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1 Introduction

In the multi-armed bandit problem, at each step, the learning algorithm chooses one arm (one action), and
receives a reward. The most commonly studied problem is that of regret minimization i.e maximizing rewards
with respect to some fixed baseline. However, the focus of this paper is on the problem of best-arm identification.
This is different from regret minimization problem in the sense that the algorithm’s performance will be
evaluated by its ability to determine the best-arm. If the algorithm chooses the second-best arm or the worst
arm, they still get the same error by this metric, unlike regret.

The paper [1] focuses on the variant of best-arm identification problem with fixed-budget of n pulls. Later
in the related works section of the scribe, a couple of other variants of the same problem will be mentioned .
Previous works ([2] and a few others)on the same setting and variant had focused on stochastic rewards, [1] is
the first to consider the best-arm identification problem in adversarial setting and thus the best of both worlds
problem.

In the stochastic setting, best-arm is the arm with maximum mean rewards.

k∗ = arg max
k∈[K]

µk (1)

In the adversarial setting, suppose ggg is a reward matrix for all k arms and n rounds pulled, best arm is
defined to be the arm with maximum cumulative rewards:

k∗ = arg max
k∈[K]

n∑
t=1

gggk,t (2)

Note that interaction protocal in both cases is the same as in other multi-armed bandit problems: given
round t, each arm k is assigned reward gggk,t, learner chooses to see gggIt,t.

Note that the adversarial case of best-arm identification has different motivations as the stochastic case. In
the stochastic rewards case, it is assumed that each arm has a fixed distribution. Thus identifying the best arm
means keep pulling that same arm after the n allocated exploration rounds. And rewards are assumed to be
maximized if the arm is identified correctly. In the adversarial case, there is no assumption of future rewards
similar to past rewards. Motivation in this case assumed action to be taken according to the information, i.e.
gathered during the n pulls. One real life application given in [1] is in law enforcement data collection and
decision making. Suppose law enforcement agencies have to monitor several criminal targets during a year, and
at each end of year to decide on which target to act on. Suppose the law enforcement agencies have limited
resources and only observe the activities of one criminal target they closely monitor at one time. During the
year, they want to be robust to adversarial criminals (which maybe during the earlier month of the year do
not carry out much activities to obscure the decisions of law enforcement). Real life application for stochastic
case is discussed in [2].

1.1 Related Works

Best arm identification problem in the stochastic case has been studied in a few different variants. The fixed-
budget set ting assumes the available pulls is given as n, and at end of n rounds, learning algorithm output
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best arm Jn. The probability of outputting a wrong arm is a measure of success. Prior to paper [1], there are a
series of papers. [4] noted that in the pure exploration phase, there is still a trade-off between exploration and
exploitation. One of the main focus of this paper is to characterize relation between cumulative regret in the
pure exploration steps n, with simple regret (see Section 2). It also discussed different allocation strategies (In),
combined with different recommendation strategies (Jn) in the stochastic case and upper and lower bounds
on their error probability (see Section 2). Following that, [2] introduced a strategy Successive Rejects which
enjoys a nice upper bound. Follow-up works [7] and [5] had given both tighter upper bounds and lower bounds.
We note that all of those previous papers on the best-arm identification problem with fixed budget pulls focus
on stochastic case. [1] is the first to focus on best of both worlds (BOB) setting.

In the study of multi-armed bandit problems, minimizing cumulative regret is often a major goal. Best of
both worlds setting have been studied in this setting by [3] and many follow up works. On the other hand, the
non-stochastic variant of best-arm identification has been studied by [6] and [8]. The non-stochastic setting in
those two papers are different from the adversarial setting in [1] in that the non-stochastic rewards are assumed
to converge when time horizon goes to infinity. Another important variant of the best-arm identification problem
is studied in the setting of fixed confidence. In this setting, learning algorithm is given target confidence level
for its best arm output, and is expected to use as less pulls as possible. In [7], both fixed budget setting and
fixed confidence upper bounds on stochastic setting are provided.

2 Problem Setup

Notations We denote the available allocated pulls (time horizon) as n. The arms are denoted by [K]. In
the stochastic case, they have distributions ν1, . . . , νK , with mean µ1, . . . , µK . The distributions and means
are unknown to learning algorithm. At the end of n rounds, learner is expected to identify an arm Jn that has
minimum simple regret rn,

rn = max
k∈[K]

µk − µJn

Similar to other multi-armed bandits problem, we define gap ∆i for arm i 6= i∗ as ∆i = µ∗ − µi. Gap for
best arm i∗ is defined as ∆i∗ = mini 6=i∗ ∆i. We assume the indices of the arms follow the order such that
∆i∗ = ∆(1) = ∆(2) ≤ ∆(3) ≤ · · · ≤ ∆(K).

In the analysis of [1] and [2], algorithms are evaluated by the probability of error en = P(Jn 6= k∗). We
note that in the stochastic case, expected simple regret is upper bounded by en. Given

E(rn) =
∑
i6=i∗

P(Jn = i)∆i

we have
∆i∗en ≤ E(rn) ≤ en.

Therefore, it makes sense to bound en.
In the adversarial case, best arm is the arm with maximum cumulative rewards. We define gap in the

adversarial case as:

n∆g
k ,

{
G(1) −Gk, if k 6= k∗g
G(1) −G(2), if k = k∗g

(3)

Estimators We note that in both the stochastic case and adversarial case, an estimation for cumulative
rewards for each arm was needed to decide both which arm to pull and which arm to recommend. In the
stochastic case, empirical mean estimator is commonly used. It is usually written in this form:

Ĝk ,
n
∑n

t=1 1[It = k]gk,t∑n
t′=1 1[It′ = k]

(4)
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In the adversarial case, an unbiased but potentially high variance estimator is commonly used:

G̃k ,
n∑

i=1

gk,t
pk,t

1[It=k] (5)

In the analysis and discussion algorithms to follow, we will frequently refer to those two estimators.

Notions of Complexity Previous papers on the best-arm identification problem have come up with metrics
that relates the error probability to a few of the quantities that are problem specific, such as gaps ∆1, . . . ,∆k

and number of arms K. Those quantities characterize how difficult it is to identify the best arm. Intuitively,
having many arms means need more pulls to explore them. And having a small gap implies it is hard to
distinguish the arms. In the following sections, we will see that a metric defined as equation 6 is a good
characterization for the adversarial case. For the stochastic case, it is shown in the paper [2] that equation 7
is a good metric.

HUNIF =
K

∆2
(1)

(6)

HSR = max
k

k

∆2
k

(7)

To characterize the hardness of the best of both worlds problem, we will come up with new metric in the
sections to follow.

Class of problems To ease the analysis and discussion given the rewards could be non-stochastic, authors
of [1] grouped problems according to their gaps into problem classes. Classes are denoted as ∆∆∆c with c being
an positive integer. We now give the formal definition.

Definition 2.1. In adversarial case, g is said to be in problem class ∆∆∆c, if for all k ∈ [K] except one arm k̄,
∆k/c ≤ ∆g

k ≤ c∆k, and for k̄, its gap is related to the smallest gap: ∆1/c ≤ ∆g

k̄
≤ c∆1.

3 RULE algorithm

In this section, we present a naive algorithm that samples arms uniformly at random. Then we characterize
its adversarial identification error, and show that it must be optimal in an order-sense. We highlight the key
insights that comprise the proofs. We present this simpler case in-depth because understanding the behavior of
the Rule algorithm deeply is helpful to motivate the design and analysis of the P1-Algorithm that the authors
propose.

Algorithm. At each round:

1. Rule selects an arm It ∈ [K] uniformly at random.

2. Gets some gain gIt,t.

Then, at the end of the game, Rule computes G̃k,n for all arms: the importance-weighted cumulative gain
estimator, and makes a guess for the best arm as

Jn = arg max
k

G̃k,n

The two theorems below show that the adversarial misidentification error obtained by Rule is optimal in an
order-sense.
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Theorem 1 (Theorem 1 in original). Fix the time horizon n, and let rewards g be chosen by an oblivious
adversary, gk,t ∈ [0, 1]. Then, for all t ∈ [n] and for all k ∈ [K], RULe outputs an arm Jn with the guarantee
that its probability of error eADV(g)(n) verifies

eADV(g)(n) ≤ K exp

(
− 3n

28HUNIF(g)

)
Below, we break-down the proof of the theorem into more understandable pieces, and highlight its connection

to classical arguments in information theory.

Proof. First, we assume WLOG that arm 1 is the best. Hence, the probability of error is the probability of
choosing any arm other than the first.

eADV(g)(n) , P
(
Jn 6= k?g

)
= P

(
∃k ∈ [2 : K] : G̃1,n ≤ G̃k,n | g

)
There are two “bad events” that could cause an error:

1. Estimated rewards for kth arm are very high: G̃k,n ≥ Gk +
n∆g

k

2 .

2. Estimated rewards for 1st arm is very low: G̃1,n ≤ G1 +
n∆g

1

2

In the absence of these, misclassification is impossible. Recognize that isolating these bad events to bound
these probabilities independently is a technique that is native to Information Theory via the proof of the
Shannon-Coding theorem; this technique is often observed in the analysis of randomized algorithms. We use a
union bound to split the expression above as:

≤ P
(
∃k ∈ [2 : K] : G̃k,n −Gk ≥

n∆g
k

2
or G̃1,n −G1 ≤

n∆g
1

2
| g
)

≤ P
(
G̃1,n −G1 ≤

n∆g
1

2
| g
)

+

K∑
k=2

P
(
G̃k,n −Gk ≥

n∆g
k

2
| g
)

To bound each of these probabilities, we need an appropriate concentration inequality. The Bernstein
inequality below is ideal for our purposes.

Lemma 1.1 (Bernstein inequality). Let Xi be a sequence of centered independent random variables:E (Xi) =
0, |Xi| ≤ R, σ2 =

∑n
i=1 EX2

i , we have:

P

(
n∑

i=1

Xi ≥ t

)
≤ exp

(
− t2/2

Rt/3 + σ2

)
To apply Bernstein to the present case, we write G̃k,t =

∑n
t=1 g̃k,t − gk,t =

∑n
t=1 dk,t. All dk,t are centered.

Then, g̃k,t =
gk,t1(It=k)

pk,t
is Bernoulli with param 1/K and range [0,Kgk,t]. For the variance, σ2

dk,t
= σ2

g̃k,t
=

1
K (1− 1

K )g2
k,t.

Applying the Bernstein to each k in the summation, we obtain

P
(
G̃k,n −Gk,n ≥

n∆g
k

2

)
≤ exp

(
−

(∆g
k/2)

2
n2/2∑n

t=1 σ
2
dk,t

+ 1
6K∆g

kn

)

≤ exp

(
−

(∆g
k)

2
n2/8

nK + 1
6Kn

)

= exp

(
−

3 (∆g
k)

2
n

28K

)

Notice the K in denominator. This is what causes the HUNIF to show up in the theorem. Substituting back
into the error-bound completes the proof.
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Now the natural question is whether some more intelligent adaptive-sampling scheme could do better. The
theorem below shows that this is not possible.

Theorem 2. Consider any problem class ∆3 with associated complexity HUNIF. For any learner, for any
horizon n such that K exp

(
−n∆2

1/128
)
≤ 1/128 and K ≥ 4096, there exist g1 ∈∆3 and g2 ∈∆3 such that:

max
(
eg1(n), eg2(n)

)
≥ min

(
1

128
exp

(
− 32n

HUNIF

)
,

1

32

)
The theorem is interesting: to show the existence of a single game, we consider two games together and show

that at the algorithm must achieve bad error on at least one of these. The spirit of the theorem is reminiscent
of the Theorem of the Alternatives in optimization; however, the proof, sketched below, does not follow from
dual optimization problems.

First, we recall the Pigeonhole Principle: “if n items are put into m containers, with n > m, then at least
one container must contain more than one item.” This innocuous-looking result from elementary probability
ends up being tremendously useful for our purposes.

Proof Sketch. Consider a “base game” with means µ1 = 1
2 and µk = 1

2−∆k. Consider the first n/2 rounds of the
game. By a variant of the pigeonhole principle, we have at least one arm, indexed by k̄ that is pulled less than
n/(2K) times. Now, we construct two very similar games from the base. For both games, ∀k 6= k̄, g1

k,t = g2
k,t.

1. Game 1: For first half, follow Bernoulli exactly. For second half, rewards of all arms are 0, except k̄ which
is 1. This makes it the second best arm with expected total reward n( 1

2 −∆1).

2. Game 2: Second half exactly the same as above. For the first half, µk̄ = 1
2 − ∆k̄ + 2∆1. This makes

expected reward n( 1
2 + ∆1), and hence the best arm.

For the learner, since k̄ is undersampled in L, this difference is not detected with high probability! To show
this, the following lemma is used, whose proof is contained in the original paper.

Lemma 2.1 (Lemma 10 in original). Let L be a phase, i.e., a subset of rounds of the game, L ⊂ [n].

• Consider two bandit problems. In both, ∀t ∈ [n],∀k ∈ [K], the rewards gk,t ∼ νk,ti.i.d. The two problems

only differ in rewards for arm k̄ during phase L.

• k̄ is distributed as Bernoulli with means µ2
1
k

(t) , µ2
k̄
, 1/2 + ∆ and µ 1

k (t) , µ1
k , 1/2 −∆′ respectively

for the two problems, where 1/8 > ∆′ ≥ ∆ ≥ 0.

• We have an event W depending only on g generated by the problems and the actions of the learner I[n]

When k̄ is pulled during phase L less than B times, we have

P2(W ) ≥ P1(W )

8
exp

(
−16 (∆′)

2
B
)

4 The goal moving forward: Best of Both Worlds

The BOB criterion: Consider the criterion defined below to be a best-of-both-worlds estimator. It requires
that in an order-sense the algorithm both does as well as the Successive-Rejects algorithm for the stochastic
problem and as well as Rule for the adversarial problem.

eSTO(n) ≤ Õ
(

exp

(
− n

HSR logK

))
and eADV(g)(n) ≤ Õ

(
exp

(
− n

HUNIF(g)

))
(8)
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The question the rest of the paper is concerned with is whether this criterion is attainable. To understand

why it is a hard problem, recall our two estimators. Defining g̃k,t =
gk,t1[It=k]

pk,t
,

Ĝk ,
n
∑n

t=1 1[It=k]gk,t∑n
t′=1 1[I

t
′=k]

and G̃k,t =

n∑
t′=1

g̃k,t′ (9)

The first is unbiased in the stochastic case, yields optimal bounds. But biased in the adversarial case. The
second has high variance for stochastic. Hence, naive adoption of neither is able to fulfill BOB. If there exists
an algorithm that solves the BOB problem, it must intelligently reduce the bias of the first or the variance of
the second. Theorem 3 states that, in the form stated above, BoB is unattainable.

HBOB and comparison with previous measures But before we can understand the theorem, we must
introduce a new complexity measure:

HBOB ,
1

∆(1)
max
k∈[K]

k

∆(k)

Let us first compare this new measure with HSR.

HBOB =
1

∆(1)
max
k∈[K]

k

∆(k)
≥ max

k∈[K]

k

∆2
(k)

= HSR (10)

Equality holds when the 2nd arm is the argmax. We can now compare with HUNIF.

HBOB =
1

∆(1)
max
k∈[K]

k

∆(k)
≤ K

∆(1)
max
k∈[K]

1

∆(k)
≤ K

∆2
(1)

= HUNIF (11)

Equality holds when the ∆1 = ∆K i.e all same ∆’s. To interpret when these inequalities are strict, we consider
different cases.

1. HSR = HBOB = HUNIF : In this case, Rule achieves the Bob criterion because the stochastic and
adversarial inequality have the same order. Figure 1a illustrates that this can only happen when all ∆’s
are exactly equal, an unlikely scenario.

2. HSR = HBOB < HUNIF : In this case, BoB is achievable but not by Rule. See Figure 1b.

3. HSR < HBOB < HUNIF : This is the most general case and it is easy to choose ∆’s such that neither
Inequality 10 or Inequality 11 above is tight, and HBOB =

√
K/2HSR.

Now, we are prepared to understand the statement of the theorem below. Because of Inequality 10, one
consequence of the theorem is that the BOB criterion stated as in Equation 8 is unattainable by any algorithm.

Theorem 3. For any class problem ∆4, for any learner, ∃ an i.i.d. stochastic problem STO ∈ ∆4 with
complexity HBOB, such that for any n satisfying K exp

(
−∆2

1n/32
)
≤ 1/32, if

eSTO(n) ≤ 1

64
exp

(
−2048n

HBOB

)
Then there exists an adversarial problem g ∈∆4 such that

eADV(g)(n) ≥ 1

16

The proof of the theorem is actually now being reviewed by an author.

5 P1 algorithm

In this section, we provide the main algorithm of the paper.
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(b) Case 2

Figure 1: Illustration of different cases of equality between the three proposed complexity measures.

Algorithm. At each round:

1. Sorts arms in a decreasing order by G̃k,t, and denote the rank of the kth arm as 〈̃k〉t

2. P1 selects arm It ∈ [K], with pk,t = P (It = k) = 1

〈̃k〉tlog(K)

As in RULE, the algorithm recommends

Jn = arg max
k

G̃k,n

at the end of the game.
The performance of the algorithm is given in the theorem below.

Theorem 4. In the stochastic case, the algorithm satisfies

eSTO(n) ≤ 2K3ne
− n

128HP1

and in the adversarial case, the algorithm satisfies

eADV (n) ≤ Ke−
3n

40log(k)HUNIF (ggg)

where HP1 is a complexity in O(HBOB log2(K)) defined as

HP1 ≡ min
aaa∈AAA

max
k∈K

K∑
i=〈k〉

(ai − ai+1)i+ 1
24Ka〈k〉∆k

a2
〈k〉∆

2
k

where AAA is given as

AAA ≡ {aaa ∈ [0, 1]K : nai ∈ N for all i ∈ [K], 1 = a1 = a1 ≥ . . . ≥ aK > 0}

The algorithm is similar to algorithms that work well in each settings, in that it uses an IPS estimator and
recommends an arm by computing the arg max as in RULE, which works well in the adversarial case, and it
uses a weighting based on log(K) as in SR, which works well in the stochastic case.

By drawing each arm with a probability of 1

〈̃k〉tlog(K)
, it works well on the stochastic case, because the lowest

probability we draw the arm is bounded below by 1
Klog(K)

and this provides a bound to the variance of each
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gggk,t term within the IPS estimator we are using, which further bounds the probability that the algorithm does
not work well in each ”step,” where the step here is defined similarly in SR. On the other hand, the algorithm
works well in adversarial case, since the probability we draw arms does not differ significantly from the uniform
distribution, which we use in RULE algorithm.

Although we mainly discussed about the problem of identifying the best arm given a fixed budget under
the setting that is either stochastic or non-adaptive adversarial, the P1 algorithm can be used in the follow
settings and problems as well:

1. Fixed confidence interval: given a confidence value δ, a learner stops as soon as possible and returns the
estimated best arm that is correct with a probability of at least 1− δ.

2. Streams, windows, thresholds: a learner recommends the best arm in the latest time window between
t−W and t for each round t.

3. m-sets: a learner recommends m best arms.

4. Active anomaly detection: a learner monitors different streams of non-stochastic rewards and could
potentially detect an anomaly if one of the streams outputs a reward signal that is on average larger than
a given threshold during a time window period W .

5. Adaptive adversary (given a condition that HUNIF is an upper bound on the complexity of all ggg that the
adaptive adversary can possibly generate): an adversary chooses a reward for each arm depending on the
algorithm and what arms have been chosen so far.
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