
Corruption-Robust Linear Bandits

Mayuree Binjolkar, Romain Camilleri, Andy Jones, Anqi Li, Andrew Wagenmaker

May 31, 2021

1 Introduction

The linear bandit problem is a generalization of the standard multi-armed bandit problem, in which the
rewards (losses) exhibit a linear relationship with the arms. In particular, consider some set X ⊆ Rd and
some vector θt ∈ Rd. Then every arm corresponds to some vector x ∈ X , and the reward (loss) for arm x is
given by θ>t xx.

The linear bandit problem has been extensively studied in the purely stochastic regime [1, 10, 16, 17],
where θt = θ for all time, and the observations are given by:

yt = x>t θ + ηt

for ηt ∼ N (0, σ2). In this regime, one can obtain minimax regret scaling as O(
√
T), as well as instance-

dependent regret scaling as O(log T). The other primary regime of interest is the purely adversarial regime
[2, 4], where the observations and losses are given by

yt = x>t θt

and now θt is chosen by an adversary. Here the goal is to simply obtain regret that scales as O(
√
T).

A third regime exists in-between these two, the corrupted stochastic regime, where θt = θ + ct for some
corruption ct. Now the observations are given by

yt = x>t (θ + ct) + ηt

and the goal is to obtain a regret bound which scales in terms of the total corruption level, C =
∑T
t=1 maxx∈X |〈x, ct〉|.

A recent line of work in the multi-armed bandit setting has sought to merge these regimes and obtain
algorithms that are simultaneously optimal in every regime, without prior knowledge of which regime they
are operating in. While a long line of work exists here, the definitive recent work [19] proposes and analyzes
the Tsallis-INF algorithm, which is simultaneously optimal in all regimes.

Despite the extensive body of literature on this problem in the multi-armed bandit setting, until recently
little work has been done on this in the linear bandit setting. Indeed, until this year, the only real work
on this is that of [13], which addresses the purely stochastic and corrupted stochastic regimes, and provides
no guarantees in the adversarial setting. In addition, their rates are not optimal. Recently, however, [12]
tackles all three regimes—proposing an algorithm that is nearly optimal simultaneously in all settings.

Related to the above problem is that of misspecified linear bandits. Here, we assume a base stochastic
model but now assume that the rewards are not purely given by a linear function, but are only approximately
linear. While this can be viewed as an instance of the corrupted setting, the additional structure in the
problem allows for a tighter analysis. Formally, at time t, we can observe the measurement xt through the
real value

yt = µxt + ηt + ζt

with |ζt| ≤ h.

1

1.1 Problem Setting

In both the stochastic and corrupted stochastic regime, the regret is defined as,

Reg(T) = max
x∈X

T∑
t=1

〈xt − x, θ〉 =

T∑
t=1

∆xNx, (1)

where ∆x = 〈x − x∗, θ〉 is the sub-optimality gap of arm x. We additionally denote the minimum gap
∆min := minx 6=x∗ ∆x.

In the stochastic setting, at each round, the learner observes loss yt = 〈xt, θ〉 + εt(xt), where εt is a
zero-mean noise given xt. In the corrupted setting, the learner observes yt = 〈xt, θ + ct〉 + εt(xt), where ct
is a corruption vector. We define the total amount of corruption as C =

∑T
t=1 maxx∈X |〈x, ct〉|.

In the adversarial regime, the learner observes the loss yt = 〈xt, θt〉 at each step, where θt can be chosen
by an adversary. Now, the regret is defined as the best action in hindsight:

Reg(T) = max
x∈X

T∑
t=1

〈xt − x, θt〉. (2)

Note that the definitions of regret in the adversarial vs corrupted stochastic and stochastic regimes are subtly
different. In the stochastic regimes, the regret is only defined with respect to the true parameter θ, and the
noise εt(xt) and corruptions ct do not change the regret. However, in the adversarial regime, the noise and
corruptions are all considered part of θt, so the regret definition does depend on them.

Note: The stochastic setting can be viewed as a special case of the corrupted case with C = 0. Therefore,
we will only analyze the corrupted case, and the results for the stochastic setting can be directly obtained
by setting C = 0.

Assumptions: We assume that 〈x, θ〉, 〈x, ct〉, and yt are all in [−1, 1] for all t and x ∈ X .

1.2 Instance-Dependence in Linear Bandits

Typically, in the best-of-both-worlds or best-of-three-worlds problems, are goal will be to obtain minimax
O(
√
T) regret in the adversarial regime, and instance-dependent log T regret in the stochastic regime (note

that any adversarial minimax algorithm is also minimax in the stochastic regime so simply aiming for
algorithms that are minimax in both is trivial). In the multi-armed bandit setting, the optimal instance-
dependent rate is given by the familiar sum of inverse gaps:∑

x

log T

∆x
.

However, in the linear regime, we do not want the regret to scale with a sum over all arms but rather with
the dimensionality, d. Two notions of instance-dependent regret are possible in this setting then. First, we
can go after regret of

d log T

∆min
.

While this does not scale with the size of X , it is still potentially very loose, as it is effectively saying that
we are paying a 1/∆min in every direction. To remedy this, several works have shown that the correct
instance-dependent scaling is given by the solution to the following optimization:

c(X , θ) = min
Nxx∈X ,Nx≥0

∑
x∈X

Nx∆x

s.t. ‖x‖2H(N)−1 ≤
∆2
x

2
, ∀x ∈ X \ {x∗}.

It can be shown that this is the “correct” instance dependent scaling and matching upper and lower bounds
of order O(c(X , θ) log T) exist [10]. Furthermore, it will always be the case that O(c(X , θ) ≤ d/∆min), so
this always improves on the naive instance-dependent result.

2

Given this, the gold standard will be to obtain algorithms that are minimax in the adversarial regime,
and scale with c(X , θ) in the stochastic regime. However, as we will see, this can be challenging, and at
times we will have to settle for algorithms that scale with d/∆min instead.

1.3 Organization

We first discuss the work of [13] in Section 2, which addresses the stochastic and corrupted stochastic
settings. Given this baseline, we move on to the discussion of [12]. In Section 3 we discuss robust mean
estimation, which is a basic primitive used in the algorithm of [12] to ensure accurate mean estimation in
the corrupted setting. Then, in Section 4 we introduce and analyze the best-of-two-worlds algorithm from
[12] which handles the stochastic and corrupted stochastic setting. Building off of this, in Section 5 we
present and analyze the best-of-three-worlds algorithm which works in the stochastic, corrupted stochastic,
and adversarial regime. Finally, in Section TODO: something we consider the misspecified linear bandits
problem.

2 Stochastic Linear Optimization with Adversarial Corruption

[13] provides an algorithm for dealing with stochastic linear optimization with adversarial corruption. The
proposed algorithm in this research builds on [8]. The main idea is to divide the time horizon into epochs so
as to eliminate the effect that we get from corruption. Dividing into epochs increases exponentially in length
and use only previous epoch’s estimation for conducting exploitation in the current round. One of the main
challenges that the paper explores is that the ordinary least square estimator cannot be adopted due to the
correlation between the different time steps of the estimation (that impedes the concentration-inequalities’
application).

2.1 Preliminaries

D ⊆ Rd is a d-polytope and at each time step t ∈ [T] := 1,2,...,T, an action xt ∈ D is chosen by the
algorithm. θ ∈ Rd is an unknown hidden vector and ηt is a sequence of sub-Gaussian random noise that
has mean 0 and variance proxy 1. In a given time step, t, and for an action, xt, the reward is defined as
rt(xt) = 〈xt, θ〉 + ηt. Here the first term is the inner product of xt and θ. For each time step t ≤ T , there
exists an adaptive adversary that may corrupt the observed reward by choosing a corruption function ct.
First, xt is chosen, then the corrupted reward rt(xt)+ ct(xt) is observed, and finally the actual reward rt(xt)
is received. The total corruption generated by the adversary is denoted by C = ΣTt=1maxx∈D|ct(x)| and the
value of C is evaluated by R(T) = ΣTt=1〈x∗ − xt, θ〉. Also, given P as the set of extreme points of D and
P− = P \ {x∗}, the second highest reward is denoted x2 and based on this, the expected reward is given as
∆ = 〈x∗ − x(2), θ〉.

2.2 SBE Algorithm

The Support Basis Exploration (SBE) algorithm is used for stochastic linear optimization with adversarial
corruption and it runs in epoch m (length greater than 4m). The total number of epochs M is bounded
above by log T . In this, the choice of the current action depends only on the information that is received
from the last epoch and therefore, the level of earlier corruption will have a decreasing effect on the later
epochs. Exploration and exploitation are separated so that the correlation between the vector pulls in each
epoch can be decreased.

3

2.2.1 Parameter Estimation

The hidden vector, θ, can be expressed according to the exploration set S, θ = Σdj=1bjsj . If the basis vector

sj is chosen in time step t, ξtj is defined as an indicator for any j ∈ [d]. n
(m)
e = E

[
ΣTmt=Tm−1+1ξ

t
j] is the

expected number of time steps that can be used to explore each of the basis vector sj . However, since sj is

sampled uniformly, n
(m)
e is independent of j. Based on this, the “average reward” for exploring sj in epoch

m is

r
(m)
j =

1

n
(m)
e

ΣTmt=Tm−1+1ξ
t
j .(〈sj , θ, 〉+ ηt + ct(sj)) (3)

ξtj is independent of the noise ηt and the amount of corruption ct(sj). Taking the expectation over the
randomness of independent variables ξtj and ηt on both the sides gives

E
[
r

(m)
j

]
= 〈sj , θ〉+

1

Nm
ΣTmt=Tm−1+1E[ct(sj)] ≤ bj‖sj‖22 +

Cm
Nm

, (4)

where Cm = ΣTmt=Tm−1+1 maxx∈D |ct(x)|. Based on this, at the end of each epoch, b̂
(m)
j =

r
(m)
j

‖sj‖22
is the

estimate of bj and θ̂(m) = Σdj=1b̂
(m)
j sj is the estimate of θ.

Next, an upper bound for the error of θ̂(m) in each dimension j has been provided.

Lemma 1. (Lemma 4.1, [13]) With the probability at least 1− δ, the estimate of b̂mj is such that

|b̂mj − bj |‖sj‖22 ≤
2Cm
Nm

+
∆̂(m−1)

32d2

Proof. Indicator ξtj and the noise ηt are independent random variables, then using a form of the Chernoff-
Hoeffding bound [9], for any deviation κ and any j ∈ [d]

Pr
[∣∣∣ 1

n
(m)
e

ΣTmt=Tm−1+1ξ
t
j .(〈sj , θ〉+ ηt)− 〈sj , θ〉

∣∣∣ ≥ κ

2

]
≤ 2 exp−κ

2n
(m)
e

16
(5)

Let Xt = (ξtj) −
n(m)
e

Nm
ct(sj) for all t. The filtration

{
Ft
}T
t=1

is generated by the random variables{
ξsj
}
j∈[d],s≤t and

{
ηs
}
s≤t+1

. Define Yt = Σts=1Xs. Because ξtj is independent of the corruption level ctj

4

conditional on Ft−1,
{
Yt
}T
t=1

yields a martingale with respect to the filtration. The variance of Xt condi-
tional on Ft−1 can be bounded as

V = E[X2
t |Ft−1] ≤ ΣTmt=Tm−1+1|ct(sj)|V ar([ξ

t
j]) ≤

n
(m)
e

Nm
ΣTmTm−1+1|ct(sj)|. (6)

Both the first and second inequality hold because |ct(sj)| ≤ 1 and V ar[ξtj] ≤
n(m)
e

Nm
respectively. For martin-

gales, we will use a Freedman-type concentration inequality [3], and for any ν > 0

Pr
[1

nme
ΣTmt=Tm−1+1Xt ≥

V + ln4/v

n
(m)
e

]
≤ ν

4
(7)

Combining Equation 3 with Equation 5,

Pr
[ΣTmt=Tm−1+1ξ

t
j(sj)

n
(m)
e

≥ 2Cm
Nm

+
ln4ν

n
(m)
e

]
≤ Pr

[1

nme
ΣTmt=Tm−1+1Xt ≥

V + ln4/v

n
(m)
e

]
≤ ν

4
(8)

Substituting ν = 4exp
{
− κn(m)

e

2

}
and combining Inequalities 3 and 6, gives

Pr
[∣∣∣r(m)

j − 〈sj , θ〉
∣∣∣ ≥ κ+

2Cm
Nm

]
≤ 4exp

{
− κ2n

(m)
e

16

}
(9)

For the full explanation of the proof, refer to [13].

Lemma 2. (Lemma 4.2, [13]) With the probability at least 1− δ, we have

∣∣∣〈x, θ̂(m) − θ〉
∣∣∣ ≤ 4d2Cm

Nm
+

ˆ∆(m)

16

Proof. Based on the exploration set S which is an orthogonal set, for any context x, there are multipliers{
âj
}
j∈[d]

such that ∣∣∣〈x, θ̂(m) − θ〉
∣∣∣ = Σdj=1

∣∣∣d̂j〈sj , θ̂m − θ〉∣∣∣ ≤ Σdj=1|âj |
∣∣∣b(m)
j − bj

∣∣∣‖sj‖22.
Using Corollary 2.2 from [13] and Lemma 1, and with probability 1− δ,

∣∣∣〈x, θ̂(m)〉
∣∣∣ ≤ 4d2Cm

Nm
+

ˆ∆(m−1)

16

Next, the upper and lower bounds for the estimated gap ∆̂(m) are provided.

Lemma 3. (Upper Bound for ∆̂(m) (Lemma 4.3, [13])). Suppose that event ε happens, then for all the
epochs m ≥ 1

∆̂(m) ≤
[
∆ + 2−m + 4d2Σms=1

(1

8

)m−sCs
Ns

]
Lemma 4. (Lower Bound for ∆̂(m) (Lemma 4.4, [13])). Suppose that event ε happens, then for all the
epochs m

∆̂(m) ≥ ∆

2
− 2−m−1 − 8d2Σms=1

(1

8

)m−sCs
Ns

5

2.2.2 Regret Estimation

Theorem 1. (Theorem 5.1, [13]) With probability at least 1− δ, the regret is bounded by

R = O
(d2C log T

∆
+
d5 log d log T

δ log T

∆2

)
Proof. Let R

(m)
1 and R

(m)
2 be pseudo regret for exploitation and exploration in epoch m respectively. By

Lemma 2, the probability of event ε is 1− δ.
For exploitation, let ∆(m) = 〈θ, x∗ − x(m−1)

∗ 〉 be the pseudo regret for the action x
(m−1)
∗ . For a given

event ε, ∆(m) = 〈θ − θ̂(m−1), x∗〉 + 〈θ̂(m−1), x∗ − x(m−1
∗ 〉 + 〈θ̂(m−1) − θ, x(m−1)

∗ 〉 ≤ 2β(m−1). Defining ρm =

d2Σms=1

(
1
8

(m−s))Cs
Ns

, ∆(m = ∆
4 + 2−m + 8ρm−1. If ∆(m) = 0 then the total regret for exploitation is 0.

Else, ∆(m) ≥ ∆ and two different cases can be considered for this. For the first case when ∆ ≥ 2−m+1,
∆
4 + 2−m ≤ ∆

4 + ∆
2 ≤

3∆(m)

4 . When ∆ ≤ 2−m+1, ∆(m) ≤ 8ρm−1 + 2−m+1. Summing over all the epochs,

R1 =
4ζM

∆
+ 32ΣMs=1CsΣ

M
m=s

4m−s

8m−1−s ≤
4ζM

∆
+ 512C, (10)

For exploration, the expected number of time steps in which exploration is conducted is ζ

(ˆ∆(m))2
and the

pseudo regret for these time steps each is bounded by 1.For ∆ ≤ 2(1−m), R
(m)
2 ≤ ζ

(ˆ∆(m))2
≤ 4ζ

∆2 and for

∆ ≥ 2(1−m), two cases are considered. The first case is when ρm ≥ ∆
64 and the second case is when ρm ≤ ∆

64 .

For the first case, ∆
64 ≤ ρm = d2Σms=1

(
1
8

)m−s Cs
Ns
≤ 2d2Σms=1Cs

Nm
≤ 2d2

Nm
. Based on this R

(m)
2 ≤ Nm ≤ 128d2C

∆ .

For the second case, using Lemma 4, R
(m)
2 ≤ ζ

(∆̂(m))2
≤ 64ζ

∆2 . Based on these cases, the total pseudo regret

for exploration is

R2 = ΣMm=1R
(m)
2 ≤ ΣMm=1

ζ

(∆̂(m))2
≤ 64ζ log T

∆2
+

128d2C log T

∆
(11)

Combining inequalities 4 and 5, the total psuedo regret is

R = R1 +R2 = O
(d2C log T

∆
+
d5 log d log T

δ log T

∆2

)

2.2.3 Computational efficiency

Theorem 2. (Theorem 6.1, [13]) For any bounded convex body K ⊆ Rd, there is a polynomial time algorithm
that computes an ellipsoid E satisfies

E ⊆ K ⊆ 2d3/2E

Plug in the polynomial time algorithm for finding John’s ellipsoid from [14] into the SBE algorithm and set

the parameter ζ = 214d6 log 4d log T
δ to get a computationally efficient algorithm with a regret O

(
d5/2C log T

∆ +

d6 log d log T
δ log T

∆2

)
.

3 Robust Estimators

3.1 Introduction

Often in statistics, we seek to estimate the expected value µ of a random variable X. The natural first
choice for such an estimator is the empirical mean, however we will show that this choice of estimator
performs sub-optimally when the distribution of X is heavy-tailed. While choosing an estimator µ̂ equal to

the empirical mean results in optimal mean-squared error E
[
(µ̂− µ)

2
]
, the preferred optimality condition

in many contexts is for µ̂ to be close to µ with high probability. That is, the ideal optimality measure of

6

an estimator µ̂ is related to the smallest ε such that P{|µ̂− µ| > ε} ≤ δ. In the following sections we will
demonstrate the sub-optimality of the empirical mean, and introduce a few robust estimators that provide
better guarantees by reducing the effect of variance in heavy-tailed distributions (at the cost of adding a bit
of bias to the estimators).

3.2 Empirical Mean’s (Lack of) Optimality

By the central limit theorem, the empirical mean µ =
1

n

∑n
i=1Xi of i.i.d. random variables X1, . . . , Xn can

be shown to satisfy

lim
n→∞

P

{
|µ− µ| >

σ
√

2 log(2/δ)√
n

}
≤ δ. (12)

However, this is an asymptotic guarantee, and we seek to find non-asymptotic guarantees. If the distribution
is such that there exists L > 0 such that for all λ > 0

E [exp (λ (Xi − µ))] ≤ exp

(
σ2λ2

L2

)
, (13)

then by the Chernoff bound we can show that

P

{
|µ− µ| >

Lσ
√

log(2/δ)√
n

}
≤ δ. (14)

The issue here is that assumption (13) is very restrictive - particularly, it requires strong tail-decay (it is
equivalent to Xi − µ being L-subgaussian). Without strong tail-decay, the empirical mean estimator offers
significantly worse high-probability guarantees. For example, if the only assumption about the distribution
is that it has finite variance, then the best guarantee is provided by Chebyshev’s inequality, which implies

P

{
|µ− µ| > σ

√
1

nδ

}
≤ δ, (15)

which is an exponentially worse bound than (14) as a function of δ. This bound is known to be very tight
in the worst case, as Catoni showed that for any σ2 there exists a distribution such that

P

{
|µ− µ| > σ

√
1

nδ

(
1− eδ

n

)(n−1)/2
}
≥ δ. (16)

For more details on this, consult [15] (Lugosi & Mendelson, 2019), as this section is taken primarily from
that source.

3.3 Median of Means

The median-of-means estimator partitions X1, . . . , Xn into k blocks of (roughly) equal size, computes the
empirical mean of each block, and takes the median of the obtained empirical means.

Lemma 1 [15] (Lugosi & Mendelson, 2019): Let X1, . . . , Xn be i.i.d. random variables with mean
µ and variance σ2. Let m, k ∈ Z+ such that n = mk. Then, the median-of-means estimator µ̂n with k blocks
satisfies

P

{
|µ̂n − µ| > σ

√
4

m

}
≤ exp

(
−k
8

)
.

7

In particular, for any δ ∈ (0, 1), if k = d8 log (1/δ)e, then

P

{
|µ̂n − µ| > σ

√
32 log (1/δ)

n

}
≤ δ.

For more details on this, consult [15] (Lugosi & Mendelson, 2019), as this section is taken primarily from
that source.

3.4 Trimmed Mean

The trimmed-mean estimator directly removes outliers - it removes the εn highest and lowest points for some
parameter ε ∈ (0, 1), then takes the mean of the remaining points. A simple variant of the trimmed-mean
estimator works as follows:

First, the data is split in two equal parts. One half is used to determine the correct truncation level.
The other half is average, except for the points that fall outside of the truncation region. Assuming the
data consists of 2n points X1, . . . , Xn, Y1, . . . , Yn drawn i.i.d. with mean µ and variance σ2, we define the
truncation function

φα,β(x) =

β, if x > β,

x, if x ∈ [α, β],

α, if x < α,

for α ≤ β. For x1, . . . , xm ∈ R, let x∗1 ≤ x∗2 ≤ · · · ≤ x∗m be its non-decreasing rearrangement. Given

δ ≥ 8 exp

(
−3n

16

)
, set ε =

16 log(8/δ)

3n
. Let α = Y ∗εn and β = Y ∗(1−ε)n.

µ̂2n =
1

n

n∑
i=1

φα,β(Xi).

Lemma 2 [15] (Lugosi & Mendelson, 2019):

P

{
|µ̂2n − µ| > 9σ

√
log(8/δ)

n

}
≤ δ.

For more details on this, consult [15] (Lugosi & Mendelson, 2019), as this section is taken primarily from
that source.

3.5 Catoni’s Estimator(s)

We begin by observing that the empirical mean µ is the unique root of the function

f(z) =

n∑
i=1

(Xi − z) . (17)

Catoni proposed the introduction of an antisymmetric non-decreasing function ψ : R→ R satisfying

− log
(
1− y + y2/2

)
≤ ψ(y) ≤ log

(
1 + y + y2/2

)
,

and parameter α ∈ R, such that the Catoni estimator parameterized by α, which we shall denote µ̂α, is the
unique root of the function

f(z) =

n∑
i=1

ψ (α (Xi − z)) . (18)

8

The reasoning for the introduction of ψ is that if ψ(y) increases much slower than y, then the effects of a
heavy tail are diminished. Catoni discusses a variety of choices for ψ. The widest possible ψ is

ψ(y) =

{
log
(
1 + y + y2/2

)
, if y ≥ 0,

− log
(
1− y + y2/2

)
, if y < 0,

(19)

and the narrowest possible ψ is

ψ(y) =

log(2), if y ≥ 1,

− log
(
1− y + y2/2

)
, if 0 ≤ y < 1,

− log
(
1− y + y2/2

)
, if − 1 ≤ y < 0,

− log(2), if y < −1.

(20)

The choice (19) of ψ is the one making µ̂α the closest to µ. Since µ is optimal for Gaussian distributions,
this is often the chosen ψ.

For more details on this, consult [6] (Catoni, 2011), as this section is taken primarily from that source.

3.5.1 Concentration Inequality for Catoni’s Estimator

Lemma 3 [18] (Wei et al., 2020): Let F0 ⊂ · · · ⊂ Fn be a filtration, and X1, . . . , Xn be real random

variables such that Xi is Fi-measurable, E [Xi|Fi−1] = µi for some fixed µi, and
∑n
i=1 E

[
(Xi − µi)2 |Fi−1

]
≤

V for some fixed V . Denote µ =
1

n

∑n
i=1 µi and let µ̂α be the Catoni estimator of X1, . . . , Xn with a fixed

parameter α > 0. That is, µ̂α is the unique root of the function

f(z) =

n∑
i=1

ψ (α (Xi − z)) ,

where

ψ(y) =

{
log
(
1 + y + y2/2

)
, if y ≥ 0,

− log
(
1− y + y2/2

)
, if y < 0.

Then, for any δ ∈ (0, 1), as long as n ≥ α2
(
V +

∑n
i=1 (µi − µ)

2
)

+ 2 log(1/δ), we have with probability at

least 1− 2δ,

P

|µ̂α − µ| > α
(
V +

∑n
i=1 (µi − µ)

2
)

n
+

2 log(2/δ)

αn

 ≤ δ. (21)

In particular, if µ1 = · · · = µn = µ, we have

P
{
|µ̂α − µ| >

αV

n
+

2 log(2/δ)

αn

}
≤ δ. (22)

Proof: Observe that ψ(y) ≤ log
(
1 + y + y2/2

)
for all y ∈ R. So, for any fixed z ∈ R and any i, we have

Ei [exp(ψ(α(Xi − z)))] ≤ Ei
[
1 + α(Xi − z) +

α2(Xi − z)2

2

]
(Ei[·] = E[·|Fi−1])

= 1 + α(µi − z) +
α2Ei

[
(Xi − µi)2

]
+ α2(µi − z)2

2

≤ exp

(
α(µi − z) +

α2Ei
[
(Xi − µi)2

]
+ α2(µi − z)2

2

)
. (1 + y ≤ exp(y))

9

Define random variables Z0 = 1, and for i ≥ 1,

Zi = Zi−1 exp (ψ(α(Xi − z))) exp

(
−

(
α(µi − z) +

α2Ei
[
(Xi − µi)2

]
+ α2(µi − z)2

2

))
.

The previous calculation shows E[Zi] ≤ Zi−1. So, taking expectation over all random variables X1, . . . , Xn,
we have

E[Zn] ≤ E[Zn−1] ≤ · · · ≤ E[Z0] = 1.

Define

g(z) = nα(µ− z) +
1

2
α2

n∑
i=1

(µi − z)2 +
1

2
α2V + log

(
1

δ

)
.

If f(z) ≥ g(z), then, by the condition on V , we have

n∑
i=1

ψ(α(Xi − z)) ≥ nα(µ− z) +
1

2
α2

n∑
i=1

(µi − z)2 +
1

2
α2

n∑
i=1

Ei
[
(Xi − µi)2

]
+ log

(
1

δ

)

=

n∑
i=1

α(µi − z) +
α2(µi − z)2) + α2

∑n
i=1 Ei

[
(Xi − µi)2

]
2

+ log

(
1

δ

)
,

which implies Zn ≥
1

δ
. So,

P{f(z) ≥ g(z)} ≤ P
{
Zn ≥

1

δ

}
≤ P

{
Zn ≥

E[Zn]

δ

}
≤ δ. (Markov’s inequality)

We can rewrite g(z) as

g(z) = nα(µ− z) +
1

2
α2

(
nz2 − 2nµz +

n∑
i=1

µ2
i

)
+

1

2
α2V + log

(
1

δ

)

= nα(µ− z) +
1

2
α2

(
n(z − µ)2 − nµ2 +

n∑
i=1

µ2
i

)
+

1

2
α2V + log

(
1

δ

)

= nα(µ− z) +
1

2
nα2(z − µ)2 +

1

2
α2

(
n∑
i=1

µ2
i − nµ2

)
+

1

2
α2V + log

(
1

δ

)
.

Pick z to be the smaller root z0 of the quadratic function g(z), that is,

z0 = µ+
1

α

1−

√
1−

α2
(
V +

∑
i=1(µi − µ)2

)
n

− 2

n
log

(
1

δ

) ,

which exists due to the condition on n. Since f is non-increasing (since ψ is non-decreasing and α > 0) and
f (µ̂α) = 0, we have

P {µ̂α ≥ z0} = P {f(z0) ≥ 0}
= P {f(z0) ≥ g(z0)}
≤ δ.

10

Thus, with probability at least 1− δ, we have

µ̂α − µ ≤ z0 − µ

=
1

α

1−

√
1−

α2
(
V +

∑
i=1(µi − µ)2

)
n

− 2

n
log

(
1

δ

)
≤ 1

α

(
α2
(
V +

∑
i=1(µi − µ)2

)
n

+
2

n
log

(
1

δ

)) (
1−
√

1− x ≤ x for x ∈ [0, 1]
)

=
α
(
V +

∑
i=1(µi − µ)2

)
n

+
2 log(1/δ)

αn
.

Via a symmetric argument, with probability at least 1− δ, we have

µ− µ̂α ≤
α
(
V +

∑
i=1(µi − µ)2

)
n

+
2 log(1/δ)

αn
.

Applying a union bound, we have

P

|µ̂α − µ| > α
(
V +

∑n
i=1 (µi − µ)

2
)

n
+

2 log(2/δ)

αn

 ≤ δ,
as desired. Q.E.D.

3.6 In Lee et al.

Lee et al. [12] propose two algorithms: Randomized Instance-optimal Algorithm (RIA) and Best of Three
Worlds (BoTW).

During each block, RIA constructs unbiased loss estimators ̂̀t,x to estimate `t,x = 〈x, `t〉 for each t ∈ Bm.
A robust estimator Robm,x is then constructed for each x, where

Robm,x = Clip[−1,1]

(
µ̂αx

({̂̀
τ,x

}
τ∈Bm

))
, (23)

with

αx =

√
4 log (2m|X |/δ)
2m ‖x‖2S−1

m
+ 2m

. (24)

The clipping to [−1, 1] is performed because, by the initial problem assumptions, `t,x ∈ [−1, 1].

The second phase of BoTW constructs loss estimators ̂̀t,x to estimate `t,x = 〈x, `t〉 for each t ∈ {t0+1, . . . , t1}.
A robust estimator Robt,x is constructed for each x at each time t ∈ {t0 + 1, . . . , t1}, where

Robt,x = Clip[−1,1]

(
µ̂αx

({̂̀
τ,x

}t
τ=t0+1

))
, (25)

with

αx =

√
4 log (t|X |/δ)

t− t0 +
∑t
τ=t0+1 2 ‖x‖2S−1

m

. (26)

11

Figure 1: Near Instance-Optimal Randomized Algorithm for Stochastic and Corrupted Linear Bandits

4 Randomized Instance-optimal Algorithm

4.1 Algorithm Intuition

The near instance-optimal algorithm for stochastic and corrupted linear bandits is listed in Algorithm 1
(Figure 1). The algorithm proceeds in blocks with exponentially increasing round. Within each block, we
first solve an optimization problem OP to get a distribution pm (see Figure 1), which is inspired by the
lower bound optimization problem:

min
Nxx∈X ,Nx≥0

∑
x∈X

Nx∆x

s.t. ‖x‖2H(N)−1 ≤
∆2
x

2
, ∀x ∈ X \ {x∗},

where H(N) =
∑
x∈X Nxxx

>. Then, the arms are sampled and pulled according to the distribution p.

Finally, we use an unbiased estimator l̂t,x = x>S−1
m xtyt (same as adversarial linear bandits), and use a

robust Catoni’s estimator to compute the estimated gaps ∆̂m. This estimated gap is used in the optimization
problem OP for the next round.

At the first glance, the structure of the algorithm is similar to the action elimination algorithm with
G-optimal design. For the action elimination algorithm, within each block, we solve the G-optimal design
problem, and pull arms deterministically to match the distribution. Then, we estimate the gap using the
estimated θ̂ given by the least-squares estimator.

The main differences between Algorithm 1 and the action elimination algorithm are the following:
• Instead of solving the same optimization problem (G-optimal design) on a shrinking set of arms, Algorithm

1 solves a different optimization problem in each block (given by different estimated gap ∆̂) on the set of
all arms. This helps the algorithm to achieve near instance-optimal regret bound. (To see why eliminating
arms is bad, consider the example Kevin mentioned in class.)

• Instead of deterministically matching the counts, Algorithm 1 samples arms according to the solved
distribution pm. As a result, it uses the loss estimator for adversarial linear bandits rather than solving
the least-squares problem. This is important for the corrupted setting.

12

• Algorithm 1 uses the Catoni estimator to establish the high probability regret bound.

4.2 Analysis of Algorithm 1

4.2.1 Main Theorem

Algorithm 1, with high probability achieves near instance-optimal regret bound (with an additional log(T |X |/δ)
factor). This is formally stated in the theorem below (Theorem 1 in [12]):

Theorem 3 (Theorem 1, [12]). In the corrupted setting, Algorithm 1 guarantees that with probability at least
1− δ,

Reg(T) = O

c(X , θ) log T log
T |X |
δ

+M∗ log3/2 1

δ
+ C + d

√
C

∆min
log

C|X |
∆minδ

 , (27)

where M∗ is some constant that depends on X and θ only.

Remark 1: Recall that in the stochastic setting, we have the lower bound that lim inf
T→inf

E[Reg(T)] ≥
Ω(c(X , θ) log T). Therefore, by setting C = 0, we can see that in the stochastic setting, Algorithm 1 is near
instance-optimal.

Remark 2: M∗ is a constant that depends on X and θ only, and (importantly) does not depend on T .
Hence it doe not change the rate.

4.2.2 Proof Sketch

We will prove Theorem 3 through proving the following Lemmas.

[Lemma for Robust Estimator] The first step is to show that the estimated gaps ∆̂m,x with the
robust estimator is close to the true gap ∆x for each block with high probability.

Lemma 5 (Lemma 3, [12]). With probability at least 1− δ, Algorithm 1 ensures for all m and all x,

∆x ≤ 2∆̂m,x +

√
dγm

4 · 2m
+ 2ρm−1, (28)

∆̂m,k ≤ 2∆x +

√
dγm

4 · 2m
+ 2ρm−1, (29)

where ρm =
∑m
k=0

2kCk
4m−1 (ρ−1 := 0), Ck =

∑
τ∈Bk maxx∈X |cτ,x| is the amount of corruption within block

k, and γm = 215 log(2m|X |/δ).
Remark: it is also important to notice that the last two terms

√
dγm
4·2m and 2ρm−1 is shrinking (eventually

to 0) as m increases. We will use this to show that with large enough t (and hence m), we can upper and

lower bound ∆̂m,x by a constant factor of ∆x.

Proof. We will prove this lemma by induction.
• Base case: when m = 0, by construction (line 5 in Algorithm 1), we have ∆̂0,x = 0 for all x ∈ X .

Therefore, (29) holds trivially. By the assumption that 〈x, θ〉 ∈ [−1, 1] for all x, we also have ∆x ≤ 2 ≤√
d215

4 =
√

dγ0
4·20 . Therefore, conditions (28) and (29) hold for m = 0.

• Induction: suppose that the conditions (28) and (29) hold for m, we need to show that they also hold for
m+ 1.
First, we need to consider the statistics of l̂τ,x, which will be used for analyzing the Catoni’s estimator.

E[l̂τ,x] = E[x>S−1
m xτ (〈xτ , θ + cτ 〉+ ετ (xτ))]

(Tower rule of expectation) = Exτ [Eετ [x>S−1
m xτ (〈xτ , θ + cτ 〉+ ετ (xτ))|xτ]]

(E[ετ (xτ)|xτ] = 0) = E[x>S−1
m xτx

>
τ (θ + cτ)]

(Linearity of expectation) = x>S−1
m E[xτx

>
τ](θ + cτ)

E[xτx
>
τ] = Sm = x>(θ + cτ)

13

and

E[l̂2τ,x] = E[(x>S−1
m xτyτ)2]

|yτ | ≤ 1 ≤ E[(x>S−1
m xτ)2] = E[x>S−1

m xτx
>
τ S
−1
m x]

(Linearity of expectation) = x>S−1
m E[xτx

>
τ]S−1

m x

E[xτx
>
τ] = Sm = x>S−1

m x = ‖x‖2
S−1
m

Due to that pm is a feasible solution of OP(2m, ∆̂m), we can further bound ‖x‖2
S−1
m

,

‖x‖2
S−1
m
≤

2m∆̂2
m,x

γm
+ 4d

((29) holds for m) =

2m
(

2∆x +
√

dγm
4·2m + 2ρm−1

)2

γ
+ 4d

((a+ b+ c)2 ≤ 4a2 + 4b2 + 4c2) =
16 · 2m∆2

x

γm
+

16 · 2mρ2
m−1

γm
+

4 · 2m

γm
· dγm

4 · 2m
+ 4d

≤ 16 · 2m∆2
x

γm
+

16 · 2mρ2
m−1

γm
+ 8d

We can use this bound on the second moment to bound the difference between the estimated gap and the
true gap. (We skipped a few steps during the class.) With probability at least 1 − δ

4m , we have, for all

14

x ∈ X ,

∆x − ∆̂m+1,x = 〈x, θ〉 − 〈x∗, θ〉 − (Robm,x −min
x′

Robm,x′)

(Robm,x∗ ≥ min
x′

Robm,x′) = 〈x, θ〉 − 〈x∗, θ〉 − Robm,x + Robm,x∗

(Ck =
∑
τ∈Bm

max
x∈X
|〈x, cτ 〉|) ≤

∣∣∣∣Robm,x∗ − 〈x∗, θ〉 −
∑
τ∈Bm〈x

∗, cτ 〉
2m

∣∣∣∣
+

∣∣∣∣Robm,x − 〈x, θ〉 −
∑
τ∈Bm〈x, cτ 〉

2m

∣∣∣∣+
2Cm
2m

(Catoni’s estimator) ≤ 2Cm
2m

+
1

2m

(
αx

(
2m‖x‖−1

Sm
+
∑
τ∈Bm

(〈x, τ〉 − c̄m,x)2

)
+

4 log(2m|X |/δ)
αx

)

+
1

2m

(
αx∗

(
2m‖x∗‖−1

Sm
+
∑
τ∈Bm

(〈x∗, τ〉 − c̄m,x∗)2

)
+

4 log(2m|X |/δ)
αx∗

)

(
∑
τ∈Bm

(cτ,x − c̄m,x)2 ≤ Cm
2m−1

+
1

2m

(
αx
(
2m‖x‖−1

Sm
+ 2m

)
+

γm
212αx

)
≤ c2τ,x ≤ 2m) +

1

2m

(
αx∗

(
2m‖x∗‖−1

Sm
+ 2m

)
+

γm
212αx∗

)
(Optimal choice of αx) ≤ 2

64 · 2m

√(
2m‖x‖2

S−1
m

+ 2m
)
γm +

2

64 · 2m

√(
2m‖x∗‖2

S−1
m

+ 2m
)
γm +

Cm
2m−1

(Bound on ‖x‖2
S−1
m

) ≤ 2

64 · 2m

√(
16 · 22m∆2

x

γm
+ 16 · 2md+

16 · 22mρ2
m−1

γm

)
γm

+
2

64 · 2m

√(
16 · 2md+

16 · 22mρ2
m−1

γm

)
γm +

Cm
2m−1

≤ 4

64 · 2m

√(
16 · 22m∆2

x

γm
+ 16 · 2md+

16 · 22mρ2
m−1

γm

)
γm +

Cm
2m−1

(
√
a+ b ≤

√
a+
√
b) ≤ ∆x

2
+

√
dγm

16 · 2m
+
ρm−1

4
+

Cm
2m−1

≤ ∆x

2
+

√
dγm

16 · 2m
+ ρm

By rearranging the terms, we have ∆x ≤ 2∆̂m+1,x +
√

dγm
4·2m + 2ρm. We can show the other condition

through similar steps.
Finally, we can finish the proof by taking the union bound over all m.

[Lemma for the Optimization Problem OP] We next show that the optimization problem OP

solved by each block is always feasible, and show a upper bound on the optimal value
∑
x px∆̂m,x. This,

when combined with Lemma 5, can be used to further bound the regret.

Lemma 6 (Lemma 4, [12]). Let p be the solution of OP(t, ∆̂). Then we have
∑
x∈X px∆̂x = O

(
d log(t|X |/δ)√

t

)
.

Proof. Consider the optimization problem

min
p∈PX

∑
x∈X

px∆̂x +
2

ξ
(− log det(S(p))). (30)

Note that the second term is the objective for D-optimal design. We will construct a feasible solution of
OP from the optimal solution of (30), which we denoted as p∗. By the KKT condition of (30), (here we

15

skip the step to show that p∗ is also the optimal solution of the problem on the set of sub-distributions
p :
∑
x px ≤ 1, px ≥ 0),

∆̂x −
2

ξ
x>S(p∗)−1x− λx + λ = 0. (31)

Multiplying by p∗x and summing over all x ∈ X ,

0 =
∑
x

p∗x∆̂x −
2

ξ

∑
x

p∗xx
>S(p∗)−1x−

∑
x

λxp
∗
x + λ

(complementary slackness) =
∑
x

p∗x∆̂x −
2

ξ
Tr(S(p∗)S(p∗)−1) + λ

=
∑
x

p∗x∆̂x −
2d

ξ
+ λ.

Since
∑
x p
∗
x∆̂x ≥ 0 and λ ≥ 0, we must have

∑
x p
∗
x∆̂x ≤ 2d

ξ and λ ≤ 2d
ξ .

Also by (31), we have,

‖x‖2S(p∗)−1 =
ξ

2
(∆̂x − λ+ λ) ≤ ξ∆̂x

2
+ 0 +

ξ

2
· 2d

ξ
=
ξ∆̂x

2
+ d.

Now we construct a distribution by mixing p∗ and another distribution ν (in [12] it is denoted as qG,k), i.e.

q = 1
2p
∗+ 1

2ν. Let G = {x : ∆̂x ≤ 1√
t
}. The probability distribution ν has the property that

∑
x/∈G νx ≤

1√
t
,

and ‖x‖2S(ν)−1 ≤ 2d for all x ∈ G. (The existence of such a distribution is given by Lemma 11 in [12].)

Feasibility: Choose ξ =
√
t

βt
. Then, for all x /∈ G, we have,

‖x‖2S(q)−1 ≤ ‖x‖(1
2S(p∗))

−1 ≤ 2

(
ξ∆̂x

2
+ d

)
= ξ∆̂x + 2d =

√
t∆̂x

βt
+ 2d =

t 1√
t
∆̂x

βt
+ 2d ≤ t∆̂2

x

βt
+ 4d.

Similarly, for any x ∈ G, we have,

‖x‖2S(q)−1 ≤ ‖x‖(1
2S(ν))

−1 ≤ 2 · 2d = 4d ≤ t∆̂2
x

βt
+ 4d.

Optimal Value: Let p be the optimal solution of OP, then by feasibility of q,∑
x

px∆̂x ≤
∑
x

qx∆̂x =
1

2

∑
x

p∗x∆̂x +
1

2

∑
x

νx∆̂x

≤ 1

2
· 2d

ξ
+

1

2

∑
x∈G

νx∆̂x +
1

2

∑
x/∈G

νx∆̂x

≤ dβt√
t

+
1

2
√
t

+
2

2
√
t

= O
(
dβt√
t

)
= O

(
d log(t|X |/δ)√

t

)

[Anytime Regret Bound] By combining Lemma 5 and Lemma 6, we can obtain the following sublinear
anytime regret bound, which is O(d

√
T log T + C).

Theorem 4 (Theorem 2, [12]). In the corrupted setting, Algorithm 1 guarantees that with probability at least
1− δ, Reg(T) ≤ O(d

√
T log(T |X |/δ) + C).

Proof. Step 1: Relate the regret with
∑
t

∑
x pmt,x∆x using a concentration inequality. Note that we did not

need this for the algorithms we saw previously in class, as during each block, we were explicitly matching
pulls rather than drawing from the distribution.

16

By Freedman’s Inequality, we have,

Reg(T) =

T∑
t=1

∑
x∈X

1{xt = x}∆t

≤
T∑
t=1

∑
x∈X

pmt,x∆x + 2

√√√√√√log(1/δ)

T∑
t=1

Et

∑
x 6=x∗

1{xt = x}∆x

2
+ log(1/δ)

≤
T∑
t=1

∑
x∈X

pmt,x∆x + 2

√√√√√log(1/δ)

T∑
t=1

Et

∑
x6=x∗

1{xt = x}∆x

+ log(1/δ)

≤
T∑
t=1

∑
x∈X

pmt,x∆x + 2

√√√√log(1/δ)

T∑
t=1

∑
x∈X

pmt,x∆x + log(1/δ)

≤ 2

T∑
t=1

∑
x∈X

pmt,x∆x + 2 log(1/δ)

Step 2: Bounding
∑
t

∑
x pm,x∆x. By Lemma 6, we have, for all m,∑

x∈X
pm,x∆̂m,x ≤ O

(
d log(2m|X |/δ)

2m/2

)
.

Combining this with Lemma 5 (relating ∆ with ∆̂), we have,

2m
∑
x∈X

pm,x∆x ≤ 2m

(
2
∑
x∈X

pm,x∆̂m,x +O

(√
dγm
2m

+ ρm−1

))

≤ O
(
d2m/2 log(2m/δ)

)
+O

(√
2mdγm +

m−1∑
k=0

2kCk
4m−2

)

≤ O

(
d2m/2 log(2m/δ) +

√
2mdγm +

m∑
k=0

Ck
2m−k

)
.

Step 3: Summing up till round T (block blog2 T c), we have,

T∑
t=1

∑
x∈X

pmt,x∆x ≤
blog2 Tc∑
m=0

O
(
d2m/2 log(2m|X |/δ) +

√
2mdγm

)
+O

blog2 Tc∑
k=0

Ck

blog2 Tc∑
m=k

1

2m−k

= O

d√T log(T |X |/δ) +

blog2 Tc∑
k=0

Ck

= O

(
d
√
T log(T |X |/δ) + C

)
.

[“Regret Bound” for Large t Onward]

Lemma 7 (Lemma 15, [12]). Suppose ∆̂x ∈ [1√
r
∆x,
√
r∆x] for all x ∈ X for some r > 1, and p = OP(t, ∆̂)

for some t ≥ rβtM , where M =
∑
x∈X N

∗
x with N∗x such that

∑
x∈X Nx∆x ≤ 2c(X , θ), and ‖x‖2H(N)−1 ≤ ∆2

x

2

for all x ∈ X \ {x∗}1. Then
∑
x∈X px∆x ≤ r2βt

t c(X , θ).
1The existence of such a finite M is shown in Lemma 14 in [12]

17

Proof. Consider N∗ defined in the Lemma, define a distribution p̃ as,

p̃x =

{
rβtN

∗
x

2t , x 6= x∗,
1−

∑
x′ 6=x∗ p̃x′ , x = x∗.

Since t ≥ rβtM , we have,

p̃x∗ = 1−
∑
x′ 6=x∗

rβtN
∗
X

2t
≥ 1− rβtM

2t
≥ 1

2
≥ rβtM

2t
≥ rβtN

∗
x

2t
.

Therefore, p̃ is a valid distribution, and p̃x ≥ rβtN
∗
x

2t for all x ∈ X .

Now we show that p̃ is feasible for OP(t, ∆̂x). For all x 6= x∗,

‖x‖2S(p̃)−1 ≤ ‖x‖2
(
∑
y∈X

rβtN
∗
y

2t yy>)−1
=

2t

rβt
‖x‖2(∑y∈X N

∗
y yy
>)−1 ≤

t∆2
x

rβt
≤ t∆̂2

x

βt
≤ 4t∆̂2

x

βt
+ 4d.

For x = x∗, we have,

‖x∗‖S(p̃)−1 = ‖S(p̃)−1x∗‖2S(p̃) ≥ ‖S(p̃)−1x∗‖21
2x
∗x∗> =

1

2
‖x∗‖4S(p̃)−1 =⇒ ‖x∗‖2S(p̃)−1 ≤ 2.

Finally, by ∆̂x ∈ [1√
r
∆x,
√
r∆x], we have,∑

x∈X
px∆x ≤

√
r
∑
x∈X

px∆̂x ≤
√
r
∑
x∈X

∑
x∈X

p̃x∆̂x ≤
√
r
∑
x∈X

rβN∗x
2t

∆̂x

≤ r2βt
t

∑
x∈X

N∗x∆x ≤
r2βt
t
c(X , θ).

(32)

Lemma 8 (Lemma 17, [12]). Let T ∗ := 32C
∆min

+ 4M ′ log
(

2M ′|X |
δ

)
, where M ′ = 220

(
M + d

∆2
min

)
, and M is

defined in the previous Lemma. Then Algorithm 1 guarantees with probability at least 1− δ:
T∑

t=T∗+1

∑
x

pmt,x∆x ≤ O(c(X , θ) log T log(T/δ)). (33)

Proof Sketch: For some large T ∗, for t ≥ T ∗, we have√
dγmt

4 · 2mt
+ 2ρmt ≤

1

2
∆min ≤

1

2
∆x, ∀x ∈ X \ {x∗}. (34)

With this, we have that ∆x ≤ 4∆̂mt,x, and ∆̂mt,x ≤ 4∆x.
Therefore, by Lemma 7, ∑

x∈X
pmt,x∆x ≤ O

(
βt

2mt
c(X , θ)

)
.

Summing over t ≥ T ∗ + 1, we get, with probability at least 1− δ,
T∑

t=T∗+1

∑
x∈X

pmt,x∆x = O(βT c(X , θ) log T) = O (c(X , θ) log T log(T |X |/δ)) .

Finally, we can prove Theorem 3 by applying Theorem 4 for t ≤ T ∗ and Lemma 8 for t ≥ T ∗ + 1.

Remark: This paper additionally show a regret bound of O
(

d2

∆min
log2

(
T |X |

∆minδ

)
+ C

)
(see Theorem 19

in [12]), which is independent of M∗. Though they noted that this bound could be looser than Theorem 1,

as c(X , θ) ≤ O
(

d
∆min

)
.

18

5 Best of Three Worlds Algorithm

Figure 2: Best of Three Worlds

While the best-of-two-worlds algorithm presented above attains near-optimal rates in the corrupted and
stochastic setting, it has no guarantees in the adversarial setting. Building on this algorithm, the authors
present another algorithm “Best of Three Worlds” which attains near-optimal rates in all regimes.

The best-of-three-worlds algorithm proceeds in epochs of exponentially increasing length, where at each
epoch the algorithm attempts to identify which arm achieves the low regret, and, given this, designs an
allocation which aims to approximate the asymptotically optimal allocation. Critically, it relies on access to
some black-box linear bandit algorithm A satisfying the following assumption.

Assumption 1. A is a linear adversarial bandit algorithm that outputs a loss estimator ̂̀t,x. There exist
constants L0, C1 ≥ 215d log(T |X |/δ) and universal constant C2 ≥ 20 such that for t ≥ L0, A guarantees the
following with probability at least 1− δ for ∀x ∈ X :

t∑
s=1

(`s,xs − `s,x) ≤
√
C1t− C2

∣∣∣∣∣
t∑

s=1

(`s,x − ̂̀s,x)

∣∣∣∣∣ .
They show that several standard adversarial linear bandit algorithms meet this assumption. In particular,

there exist algorithms A such that C1 = Θ(d log(T |X |/δ)) and L0 = Θ(d log2(T |X |/δ)). Their main result
is the following.

Theorem 5 (Theorem 6 and 7). The best-of-three-worlds algorithm guarantees that with probability at least
1− δ, in the stochastic setting with C = 0, the regret is bounded as

O
(
c(X , θ) log T log

T |X |
δ

+
C1

√
log T

∆min
+M∗ log3/2 1

δ
+
√
C1L0

)

19

and in the stochastic corrupted setting with C > 0, the regret is bounded as

O
(
C1 log T

∆min
+ C +

√
C1L0

)
.

Furthermore, in the adversarial setting, the best-of-three-worlds algorithm will have regret bounded as, with
probability 1− δ,

O(
√
C1T log T +

√
C1L0).

Therefore, they hit the optimal instance-dependent rate, up to a factor of log T , in the purely stochastic
setting, an additive in C rate in the stochastic corrupted setting, and the minimax optimal rate in the
adversarial setting all simultaneously and without requiring knowledge of which setting they are in.

5.1 Algorithm Intuition

Adversarial Case. In Phase 1, Algorithm 3 runs some algorithm A which is a black-box algorithm which
achieves low regret for adversarial bandits. It follows, then, that the regret incurred in Phase 1 should be
low.

The algorithm will only enter Phase 2 if there is a single arm, x̂, such that the estimated loss incurred by
x̂ is significantly less than the loss of any other arm. Assuming this condition is met and we are in Phase 2,
it is shown that, due to the first exit condition of Phase 2 (equation (11)), as long as we are in Phase 2, x̂ is
still the optimal arm. As the second exit condition of Phase 2 (equation (12)) compares the loss incurred to
the loss of x̂, it follows that this is a valid surrogate for the regret incurred in this phase. Thus, if the regret
incurred becomes too large, the algorithm will exit Phase 2 and return to Phase 1, where it knows it is able
to achieve low regret.

Combining these two facts allows one to show that the total regret incurred in the adversarial case is
small.

Stochastic, Uncorrupted Case. In the stochastic, uncorrupted case, one can show that the algorithm
will only leave Phase 1 once x̂ = x∗ and all the gaps are estimated well. Furthermore, one can show that it
will take at most O(1/∆2

min) steps to reach the exit condition of Phase 1, so the total regret of Phase 1 can
be bounded conveniently by a constant that does not depend on T .

Once the algorithm reaches Phase 2, if the optimal arm has been properly identified and the gaps are also
well-estimated, the solution to the asymptotically optimal allocation on the estimated bandit will be near
the solution to the asymptotically optimal allocation on the true bandit. As such, the total regret incurred
in Phase 2 can be bounded by the asymptotically optimal constant times poly log T . Notably, as discussed
below, since the algorithm must continually check if it is truly in the stochastic regime, it must continually
play the asymptotically optimal allocation even after identifying the best arm. This extra exploration incurs
the extra log T factor.

Stochastic, Corrupted Case. In the stochastic, corrupted case the algorithm first behaves like in the
adversarial case, and then ultimately behaves like in the stochastic, uncorrupted case. Since C is finite—
there is a finite level of corruption—for T large enough, we will have learned the optimal arm and all the
gaps well enough to have “solved” the problem, and allowing us to incur low-regret. However, until T is
large enough, the instance behaves more like an adversarial instance.

As such, we can use the bound in the adversarial case to bound the total regret incurred before T is large
enough and we have solved the problem, and once T is large enough we can use the bound in the stochastic
case. It can be shown that this breaking point is roughly when Phase 1 is O(C2 + log2 T/∆2

min) steps, which
ultimately yields that the regret of Phase 1 is bounded as C + log2 T/∆min. Once the problem is solved, it
will incur regret O(c(X , θ) log2 T). However, the log2 T/∆min regret incurred in Phase 1 will dominate this,
yielding the worse rate in the corrupted setting.

20

5.2 Discussion

Burn-in time for stochastic result. In some ways the stochastic bound is almost vacuous. In the
stochastic case, their algorithm functions by estimating the best arm and all gaps correctly with probability
1− δ. At this point, they have effectively “solved” the problem and, if they knew they were in the stochastic
regime, could simply play the best arm and incur 0 regret, rather than playing the allocation from OP at
all.

While this does seem somewhat trivial, the need to protect against the adversarial makes this result still
meaningful. Even in Phase 2 they need to constantly verify that their estimates of the gaps are correct.
Playing the allocation OP is the optimal way to do this—it balances the need to explore so as to minimize
regret while still guaranteeing all the gap estimates are good. Thus, by playing the solution to OP, they
are able to ensure that there is enough exploration to account for an adversary, but that the regret is still
as small as possible in the stochastic regime.

Where does the log2 T come from? It seems the log(T |X |/δ) term comes from union bounding over all
time for all arms. The black-box adversarial regret algorithm that is applied in Phase 1 needs such a union
bound to guarantee that at every timestep the regret bound holds. This is then needed to guarantee that
(a) the gaps are well estimated and (b) the first phase achieves low regret.

Once the algorithm moves to Phase 2, it needs to constantly verify that the estimates of the gaps remain
accurate to protect against an adversary corrupting them. Solving OP optimally balances this need for
exploration with the desire to achieve low regret (as is noted above). However, it needs to ensure that
at every step for every arm the estimates remain good—so as to prevent an adversary from tricking the
algorithm—and, as such, the log(T |X |/δ) is necessary in this stage as well.

The second log T term comes from upper bounding the regret incurred by playing the solution to OP in
Phase 2 rather than just playing the optimal arm. Intuitively, then, the reason we get a log2 T is that, unlike
the stochastic regime where you can stop exploring and just play the optimal arm, in this regime you have
to continually explore so as to always ensure you are not in the adversarial case. The lower bound presented
below seems to imply the log2 T is necessary.

Why can’t this hit the c(X , θ) rate in the corrupted setting? Note that in the purely stochastic
setting, we only are in Phase 1 once, which allows us to simply apply the bound

√
C1t0 to bound the regret

in the initial stage. This ultimately scales as O(log3/2 T), and so is lower order.
In the corrupted setting, however, we do not know how many times we will be in the first phase, as the

total number of epochs depends on the value of C. As such, we can only apply the adversarial regret bound
(Theorem 7), which has an additional

√
log T term. This causes the regret of the initial stages to dominate,

and we get the O(d log2 T/∆min) regret.

5.3 Lower Bound

Theorem 6 (Theorem 27). For any γ ∈ (0, 1), if an algorithm guarantees a regret of

γ(1− γ)

256 log 4
∆min

· c(X , θ) log2 T

in stochastic environments for sufficiently large T , then there exists an adversarial environment such that
with probability at least 1

4T
−γ/4, the regret of the same algorithm is at least 1

6T
γ∆min.

Intuition for lower bound. The proof of the lower bound works by constructing two instances and
showing that, unless sufficient exploration is done, the learner will not be able to detect if the bandit
switches from one instance to the other, in which case it will incur large regret on the second instance.

More formally, they show that if an algorithm achieves regret O(c(X , θ) · log2−β T) on a fixed instance,
there must be some arm x such that

‖x− x∗‖2
A−1
i

≥ Ω(∆2
x/ log1−β T)

21

for some β ∈ (0, 1) and Ai = E[
∑ti+1

t=ti
xtx
>
t]. In other words, the algorithm cannot achieve low regret and

simultaneously distinguish between every arm well. Given this, consider an adversary switching to some
instance

θ′ = θ − A−1
i (x− x∗)
‖x− x∗‖2

A−1
i

2∆x.

Now, x is a better action than x∗, but the learner cannot distinguish between the two as stated above, and
will thus incur large regret.

Intuitively, then, the learner must explore at a rate greater than log T in order to always be able to
estimate all gaps well enough to ensure that the loss vector has not been changed by an adversary.

Caveats of lower bound. There seem to be a few shortcomings of the lower bound. First, the observation
model is non-standard. Rather than observing x>t `t + ηt as is standard in linear bandits, they assume the
observation, yt, is

yt =

{
1 with probability 1

2 + 1
2x
>
t θ

−1 with probability 1
2 −

1
2x
>
t θ

So rather than the full feedback, they’re getting a binary feedback. This seems more difficult to learn in
perhaps, but is essentially still sub-gaussian noise.

Second, one would ideally like to be able to say that the bad event occurs with constant probability but
in their case the bad event occurs with probability 1

4T
−γ/4, which will go to 0 as T →∞. In order to make

the probability of the bad event a constant, you need to choose γ = O(1/ log T), which will make the regret
of the bad event a constant that does not scale with T . However, with this model the expected regret will
be at least O(T 3γ/4), which is still potentially worse than the optimal rate, so this is perhaps not that big
an issue.

5.4 Proof Sketch (Adversarial Case)

The proof in the adversarial setting involves three key steps:

1. Show that, since we are running a low-regret algorithm, the regret in Phase 1 is bounded as O(
√
C1t0).

2. Show that in Phase 2, the arm identified as empirically best, x̂, in Phase 1 remains the best arm for
the duration of Phase 2.

3. Given this, we can use x̂ to accurately estimate the regret. Show that the conditions of Phase 2 then
allow us to bound the regret in this phase as O(

√
C1t0 log T).

The proof of the first step follows trivially by Assumption 1—since in Phase 1 we are running an algorithm
with a low-regret guarantee for adversarial bandits, it follows that we will achieve low regret in this phase.

The following lemma proves the second step.

Lemma 9 (Lemma 8). With probability at least 1−δ, for any t in Phase 2, we have x̂ ∈ arg minx∈X
∑t
s=1 `s,x.

Proof. We first show that the deviation in the first phase is well-bounded:∣∣∣∣∣
t0∑
s=1

(`s,x − ̂̀s,x)

∣∣∣∣∣ ≤ c
(√

C1t0 +

t0∑
s=1

(̂̀s,x − `s,xs)
)

(Rearranging regret bound for Phase 1)

≤ c

(
2
√
C1t0 + 5

√
fTC1t0 +

t0∑
s=1

(̂̀s,x − ̂̀s,x̂)

)
(Definition of x̂)

≤ c
(

7
√
fTC1t0 + t0∆̂x

)

22

In Phase 2, we can use some properties of the robust estimator to get that∣∣∣∣∣(t− t0)Robt,x −
t∑

s=t0+1

`s,x

∣∣∣∣∣ ≤ t∆̂x

16

Using the above inequality, we can bound the deviation
∑t0
s=1(`s,x̂− ̂̀s,x̂). To bound the deviation for s > t0,

we can apply Freedman’s inequality and, using that we choose x̂ with probability at least 1/2 to control the
variance, conclude that ∣∣∣∣∣

t∑
s=1

(`s,x̂ − ̂̀s,x̂)

∣∣∣∣∣ ≤ 3
√
fTC1t

Putting these pieces together, we have that

t∑
s=1

(`s,x − `s,x̂) ≥
t0∑
s=1

(̂̀s,x − ̂̀s,x̂) +

(
(t− t0)Robt,x −

t∑
s=t0+1

̂̀
s,x̂

)
− c
√
fTC1t− c′t∆̂x

≥ t∆̂t,x − c
√
fTC1t− c′t∆̂x

≥ t∆̂t,x − 0.37t∆̂x

> 0

where the final inequality holds since we are in Phase 2, which implies that ∆̂t,x ∈ [0.39∆̂x, 1.81∆̂x]. Thus,
x̂ is still the best arm.

Given this result, the following lemma proves the third step.

Lemma 10 (Lemma 9). With probability at least 1 − δ, for any time t in Phase 2, we have that for any
x ∈ X ,

t∑
s=1

(`s,xs − `s,x) = O(
√
C1t0fT)

Proof. By the previous result, we know that in Phase 2 the optimal arm is still x̂. It follows that

t∑
s=t0+1

(`s,xs − `s,x̂)

is an accurate measure of the regret. In practice, we only have access to the empirical quantity

t∑
s=t0+1

(ys − ̂̀s,x̂)

The difference between these quantities is a martingale difference sequence with variance that can be bounded
conveniently since we pull x̂ at least 1/2 of the time, ensuring ̂̀s,x̂ is well-behaved. It can then be shown
that this deviation is O(

√
t0). As the exit condition of Phase 2 is that

t∑
s=t0+1

(ys − ̂̀s,x̂) ≥ 20
√
fTC1t0

it follows that the regret of Phase 2 will be upper bounded as O(
√
fTC1t0 +

√
t0).

Combining these two results and using that the total number of epochs is at most O(log T), an application
of Jensen’s inequality to combine the regret over all phases gives Theorem 7.

23

5.5 Proof Sketch (Corrupted Stochastic Case)

The key lemma towards proving Theorem 6 is the following.

Lemma 11 (Lemma 20). In the stochastic setting with corruptions, within a single epoch,

1. With probability at least 1− 4δ, t0 ≤ max{ 900fTC1

∆2
min

, 900C2

fTC1
, L}.

2. If C ≤ 1
30

√
fTC1L, then with probability at least 1− δ, x̂ = x∗.

3. If C ≤ 1
30

√
fTC1L, then with probability at least 1− 2δ, t0 ≥ 64fTC1

∆2
min

.

4. If C ≤ 1
30

√
fTC1L, then with probability at least 1− 3δ, ∆̂x ∈ [0.7∆x, 1.3∆x] for all x 6= x∗.

Proof. The key insight in proving this result is that for any t in Phase 1 and any x,∣∣∣∣∣
t∑

s=1

(`s,x − ̂̀s,x)

∣∣∣∣∣ ≤ 1

C2
(
√
C1t+ t∆x + 2C) (35)

In words, our estimate of the reward for each arm is within a factor of O(1/
√
T + C/T + ∆x) of it’s true

reward. this result follows directly from the guarantee of the low-regret algorithm we are running in Phase
1, which gives

C2

∣∣∣∣∣
t∑

s=1

(`s,x − ̂̀s,x)

∣∣∣∣∣ ≤√C1t+

t∑
s=1

(`s,x − `s,xs)

Furthermore, `t,xt ≥ `t,x∗ −maxx∈X |ct,x|, so

t∑
s=1

`s,xs ≥
t∑

s=1

`s,x∗ − C

Combining these results and using the definition of ∆x gives the result.
Given this, the four claims intuitively follow. In the case with low corruption, one can show that (35)

and the exit condition of Phase 1 implies that we will only exit the phase after we have identified the best
arm and the gaps for every other arm. That t0 = Θ(fTC1

∆2
min

) follows intuitively since this is the amount of

time necessary to identify the best arm if using a naive approach. In the corrupted case, we can bound
t0 = O(C2) since in this regime, the terms scaling with t will dominate the C term in (35), which will allow
the exit condition of Phase 1 to be reached.

We then have the following result.

Lemma 12 (Lemma 21 and 22). When C ≤ 1
30

√
fTC1L, with high probability Phase 2 will never end.

Proof. That the gap estimates remain accurate follows since t0 is large enough to dominate the corruptions.
Next, it is shown that

t∑
s=t0+1

(ys − ̂̀s,x̂) ≤ 20
√
fTC1t0 (36)

for all remaining time. This follows by first relating ys− ̂̀s,x̂ to the true regret at time s, `s,xs − `s,x∗ . Again

using that x̂ is pulled at least half the time, the variance of (ys − ̂̀s,x̂)− (`s,xs − `s,x∗) can be controlled so
this deviation can be bounded. Then, using that Lemma 20 holds in this case so the gaps are well estimated,
Lemma 13 can be applied which gives a bound on the regret incurred by playing an allocation computed by
OP. Combining these proves (36) holds for all time.

Proof of Theorem 6. The proof of Theorem 6 is broken into two parts.

24

Case 1: C = 0. In the truly stochastic case, the requirement of Lemma 20 will be met at the first epoch.
Thus, assuming that T is large enough, Phase 1 will only exit after it has found the best arm and estimated
the gap of every arm correctly. Using the bound from Lemma 20 that t0 = Θ(fTC1

∆2
min

), the regret in the first

stage can be bounded by, using the regret bound from the black-box algorithm, as

O(
√
fTC2

1/∆
2
min) = O(C1

√
log T/∆min) = O(d log3/2 T/∆min)

Critically, as we are only in Phase 1 a single time, we can use the regret bound of the black-box algorithm
which scales as

√
C1t0, rather than applying the adversarial regret bound, which scales as

√
C1T log T . The

lack of that additional
√

log T term ensures that the regret of this initial stage is lower order.
Then, for large enough T , we can use that the gaps are well-enough estimated to guarantee that the

empirical solution to OP is near the solution to OP on the true instance, so the regret of Phase 2 can be
upper bounded as

O(c(X , θ) log T log(T |X |/δ) +M log3/2 1/δ)

where here M is the time needed to guarantee that the time-constrained solution returned by OP achieves
a regret scaling with c(X , θ).

Case 2: C > 0. By what was shown in Lemma 21, Phase 2 will never end once L ≥ cC2/(C1fT).
Furthermore, by what was shown in Lemma 20, we will always have that, in the previous epochs, t0 ≤
max{ 900fTC1

∆2
min

, 900C2

fTC1
}. Applying the adversarial regret bound to all stages where L ≤ cC2/(C1fT), we get

that the regret in these stages is bounded as

O

(√
C1fT max{900fTC1

∆2
min

,
900C2

fTC1
}

)
= O

(√
C1fT (

√
fTC1

∆min
+

C√
fTC1

)

)
= O

(
d log T log(T |X |/δ)

∆min
+ C

)
By Lemma 21, we will have that the regret in the final Phase 2 will be bounded as O(

√
fTC1t0). By our

bound on t0 this can be shown to be order

O
(
d log T log(T |X |/δ)

∆min
+ C

)
which gives the result.

6 Misspecified models

At time t, we can observe the measurement xt, through the real value

yt = µxt + ξt

with |y| ≤ B and E[ξ2] ≤ σ2. We assume that maxx∈X |x>θ∗ − µx| ≤ h. Note that this framework covers
the (more classical) stochastic linear bandit setting where h = 0 (also called the well specified case).

We define τ(X , h, ε) the number of samples needed to design an algorithm that returns an ε-optimal arm
almost surely, when the set of measurements is X ⊂ Rd and the misspecification tolerance is h.

The rest of this section investigate attempts to tackle the misspecified setting, where h > 0. We first
discuss the lower bound provided in [11], which we then compare to the upper bounds of [11] and [5].

6.1 Lower bound, [11]

Note that this lower bound was first provided in [7]. The setting chosen is pure exploration in noiseless
bandits. Namely, we assume that ξt = 0 at every time t.

25

Theorem 7 ([7], [11]). For all ε > h and k & exp
{
d
(
h
ε

)2}
, there exists a set of measurements X ⊂ Rd of

size k such that the number of samples needed to design an algorithm that returns an ε-optimal arm almost
surely is

τ(X , h, ε) & exp

{
d

(
h

ε

)2
}

The proof can be found in e.g. [11]. The set of measurements X used is obtained using the Johnson-
Lidenstrauss lemma.
We see that the query complexity is exponential in d (curse of dimensionality) when ε is not much larger
than h, but is benign when ε = Ω(h

√
d).

6.2 Upper bounds, [11] and [5]

Theorem 8 ([11]). Let X ∈ Rk×d and ε > 2h(1 +
√

2d), there exists an algorithm requiring its number of
samples to be at most 4d log log(d) + 16 to find an ε-optimal action. Thus

τ(HhX , ε) ≤ 4d log log(d) + 16

The algorithm used goes as follows:
• Use 4d log log(d) + 16 measurements to compute a near G-optimal design. That is compute λ0 such that
g(λ0) ≤ 2 minλ∈4X g(λ) = 2d, where

g(λ) := max
a∈X
‖a‖2

(
∑
a∈X λ(a)aa>)

−1

• Compute a least squares estimate with these 4d log log(d) + 16 measurements
• Output the measurement that looks best according to the least squares estimate.

Proposition 1. [Robust IPS estimator, [5]] Fix any finite sets X ⊂ Rd and V ⊂ Z, number of samples τ
and regularization γ > 0. If the estimator is run with δ

|V| -robust mean estimator µ̂(·) and if τ ≥ c1 log(|V|/δ)
then with probability at least 1− δ, we have

max
v∈V

|W (v) − 〈θ∗, v〉|
‖v‖(∑x∈X λxxx

>+γI)−1

≤ √γ‖θ∗‖2 + h+ c

√
(B2+σ2)

τ log(2|V|/δ),

Moreover, W (v) = µ̂({v>A(γ)(λ)−1xtyt}τt=1) can be replaced by 〈θ̂, v〉 by multiplying the RHS by a factor of
2.

The full proof can be found in [5], but we provide a sketch of the proof here.

Proof sketch. Due to the regularization and potential misspecification if h > 0, each v>A(γ)(λ)−1xtyt is bi-
ased. Thus, we apply the guarantee of W (v) = µ̂({v>A(γ)(λ)−1xtyt}τt=1) to the expectation of its arguments.
The triangle inequality followed by repeated applications of Cauchy-Schwartz yields

|W (v) − 〈v, θ∗〉| ≤ |W (v) − E[v>A(γ)(λ)−1x1y1]|+ |E[v>A(γ)(λ)−1x1y1]− 〈v, θ∗〉|

≤ c
√
ν2 log(1/δ)

τ
+
√
γ‖θ∗‖2 + h

where we obtain an upper bound on the variance ν2 by

Var(v>A(γ)(λ)−1x1y1) ≤ E[(v>A(γ)(λ)−1x1y1)2]

= E
[(
v>A(γ)(λ)−1x1

)2

µ2
x1

]
+ E

[(
v>A(γ)(λ)−1x1

)2

ξ2
1

]
≤ (B2 + σ2)‖v‖2A(γ)(λ)−1 .

26

References

[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. In NIPS, volume 11, pages 2312–2320, 2011.

[2] Jacob D Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient algorithm
for bandit linear optimization. 2009.

[3] Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandit
algorithms with supervised learning guarantees. In Proceedings of the Fourteenth International Confer-
ence on Artificial Intelligence and Statistics, pages 19–26. JMLR Workshop and Conference Proceedings,
2011.

[4] Sébastien Bubeck, Nicolo Cesa-Bianchi, and Sham M Kakade. Towards minimax policies for online linear
optimization with bandit feedback. In Conference on Learning Theory, pages 41–1. JMLR Workshop
and Conference Proceedings, 2012.

[5] Romain Camilleri, Julian Katz-Samuels, and Kevin Jamieson. High-dimensional experimental design
and kernel bandits, 2021.

[6] Olivier Catoni. Challenging the empirical mean and empirical variance: a deviation study, 2011.

[7] Simon S. Du, Sham M. Kakade, Ruosong Wang, and Lin F. Yang. Is a good representation sufficient
for sample efficient reinforcement learning?, 2020.

[8] Anupam Gupta, Tomer Koren, and Kunal Talwar. Better algorithms for stochastic bandits with adver-
sarial corruptions. In Conference on Learning Theory, pages 1562–1578. PMLR, 2019.

[9] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. In The Collected
Works of Wassily Hoeffding, pages 409–426. Springer, 1994.

[10] Tor Lattimore and Csaba Szepesvari. The end of optimism? an asymptotic analysis of finite-armed
linear bandits. In Artificial Intelligence and Statistics, pages 728–737. PMLR, 2017.

[11] Tor Lattimore, Csaba Szepesvari, and Gellert Weisz. Learning with good feature representations in
bandits and in rl with a generative model, 2020.

[12] Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei, Mengxiao Zhang, and Xiaojin Zhang. Achieving near
instance-optimality and minimax-optimality in stochastic and adversarial linear bandits simultaneously,
2021.

[13] Yingkai Li, Edmund Y Lou, and Liren Shan. Stochastic linear optimization with adversarial corruption.
arXiv preprint arXiv:1909.02109, 2019.

[14] László Lovász. Geometric algorithms and algorithmic geometry. American Mathematical Society, 1990.

[15] Gabor Lugosi and Shahar Mendelson. Mean estimation and regression under heavy-tailed distributions–
a survey, 2019.

[16] Andrea Tirinzoni, Matteo Pirotta, Marcello Restelli, and Alessandro Lazaric. An asymptotically optimal
primal-dual incremental algorithm for contextual linear bandits. arXiv preprint arXiv:2010.12247, 2020.

[17] Andrew Wagenmaker, Julian Katz-Samuels, and Kevin Jamieson. Experimental design for regret min-
imization in linear bandits. In International Conference on Artificial Intelligence and Statistics, pages
3088–3096. PMLR, 2021.

[18] Chen-Yu Wei, Haipeng Luo, and Alekh Agarwal. Taking a hint: How to leverage loss predictors in
contextual bandits?, 2020.

[19] Julian Zimmert and Yevgeny Seldin. Tsallis-inf: An optimal algorithm for stochastic and adversarial
bandits. Journal of Machine Learning Research, 22(28):1–49, 2021.

27

