arg minx∈∆K
〈x, l̂t〉+DΨ(x, xt).

wt+1 = (1− αt+1)xt+1 + αt+1eit , where αt+1 = α(1−ct)
1+α(1−ct) .

end

First, let’s address the similarities and differences between this algorithm and BROAD-OMD [4]. Looking
at Algorithm 2, you’ll notice that the regularizer is of the same form as BROAD-OMD, with a simple
constant learning rate. A main difference is the way in which OMD itself is used: rather than generating a
complicated “optimistic” (though it’s worth noting that it isn’t necessary that this be an accurate descriptor)
loss predictor to affect actions, the adjustment is made by directly biasing the next arm choice toward the
most-recently-chosen arm.

Briefly, the initial weights xt are decided by optimistic mirror descent, and then the actual sampling
weights wt are

wti =

{
(1− αt)xti + αt · 1, i = it,

(1− αt)xti, else
, (4)

where αt is a quantity that’s negatively, though nonlinearly, correlated to the loss just observed, ct−1:

αt =
(1− ct−1)α

1 + (1− ct−1)α
. (5)
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To understand why αt is defined the way that it is, it helps to take a look at the proof of Theorem 2. At
some point in the proof, it’s important to have the following identity hold:

αt
1− αt

= (1− ct−1). (6)

This is what ultimately allows us to cancel the term − 1
2

∑T
t=2(ct − ct−1)2 that comes out of the application

of [4]’s Theorem 7 in the proof of Theorem 2.

7 Algorithm 2 of [3]: getting close to O(
√
V1) (oblivious)

Algorithm 2 is pretty confusing. It’s in some ways analogous to Algorithm 1, but the analysis of the regret
is a bit more complicated. The important quantities are listed below.

• The “minority set”, St = {i ∈ [K] : xti < β} where β is a parameter.

• τ(t) = max{τ ≤ T : iτ ∈ Sτ−1}, i.e. the last time step where a minority arm was chosen.

• Along with τ(t) we also have cτ(t) = lτ(t),iτ (t). A counterintuitive fact is that they use cτ(t−1) as the
loss estimate at round t, even though it is in general not true that iτ(t−1) ∈ Sτ(t−1). The authors’
justification is essentially that this is still (maybe) a decent estimate of the loss for arms in the minority
set, or at least (maybe) better than ct−1 itself, since arms in the minority set won’t have been chosen
as recently - these are assumptions meant to make sense in a situation where the relative ordering of
arm rewards doesn’t change quickly, which is one situation where the path length makes sense to worry
about.

• αt =
(1−cτ(t−1))α

1+(1−cτ(t−1))α
, which is an analog to the quantity of the same name in Algorithm 1. Here we can

kind of see that the idea of this algorithm is to play Algorithm 1 on a subset of arms, using a sequence
of times τ(t) rather than the times t to compute reweighted probabilities wt.

• The regularizer Ψ now includes a negative Shannon entropy term. This is used in the analysis, and is
discussed surrounding the proof of Theorem 3 of [3].

There’s a fair amount of similarity to Algorithm 1 in the analysis after the first bit of the proof of Theorem
3; once the mirror descent analysis is complete, it’s mostly left to deal with the minority arms and show that
playing with respect to wt attains reasonable regret (this is Lemma 12 of [3]). For completeness, the regret
bound they achieve is

Õ
(
K1/3

√
V

2/3
1 T

1/3
+K2

)
, (7)

which is smaller than
√
KV1 when V1 ≥ T/K. The authors also note that they believe they can achieve

√
V1

regret for an oblivious adversary, though they don’t currently have a simple algorithm.

8 Path Length Bounds for Linear Bandits

We first introduce the linear bandits framework: The learner’s decision set is Ω ⊆ B = {z ∈ Rd : ‖z‖ ≤ 1}.
At each round t ∈ [T ], the learner picks an action ωt ∈ Ω and simultaneously, the adaptive adversary picks a
linear loss function parametrized by `t ∈ L ⊆ B∗ = {z ∈ Rd : ‖z‖∗ ≤ 1}. The learner then incurs and observes

the loss 〈ωt, `t〉. The goal is to minimize the (pseudo) regret defined as maxω∗∈Ω E
[∑T

t=1〈ωt − ω∗, `t〉
]
. [3]

introduced Algorithm 3 as the meta-algorithm for obtaining regret bounds that are parametrized by the
path length of the sequence of loss functions. The algorithm is based on the optimistic OMD framework,
but its choice of the regularizer Ψ, unbiased loss estimators {ˆ̀t}Tt=1 and the optimistic predictions ‖mt‖Tt=1

are quite different from the BROAD-OMD algorithm of [4]. We explain these choices in more detail below:
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Algorithm 3 Meta-Algorithm for Path Length Bounds for Linear Bandits

Parameters: Ψ(x) is a ν-self-concordant barrier, learning rate η
Initialization: Set x1 = x′1 = arg minx∈Ω Ψ(x) and m1=0.
for t = 1, 2, . . . , T do

Compute eigendecomposition ∇2Ψ(xt) =
∑d
i=1 λt,ivt,iv

T
t,i.

Sample it ∈ [d] and σt ∈ {−1,+1} uniformly at random.
Play ωt = xt + σt√

λt,it
vt,it .

Observe and suffer the loss ct = 〈ωt, `t〉.
Set ˆ̀

t = d(ct − 〈ωt,mt〉)σt
√
λt,itvt,it +mt.

Set

mt+1 =


ΠB
(
mt − 1

4 (〈ωt,mt〉 − ct)ωt
)

Option I

ΠKt+1
(mt) where Kt+1 = {m ∈ B : 〈ωt,m〉 = ct} Option II

via the convex body chasing algorithm Option III

Update x′t+1 = arg minx∈Ω η〈x, ˆ̀
t〉+DΨ(x, x′t).

Update xt+1 = arg minx∈Ω η〈x,mt+1〉+DΨ(x, x′t+1).
end for

• Instead of a log-barrier or negative entropy function, Algorithm 3 employs a ν-self-concordant barrier
function as the regularizer. More details on the definition of these classes of functions and the intuition
behind choosing them could be found in [1].

• For all t ∈ [T ], the chosen action ωt is an unbiased estimator of the output of the optimistic OMD xt.

E[ωt] = E[xt +
σt√
λt,it

vt,it ] = xt + E[
σt√
λt,it

vt,it ] = xt + E[
1

2

1√
λt,it

vt,it −
1

2

1√
λt,it

vt,it ] = xt.

The choice of ωt could be thought of as performing simultaneous exploration and exploitation where
the latter corresponds to choosing the best action according to the prediction of the optimistic OMD
framework xt and the former is aimed toward best estimating `t through sampling in a wide region in
the space of loss functions.

• ˆ̀
t is an unbiased estimator of `t.

E[d〈ωt, `t −mt〉σt
√
λt,itvt,it +mt] = E[

1

2
d〈`t −mt, xt +

1√
λt,it

vt,it〉
√
λt,itvt,it

− 1

2
d〈`t −mt, xt −

1√
λt,it

vt,it〉
√
λt,itvt,it ] +mt

= E[d〈`t −mt, vt,it〉vt,it ] +mt

= (

d∑
i=1

vt,iv
T
t,i)(`t −mt) +mt

= `t.

• To better understand the three different options for the optimistic predictions {mt}Tt=1, we first note

that the regret bound of Algorithm 3 is O(ν lnT
η + ηd2E[

∑T
t=1〈ωt, `t −mt〉2]). Thus, the predictions

should be chosen such that the term E[
∑T
t=1〈ωt, `t − mt〉2] is close to the path length of the loss
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functions. If we were in the full information setting, we could choose mt = `t−1 and use the Cauchy-

Schwarz inequality to obtain
∑T
t=1〈ωt, `t −mt〉2 ≤ O(

∑T
t=2 ‖`t − `t−1‖). However, since we only have

access to 〈ωt, `t〉, this is not possible in the bandit setting. Each of the three options for choosing mt

in Algorithm 3 corresponds to using a certain online algorithm whose regret or competitive bound is
parametrized by the path length.
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