Welcome Kevin Jamieson (Instructor) Lalit Jain (co-instructor) Yuhan Wan (TA)

Interactive Learning in non-stochastic environments better modeled

Model for
$$t=1,2,--$$

Netflix Movie Rec χ_t
Netflix Rating $Y_t - p(Y|\chi_t, \theta_{Ben})$
Ben $w/$ preferences $\theta_{Ben} \in \mathbb{R}^d$

User preferences change over time... Content producers react to Changing preferences... User preferences react to changing content... :

This class is about - Modeling - Robustness - buarantees - Practical algorithms (mostly)

Inspired by real-world scenarios we have encountered.

Class Logistics, evaluation, plan zoom etiquette

The regret of the player is defined as

$$R(T) = \max_{i \in I \cap I} \sum_{j=1}^{T} X_{6,i} - \sum_{t=1}^{T} X_{6,T_{t}}$$

$$The reward of reward obtained$$

$$playing He single \qquad by the player
best action in hindsight$$

Typically, goal is to define an algorithm
s.t.
$$R(T) = o(T)$$
 so that $\frac{R(T)}{T} \rightarrow 0$

If we assume nothing about reveards at all
then I choice of reveards
$$\{X_t\}_t \subset \mathbb{R}^n$$
 S.t.
 $\mathbb{R}(T) = \mathcal{R}(T)$ we const prob.