
Best of both worlds

Yifang Chen, Xiujun Li, Zhaoqi Li, Lianhui Qin, Zhihan Xiong
{yifangc, xiujun, zli9, lianhuiq, zhihanx}@uw.edu

1 Motivation and preliminary

In this section, we review stochastic and adversarial settings for both multi-armed bandits and
semi-bandits; for corruption setting, we leave it to Thursday’s section.

1.1 Multi-Armed Bandits (MAB) and Semi-bandits

Multi-Armed Bandits Setting
for t = 1, . . . , T

- The learner selects an arm it ∈ [n]
- Simultaneously, environment selects a loss vector `t ∈ [0, 1]d

- The learner suffers and observes `tit ∈ [0, 1].

Semi-bandit problem is a natural generation of multi-armed bandits, where the agent has to pick a
subset of arms (called combinatorial actions or macro-arm1), but can still observe the loss for each
arm. Notice that in a more generalized setting linear bandits we talked in the class, one can only
observes 〈Xt, `t〉.

Semi-Bandit Setting
for t = 1, . . . , T

- The learner selects a combinatorial action Xt ∈ X , where X ⊂ {0, 1}d.
- Simultaneously, environment selects a loss vector `t ∈ [−1, 1]d

- The learner suffers the loss 〈Xt, `t〉
- The learner observes the (semi-bandit) feedback ot = Xt ◦ `t ∈ [−1, 1]d, where ◦ is

element-wise multiplication.
It is easy to see that, when X = {e1, . . . , ed}, the problem reduces to the general MAB.

Our target regret form: The performance of a learner is measured by pseudo-regret:

RegT := E

[
T∑
t=1

〈Xt − x∗, `t〉

]

where x∗ = argminx∈X E
[∑T

t=1 〈x, `t〉
]

is the best action in hindsight and the expectation is with
respect to the randomness of both the learner and the environment.

1.2 Intro to both worlds and the key motivation of this work

Since MAB is a special case of semi-bandits, so in the following we will just use the semi-bandits
notation. First we introduce the traditional stochastic and adversarial settings, which the “both
worlds" refers to.

1. Stochastic bandits: `1, `2, . . . , `T are i.i.d loss vector drawn from some fixed unknown distri-
bution ν and therefore, for each arm X , we can calculate its gap ∆X = 〈X − x∗, ν〉. One
near-optimal algorithm is Elimination-style algorithm (in the lecture 2), which guarantees a

1In hierarchical reinforcement learning, a macro-action is a “multi-step” action, here you can think a
macro-arm is a subset of primitive arms.

gap-dependent (or sometimes called instance-dependent) regret bound,2

Reg ≤ O
(

min

{
maxX∈X ‖X‖d log(T)

minX∈X ∆X
,
√

max
X∈X

‖X‖d log(T)T

})
2. Adversarial bandits: `T is chosen in an arbitrary way based on the history
`1, X1, `2, X2, . . . , `T−1, XT−1 and possibly an internal randomization by the environment. One
near-optimal algorithm is EXP3 (in the lecture 3), which guarantees

Reg ≤ O
(√

max
X∈X

‖X‖dT
)

Key motivation: It is easy to see that, when given a prior knowledge of whether the environment
is stochastic or adverserial, we can always choose a proper algorithm to get a near-optimal regret. But
can we achieve the optimal regret without knowing the property of environment in advance?
This paper says yes !

1.3 Intro to some mediate setting between two worlds

Besides the i.i.d setting and the purely adversarial settings we present above, there are also some
mediate settings between these two.

1. Stochastically constrained adversarial setting: `1, `2, . . . , `T are drawn from a sequence of
unknown distributions ν1, ν2, . . . , νT that satisfies the following:

Elt∼νt [〈Xt − x∗, `t〉] ≥ ∆X ,∀t
2. Corruption setting: Instead of observing ot = Xt ◦ `t ∈ [−1, 1]d, the learner observes
ot = Xt ◦

(
`t ∈ [−1, 1]d + ct

)
. Here ct ∈ Rd is an arbitrary corruption that determined by

environment. More constraints on corruption will be discussed in later section. It is easy to see
that, it recovers the stochastic setting when all ct = 0 and it recover the adversarial setting when
all ct are chosen adversarially.

If we can achieve the near-optimal result simultaneously in the stochastic and adversarial world, it
is also natural to ask: Can we also achieve near-optimal result simultaneously in these mediate
settings? Fortunately, the answer is yes. And we will discuss that in later sections.

2 An overview of best-of-both world result
• Use OMD/FTRL framework with proper regularizer (this paper, only works for MAB and

semi-bandits)
• Continuously update the estimated gaps and sample according to the estimated gaps (next

week, works for linear bandits)
• Start with stochastic and switch to adversarial via some testing (old, usually deprecated)

3 A general analysis process for FTRL algorithm
• For any potential function, we can divide that into stability and penalty term Zimmert et al.

[2019]
• A revisit to entropy regularizer and exp3, explain the intuition why it cannot work well
• An introduction to the class of Tsallis-entropy and three special case Zimmert and Seldin

[2021]
• Hybrid regularizer (just a brief mentioning here) Zimmert et al. [2019], Masoudian and

Seldin [2021]

Before going to the details, we want to clarify that the FTRL presented below can also be analyzed
under the OMD framework because these two are closely related, and sometimes equivalent.? Here
we use the FTRL framework by following the convention of Zimmert et al. [2019]. People interested
in OMD version analysis can refer to Zimmert and Seldin [2021], Masoudian and Seldin [2021]. But
the basic ideas behind these two version are essentially the same.

2Actually, the existing algorithm can achieve a better regret, but for simplicity we present a close one here.

2

3.1 A general analysis framework for FTRL

The algorithm we will talk about is based on the general Follow-The-Regularized-Leader (FTRL)
framework, with regularization function Ψ(·), loss estimator ˆ̀

t and learning rate ηt, that will be
specified later.

Algorithm 1 General FTRL for Semi-bandit
1: input: A regularization function Ψ(x), a time varying learning rate ηt
2: initialize: L̂0 = (0, 0, . . . , 0)
3: for t= 1,2,. . . do
4: Compute xt = argminx∈Conv(X)

〈
x, L̂t−1

〉
+ η−1

t Ψ(x)

5: Sample X ∼ P (xt) according to some sample scheme P satisfying

EX∼P (x)[X] = x

6: Observe ot = Xt ◦ `t and suffer loss 〈Xt, `t〉
7: Construct estimator ˆ̀

t such that E[ˆ̀t] = `t
8: Update L̂t = L̂t−1 + ˆ̀

t

9: end for

For any regularization function Ψ(x), learning rate ηt and estimator l̂t, we can always get a standard
analysis of the regret by dividing it into stability term (Regstan) and the penalty term (Regpen),

RegT = E

[
T∑
t=1

〈Xt, lt〉+ Φt(−L̂t)− Φt(−L̂t−1)

]
︸ ︷︷ ︸

Regstab

+E

[
T∑
t=1

Φt(−L̂t−1)− Φt(−L̂t)− 〈x∗, `t〉

]
︸ ︷︷ ︸

Regpen

where potential function Φt(·) = maxx∈Conv(X) {〈x, ·〉 −Ψt(x)} and Ψt(·) = η−1
t Ψ(·). Here, Φt

is the convex conjugate function of Ψt + IConv(X).

At the first glance, people may think this as a simply arrangement and introduce nothing new. Here
we provide more intuition by connecting this with something we have already learnt: Recall the
OMD algorithm we did in class shown in Figure 1 (Note OMD is equivalent to FTRL in some cases).
The theorem it shows is not exactly the same as what we did in lecture, but a direct consequence of
one of our intermediate steps. Specifically, in previous lecture, we have the following intermediate
step at Eq. (1).3

RegT ≤
supa∈AF (a)−f(a1)

η
+

1

η

T∑
t=1

DF (at, ãt+1) (1)

=
supa∈AF (a)−f(a1)

η
+

1

η

T∑
t=1

DF∗ (∇F (ãt+1,∇F (at)))

(Df (x, y) = Df∗(∇f(y),∇f(x)))

=
supa∈AF (a)−f(a1)

η
+

1

η

T∑
t=1

DF∗ (∇F (a)− η∇`(at, zt),∇F (at))

(∇F (∇F ∗(x)) = x)

First we can show that, regardless of what regularization function and estimator we choose, we can
always bound the penalty term as (By Lemma 3 in Zimmert et al. [2019])

Regpen ≤ E

[
−Ψ(x1) + Ψ(x∗)

η1
+

T∑
t=2

(η−1
t − η−1

t−1)(−Ψ(xt) + Ψ(x∗))

]
3We use notations in Figure 1.

3

Figure 1: OMD and its analysis from Kevin’s class notes

So now, if ηt is a constant over time, presented as η as shown in Figure 1, then the second term in
upper bound goes to 0 and we get an upper bound E

[
−Ψ(x1)+Ψ(x∗)

η

]
, which is very similar to the

bias term supa∈A F (s)−F (a1)

η . (F = Ψ)

Secondly we can show that, as long as the loss estimator is unbiased and the regularizer Ψ(·) is
convex, for any t0 ≥ 0, we can always bound the stability term as

Regstab ≤ E

[
T∑
t=t0

DΨ∗t

(
∇Ψt(xt)− ˆ̀

t,∇Ψt(xt)
)]

+ 2

t0∑
t=1

‖∇Φt(−ˆ̀
t)‖1

(Partially shown in proof of Lemma 2 Zimmert et al. [2019])
Recall that Φt(·) = maxx∈Conv(X) {〈x, ·〉 −Ψt(x)}, the property of conjugate function tells us
∇Φt(·) = argmaxx∈Conv(X) {〈x, ·〉 −Ψt(x)} (see section 5.4.1 in Bertsekas [2009]). Since we

assume X is bounded,
∥∥∥∇Φt(−ˆ̀

t)
∥∥∥

1
is upper bounded by some constant m. If we further have ηt

being a constant, we have

Regstab ≤ E

[
T∑
t=t0

1

η
·DΨ∗t

(
∇Ψ(xt)− η ˆ̀

t,∇Ψ(xt)
)]

+ 2t0m,

which is exactly similar to 1
η

∑T
t=1DF∗(∇F (at)− η∇`(at, zt),∇F (at)) in the lecture notes.

3.2 A closer look at the regularization function

While the general framework of FTRL is fixed, the key for this class of algorithm is always the choice
of proper regularization function as well as the corresponding learning rate and estimator.

4

Figure 2: Exp 3 algorithm and its analysis

Before we going to the regularization function chosen in this paper, that’s first revisit the most
common regularizer – the negative Shannon entropy regularizer previously talked in class as shown
in Figure 2. Note that in the figure it said Exp3 because Exp3 is equivalent to FTRL with entropy
regularizer in most cases. As we stated in Section 1, this algorithm works well for adversarial setting
and achieves O(

√
dT log(d)), but it is not sufficient for getting a tighter gap-dependent bound for

the stochastic setting. How should we modify it ?

By carefully examine the proof, we notice that the
√
T actually comes from the stability term

E
[∑d

i=1 at,i
1{It=i}z2t,i

a2t.i

]
as shown in the red circle. Written this using our notation, it is equivalent

to say the
√
T comes from the fact that[

d∑
i=1

xt,i
1{Xt,i = 1}l2t,i

x2
t,i

]
= o(1)

So the idea is to find a better regularizer that decrease this stability term. For example, Can we find
an regularizer that change the stability term into something close to d∑

i=1

xt,i
1{Xt,i = 1}l2t,i

x
3
2
t,i

 = o

(
d∑
i=1

√
xt,i

)
?

As a trade of, we need to slightly increase the penalty term, for example, from log(d)
η to d

η . But such
increment exactly matches the lower bound of stochastic setting, so it is totally ok. With this in mind,
we introduce a class of regularization functions called Tsallis entropy regularization.

5

P.S. To more rigorously illustrate why this form is good requires more analysis as well as the choice
of learning rate. So we left that in the later sections. Here just try to give an intuition why we need
better regularizer.

Intro to α-Tsallis-INF entropy The original α-Tsallis entropy is defined as Hα(x) :=
1

1−α (1−
∑
i x

α
i). Here by a little bit of modification, we define the α-Tsallis-INF entropy as

Ψ(x) := −
∑
i

wαi − αwi − (1− α)

α(1− α)ξi

For now, you can think ξi = 1. In Zimmert and Seldin [2021], they actually provide some analysis on
how the choice of ξi can be influence by gap. But we will not expend this complicated analysis here.

The magic thing for this regularizer is, by taking α→ 1, we can exactly recover the negative Shannon
entropy since

lim
α→1

Ψ(x) =
∑
i

ξ−1
i (xi log(xi)− xi + 1).

It also gives interesting results in many cases by taking α→ 0. Please refer to Wei and Luo [2018]
for details if you are interested and we will not go into details here.

In this week’s literature, we will focus on Tsallis-INF entropy with α = 1
2 . That is,

Ψ(x) = −
∑
i

√
xi

The other terms can be ignored because we always consider x to be some discrete probability
distribution. We also ignore the leading constant because it can be incorporated into learning rate.

Intro to Hybrid regularizer Now by considering from a class α-Tsallis-INF entropy, we are very
close to the final entropy we want. In fact, for the simple MAB case, this Ψ(x) = −

∑
i

√
xi can

already render a good result as shown in Zimmert and Seldin [2021], Masoudian and Seldin [2021].
For more complicated structure, like semi-bandits, we need to consider a hybrid regularizer, which is
the combination of several kind of α-Tsallis-INF entropy with different choice of α. In Zimmert et al.
[2019], the authors use

Ψ(x) =

d∑
i=1

−
√
xi + γ(1− xi) log(1− xi) (2)

where γ is some constant parameter. This is a hybrid regularizer with a combination of negative
Shannon entropy and 1

2 -Tsallis-INF entropy. The reason for choosing such regularizer will be
explained in the following section.

4 A detailed analysis on semi-bandits result

4.1 Algorithm and result

The major novelty of this work is its hybrid regularizer as shown in Eq. (2). To fully specify the
Algorithm 1, the authors use learning rate ηt = 1/

√
t and loss estimator

ˆ̀
t =

(oti + 1)1 {Xti = 1}
xti

− 1. (3)

It is clear E[ˆ̀t] = `t and the shift by 1 is introduced in order to ensure ˆ̀
t ≥ −1, which will be used

in later proof.

Before presenting its major theorem, several new notations need to be introduced. First, for any
concrete instance of semi-bandit with action set X and optimal action x∗, we define two functions
f, g : X 7→ R as

f(x) =
∑
i:x∗i =0

√
xi

g(x) =
∑
i:x∗i =1

(
γ−1 − γ log(1− xi)

)
(1− xi).

6

For stochastic environment, we also define the instantaneous regret function r : [0,∞)|X | 7→ R as

r(α) =
∑

x∈X\{x∗}

αx∆x.

Further, for any α ∈ [0,∞)|X |, we define α =
∑
x∈X αxx and let ∆(X) denote the simplex of

distribution over X . Then, the major theorem of this paper is summarized as the following
Theorem 1. For any γ ∈ (0, 1], by applying Algorithm 1 with regularizer Ψ(·) in Eq. (2), estimator
ˆ̀
t in Eq. (3) and learning rate ηt = 1/

√
t, the pseudo-regret is upper bounded by

RegT ≤ O (Csto log(T)) +O (Cadd)

in the stochastic case and
RegT ≤ O

(
Cadv

√
T
)

in the adversarial case. Here, Csto, Cadd and Cadv are defined as

Csto = max
α∈[0,∞)|X|

{f(α)− r(α)} ,

Cadd =
∞∑
t=1

max
α∈∆(X)

(
100√
t
g(α)− r(α)

)
,

Cadv = max
x∈Conv(X)

{f(x) + g(x)} .

Moreover, by defining m = maxx∈X ‖x‖1 and ∆min = minx∈X\{x∗}∆x, it always holds that

Csto = O
(

md
∆min

)
, Cadd = O

(
m2

γ2∆min

)
and Cadv = O

(√
md
γ

)
.

Here, we will provide a proof overview. For full details, please refer to Zimmert et al. [2019].

4.2 A proof overview

Recall that in Section 3.1, we state that for all the FTRL framework, its regret can be divided into the
stability and penalty terms:

RegT = E

[
T∑
t=1

〈Xt, lt〉+ Φt(−L̂t)− Φt(−L̂t−1)

]
︸ ︷︷ ︸

Regstab

+E

[
T∑
t=1

Φt(−L̂t−1)− Φt(−L̂t)− 〈x∗, `t〉

]
︸ ︷︷ ︸

Regpen

≤ E

[
−Ψ(x1) + Ψ(x∗)

η1
+

T∑
t=2

(η−1
t − η−1

t)(−Ψ(xt) + Ψ(x∗))

]

+ E

[
T∑
t=t0

DΨ∗t

(
∇Ψt(xt)− ˆ̀

t,∇Ψt(xt)
)]

+ 2t0m

So the first step is to show that both terms can be upper bounded by

Regpen ≤
T∑
t=1

3

2
√
t

 ∑
i:x∗i =0

√
E[xti]−

∑
i:x∗i =1

γ(1− E[xti]) log(1− E[xti])

 (4)

Regstab ≤
T∑
t=1

16
√

2√
t

 ∑
i:x∗i =0

√
E[xti] +

∑
i:x∗i =1

γ−1(1− E[xti])

 (5)

Notice that this
∑
i:x∗i =0

√
E[xti] term is the key to achieve best-of-both-worlds, while by using the

negative Shannon entropy (Exp3) we can only hope to get some o(1) upper bound.

The key difficulty here is, when bound the DΨ∗t

(
∇Ψt(xt)− ˆ̀

t,∇Ψt(xt)
)

, you need to bound

∇Ψ∗t (∇Ψt(x)− ˆ̀
t) in terms of xi.

7

The second step is to show that as long as the above inequalities are satisfied, we can always using
the self-bounding technique to get a desired stochastic bound. Of course, we also show that we can
get a desired adversarial bound which is very direct.

Here we copy and paste a MAB version from Sebastian Bubeck’s blog to give you an intuition on the
self-bounding technique

4.3 Step 1

4.3.1 Penalty Term

In this section, we aim to show that the regularization penalty term is upper bounded by (4). We first
cite the following standard result from FTRL.

Lemma 1. The penalty term can be upper bounded as follows:

E

[
T∑
t=1

Φt(−L̂t−1)− Φt(−L̂t)− 〈x∗, `t〉

]

≤ E

[
−Ψ (x1) + Ψ (x∗)

η1
+

T∑
t=2

(
η−1
t − η−1

t−1

)
(−Ψ (xt) + Ψ (x∗))

]
.

With this result, we are able to prove the upper bound.

Proof. We directly plug into Lemma 1 the learning rate of ηt = 1√
t

and the regularizer as (2). Since

γ ≤ 1 and −(1− x) log(1− x) ≤
√
x

2 for x ∈ [0, 1], we get

8

https://blogs.princeton.edu/imabandit/2019/06/10/amazing-progress-in-adversarially-robust-stochastic-multi-armed-bandits/

−Ψ (xt) + Ψ (x∗) =

d∑
i=1

√
xti − γ (1− xti) log (1− xti)−

∑
i:x∗i =1

√
1

≤
∑
i:x∗i =0

3

2

√
xti −

∑
i:x∗i =1

γ (1− xti) log (1− xti)

≤ 3

2

 ∑
i:x∗i =0

√
xti −

∑
i:x∗i =1

γ (1− xti) log (1− xti)

 .

It further holds that η1 = 1 = η−1
1 and

η−1
t − η−1

t−1 =
√
t−
√
t− 1 ≤ 1

2
√
t− 1

≤ 1√
t

= ηt.

Insert everything into Lemma 1 yields

Regpen ≤ E

[
−Ψ (x1) + Ψ (x∗)

η1
+

T∑
t=2

(
η−1
t − η−1

t−1

)
(−Ψ (xt) + Ψ (x∗))

]

≤ E

[
T∑
t=1

ηt (−Ψ (xt) + Ψ (x∗))

]

≤ E

 T∑
t=1

3

2
√
t

 ∑
i:x∗i =0

√
xti −

∑
i:x∗i =1

γ (1− xti) log (1− xti)

≤

T∑
t=1

3

2
√
t

 ∑
i:x∗i =0

√
E [xti]−

∑
i:x∗i =1

γ (1− E [xti]) log (1− E [xti])

where the last step follows from Jensen’s inequality and the concavity of functions

√
x and −(1−

x) log(1− x).

4.3.2 Stability Term

We first observe that the stability term is essentially the Bregman divergence. Usually it is very
complicated to directly calculate the value of DΨ∗t

(x, y). A common trick is to using the following
property, which might be more intuitive to people
Lemma 2. For any x, y ∈ Rf , then

DΨ∗t
(x, y) ≤ 1

2
max
x∈A
‖x− y‖2∇2Ψ−1

t (x)
,

where A =
⊗d

i=1[xi, yi]

Proof. By Talyor theorem, for any x, y ∈ Rf there exists a z ∈ Conv({x, y}) such that

DΨ∗t
(x, y) =

1

2
‖x− y‖2∇2Ψ∗t (z) =

1

2
‖x− y‖2∇2Ψ−1

t (z)

where Ψ∗t is the dual function of Ψt. Finally you just apply the coordinate wise monotonicity to get
the final bound.

Equip with this property, we can upper bound the stability term as

E

[
T∑
t=t0

DΨ∗t

(
∇Ψt(xt)− ˆ̀

t,∇Ψt(xt)
)]
≤ 1

2
E

[
T∑
t=t0

max
x∈At

‖ˆ̀t‖2∇2Ψ−1
t (x)

]

9

where x̃t = ∇Ψ∗(∇Ψ(xt)− ˆ̀
t) and At =

⊗d
i=1[xti, x̃ti].

So the key step here is to find argmaxx∈At
‖x − y‖2∇2Ψ−1

t (x)
. In fact, if we are using the Shannon

entropy, then this upper bound simply goes to

1

2
E

[
T∑
t=t0

‖l̂t‖2∇2Ψ−1
t (xt)

]
. (you can prove it yourself)

But it is not clear whether the hybrid bound we presented here has a similar property. So in the
following we show the key lemma saying x̃t is always close to x̃.

Lemma 3. If ηt ≤ min
{√

2−1
2 , γ log(2)

4

}
, then for any x ∈ (0, 1)d and ˆ̀ such that −1 ≤ ˆ̀

i ≤
2
xi

for all i, we have

2xi − 1 ≤ ∇Ψ∗t

(
∇Ψt(x)− ˆ̀

)
i
≤ 2xi.

Proof sketch. The functions ∇Ψt and ∇Ψ∗t are symmetric and independent in each dimension.
Therefore it is sufficient to consider d = 1 and drop the index i.

Note that we have ∇Ψt = (∇Ψ∗t)
−1 by definition of conjugate function, we have

ˆ̀= ∇Ψt(x)−∇Ψt

(
∇Ψ∗t

(
∇Ψt(x)− ˆ̀

))
∈
[
−1,

2

x

]
.

Recall that

∇Ψt(x) = η−1
t

(
− 1

2
√
xi
− γ log (1− xi)− γ

)
i=1,...,d

,

it is a strictly increasing function with finite derivative for xi ∈ (0, 1). Therefore, the difference in
the argument cannot be too large, which shows that ∇Ψ∗t

(
∇Ψt(x)− ˆ̀

)
is close to x. With some

technical computation omitted here the statement is proved.

With some technical work omitted here, we get the final bound for the stability term as

Regstab ≤
T∑
t=1

16
√

2√
t

 ∑
i:x∗i =0

√
E [xti] +

∑
i:x∗i =1

γ−1 (1− E [xti])

+ c

where c = 58γ−2 maxx∈X ‖x‖1.

4.4 Step 2: Towards best of both worlds regret bounds

We first show the bound in adversarial case. By simply adding the two upper bounds in Eq. (4) and
(5), we can have

RegT ≤
T∑
t=1

16
√

2 + 1.5√
t

 ∑
i:x∗i =0

√
E[xti] +

∑
i:x∗i =1

(
γ−1 − γ log (1− E[xti)

)
(1− E[xti])

+ c

=

T∑
t=1

25√
t

(f(E[xt]) + g(E[xt])) + c

≤ 50
√
T max
x∈Conv(X)

{f(x) + g(x)}+ c

≤ O
(
Cadv

√
T
)
.

10

For stochastic case, let px,t = P (E[xt])x. Since P (·) is designed to be an unbiased sampling
probability, we have

∑
x∈X px,tx = E[xt]. Therefore, we have

r(P (E[xt])) =
∑

x∈X\{x∗}

px,t∆x ≤
∑
x∈X

px,tE [〈x− x∗, `t〉]

= E

[〈∑
x∈X

px,tx− x∗, `t

〉]
= E [〈E[xt]− x∗, `t〉] .

As a result, we have

RegT = E

[
T∑
t=1

〈E[xt]− x∗, `t〉

]
≥

T∑
t=1

r(P (E[xt]))

=⇒
T∑
t=1

25√
t

(f(E[xt]) + g(E[xt])) + c−
T∑
t=1

r(P (E[xt])) ≥ 0

=⇒ RegT ≤
T∑
t=1

[
50√
t

(f(E[xt]) + g(E[xt]))− r(P (E[xt]))

]
+ 2c

=

T∑
t=1

[
50√
t
f(E[xt])−

1

2
r(P (E[xt]))

]
︸ ︷︷ ︸

term A

+

T∑
t=1

[
50√
t
g(E[xt])−

1

2
r(P (E[xt]))

]
︸ ︷︷ ︸

term B

+2c.

We can then bound term A and B separately. Specifically,

term A ≤
T∑
t=1

max
α∈∆(X)

{
50√
t
f(α)− 1

2
r(α)

}

≤
T∑
t=1

max
α∈[0,∞)|X|

{
50√
t
f

(
104

t
α

)
− 1

2
r

(
104

t
α

)}

=

T∑
t=1

104

2t
max

α∈[0,∞)|X|
{f(α)− r(α)} (Since f(ax) =

√
af(x) and r(ax) = ar(x))

= O (Csto log(T)) .

term B ≤ 1

2

T∑
t=1

max
α∈∆(X)

{
100√
t
g(α)− r(α)

}

≤ 1

2

∞∑
t=1

max
α∈∆(X)

{
100√
t
g(α)− r(α)

}
= O (Cadd) .

The last inequality above holds because for α = ex∗ , r(ex∗) = 0, which implies that
maxα∈∆(X)

{
100√
t
g(α)− r(α)

}
≥ 0 for any t ≥ 1.

By plugging the bounds for term A and B back, we can get

RegT ≤ O (Csto log(T)) +O (Cadd) .

4.5 Bounds for time-independent constants

Finally, to conclude the theorem, we briefly explain why Cadv, Csto and Cadd have the claimed
magnitudes. For Cadv, it is bounded as the following

11

For Csto, by using Cauchy-Schwartz inequality, we have

f(α) =
∑
i:i∗=0

√∑
x∈X

αxxi ≤
√
dm

∑
x∈X\{x∗}

αx.

Meanwhile, we have r(α) ≥ ∆min

∑
x∈X\{x∗} αx. Therefore, it holds that

Csto ≤ max
α∈[0,∞)|X|

√
dm

∑
x∈X\{x∗}

αx −∆min

∑
x∈X\{x∗}

αx

≤ max

A≥0

√
dmA−∆minA

=
dm

4∆min
. (By solving this univariate optimization problem)

Finally, for Cadd, we will only give a brief argument and please refer to section A.3 in Zimmert et al.
[2019] for the full proof. First, to give an upper bound for g(α), we need the following three facts:

• For any y ∈ RN ,
∑N
i=1 yi log 1

yi
≤ ‖y‖1 log 1

‖y‖1
.

• y 7→ y
(
γ−1 + γ log m

y

)
is increasing in y if y ∈ [0,m].

•
∑
i:x∗i =1(1− αi) ≤ m

(∑
x∈X\{x∗} αx

)
.

With these facts, we can have

g(α) ≤ m

 ∑
x∈X\{x∗}

αx

(γ−1 + log
1∑

x∈X\{x∗} αx

)
.

By using the same bound for r(α), we have

Cadd ≤
∞∑
t=1

max
A∈[0,1]

{
100√
t
mA

(
γ−1 + γ log

1

A

)
−∆minA

}
The final bound can be obtained by using the two following results:

∞∑
t=1

max
A∈[0,1]

{
100√
t
mAγ−1 − 1

2
∆minA

}
≤ O

(
m2

γ2∆min

)
,

∞∑
t=1

max
A∈[0,1]

{
100√
t
mAγ log

1

A
− 1

2
∆minA

}
≤ O

(
m2γ2

∆min

)
.

In brief, the first bound is obtained by noticing that as t increases, it will eventually become a finite
sum; the second bound is obtained by first solving the univariate optimization problem and then
approximating the infinite sum by an integral.

12

5 Corruption

Corruption model. The setting is a simplification from Lykouris et al. [2018]. Consider a stochastic
bandit withK arms, and an adversary who can corrupt some of the stochastic rewards. More formally,
the protocol is as follows. At each round t = 1, · · · , T :

1. The learner picks a distribution wt over the K arms.
2. The stochastic loss `st (a) are drawn from each arm.
3. The stochastic loss `st (a) as well as the choice of the learner in previous steps at−1 is

observed by the adversary and returns a (possibly) corrupted reward `ct(a) ∈ [0, 1].
4. The learner draws arm at ∼ wt and observes `ct(at).

We call the instance C-corrupted if the adversary can corrupt at most C of the total T rounds, i.e.

T∑
t=1

1 {`ct 6= `st} ≤ C.

Theorem 2. For any γ ∈ (0, 1], by applying Algorithm 1 with the same setting as in Theorem 1 to a
C-corrupted environment, the pseudo-regret is upper bounded by

RegT ≤ O
(
Cadv

√
C + Csto log(T) + Cadd

)
.

Proof. Recall from our previous analysis, regardless of the environment, it holds that

RegT ≤
T∑
t=1

25√
t

(f(E[xt]) + g(E[xt])) + c

=
∑

t:`t corrupted

25√
t

(f(E[xt]) + g(E[xt])) +
∑

t:`t stochastic

25√
t

(f(E[xt]) + g(E[xt])) + c

≤ O
(
Cadv

√
C + Csto log(T) + Cadd

)
.

The term O
(
Cadv

√
C
)

appears for obvious reason. Meanwhile, the term O (Csto log(T) + Cadd)

can be obtained by using exactly the same analysis as in step 2 by simply replacing “
∑T
t=1” by

“
∑
t: stochastic”.

13

References
Julian Zimmert, Haipeng Luo, and Chen-Yu Wei. Beating stochastic and adversarial semi-bandits

optimally and simultaneously, 2019.
Julian Zimmert and Yevgeny Seldin. Tsallis-inf: An optimal algorithm for stochastic and adversarial

bandits, 2021.
Saeed Masoudian and Yevgeny Seldin. Improved analysis of robustness of the tsallis-inf algorithm to

adversarial corruptions in stochastic multiarmed bandits, 2021.
Dimitri P Bertsekas. Convex optimization theory. Athena Scientific Belmont, 2009.
Chen-Yu Wei and Haipeng Luo. More adaptive algorithms for adversarial bandits, 2018.
Thodoris Lykouris, Vahab Mirrokni, and Renato Paes Leme. Stochastic bandits robust to adversarial

corruptions. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
pages 114–122, 2018.

14

	Motivation and preliminary
	Multi-Armed Bandits (MAB) and Semi-bandits
	Intro to both worlds and the key motivation of this work
	Intro to some mediate setting between two worlds

	An overview of best-of-both world result
	A general analysis process for FTRL algorithm
	A general analysis framework for FTRL
	A closer look at the regularization function

	A detailed analysis on semi-bandits result
	Algorithm and result
	A proof overview
	Step 1
	Penalty Term
	Stability Term

	Step 2: Towards best of both worlds regret bounds
	Bounds for time-independent constants

	Corruption

