
Mirror Descent

Lalit Jain

April 29, 2021

We assume that we have an action set A, a convex set D, a function F : D → R with domain D such that A ⊂ D. We
further assume that F is Legendre,

• F is strictly convex and differentiable on D◦.
• The range of F is Rd

• limx→∂D ‖∇F (x)‖ = +∞
Legendre functions satisfy several very nice properties. Firstly arg minD f ⊂ D◦. Secondly ∇f is an invertible map
and we can compute it’s inverse (almost) explicitly! More on this later.

Definition 1. The Bregman divergence induced by F is given by,

BF (y, x) = F (y)− F (x)− 〈∇F (x), y − x〉

By definition, the Bregman diveregence is just the error in the first order Taylor series approximation. Since F is convex,
the Bregman divergence is always positive. Also if F is strongly convex with respect to a norm ‖ · ‖, by definition,
DF (x, y) ≥ η

2‖x− y‖
2. Finally we have the following “triangle inequality” for any three points x, y, z ∈ A

BF (z, x) +BF (x, y)−BF (z, y) = 〈∇F (y)−∇F (x), z − x〉

We consider a game with an oblivious adversary. At each time we plan an arm at ∈ A and observe a loss `t(at) = 〈at, gt〉

Algorithm 1 Online Mirror Descent
Input: F,D,A, T, η
1: Initialize: a1 = arg mina∈A F (a)
2: for t = 0, 1, 2, · · · , T do
3: Player observes loss `t(at) = 〈gt, at〉
4: Update yt

∇F (yt+1) = ∇F (at)− ηgt
5: Update: at+1 = arg mina∈ABF (a, yt+1)
6: end for

The condition that F is Legendre ensures that yt+1 is indeed defined. We point out that it could be replaced with a
condition that A ⊂ D◦ though this can often be too restrictive (as in Example 2 with the simplex below).
Example 1: Let F (x) = 1

2‖x‖
2
2 on D = Rd and A = K with K convex, then ∇F (x) = x and we can compute the

divergence,
BF (x, y) = 1

2‖x‖
2 − 1

2‖y‖
2 − 〈y, x− y〉 = 1

2‖x− y‖
2
2.

So we see that we recover gradient descent at+1 = ΠK(at − ηgt). Next class we will see gradient descent as a
“quadratic approximation” descent method.
Example 2: Take X = ∆d, D = Rd+, and F (x) =

∑d
i=1 xi log(xi) − xi. Then F is indeed Legendre and

∇F (x) = log(xi) and the induced divergence is

∇BF (x, y) =
d∑
i=1

xi log
(
xi
yi

)
−

d∑
i=1

xi − yi

1
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Algorithm 2 Online Stochastic Mirror Descent
Input: F,D,X, T, η
1: Initialize: ā1 = arg mina∈A F (a)
2: for t = 0, 1, 2, · · · , T do
3: Player chooses a distribution xt ∈ ∆A with E[xt] = āt
4: Sample action at ∼ Pt and observe `t(at) = 〈at, gt〉
5: Compute an estimator g̃t with E[g̃t] = gt
6: Update yt

∇F (yt+1) = ∇F (āt)− ηg̃t
7: Update: āt+1 = arg mina∈conv(A)BF (a, yt+1)
8: end for

Then the update step is log yt+1 = log at − ηgt so, yt+1 = at exp(−ηgt). It remains to show that BF (x, y) = ‖x‖1.
With this we have

at+1,i =
exp(−η

∑t
s=1 gs,i)∑d

j=1 exp(−η
∑t
s=1 gs,j)

Theorem 1. Assume that F is Legendre on D and that A ⊂ D is a closed convex set with D ∩A 6= ∅. Then for any
x ∈ A

T∑
t=1

`t(xt)−
T∑
t=1

`t(x) ≤ BF (x, x1)
η

+ η

2

T∑
t=1

ψt(gt)

where
ψt(gt) = min{‖g‖2(∇2F (zt))−1 , ‖g‖2(∇2F (z′t))−1}

where zt is a point on the line between xt and xt+1 and z′t is a point on the line between xt and yt+1. Similarly if
E[g̃t|Ft] = gt for all t ≥ 1 we have

E[
t∑

s=1
`t(xt)]−

t∑
s=1

`t(x) ≤ BF (x, x1)
η

+ η

2

T∑
t=1

Eψt(g̃t)

Proof. We leave the majority of the proof for next time. We will quickly show that the first implies the second. Note
that,

E[`t(at)− `t(x)] = E[〈at − x, gt〉]
= E[〈āt − x, gt〉]
= E[E[〈āt − x, gt〉|āt]]
= E[E[〈āt − x, g̃t〉|āt]]
= E[〈āt − x, g̃t〉]

Now we apply the first part of the theorem and take expectations on both sides to arrive at the final result.

Let’s now apply this theorem to analyze the regret of previous algorithms.
Example 1 continued. Return to the context of Example 1 in the full information setting. Assume diam(K) = D and
maxt≥1 ‖gt‖2 ≤ L. In this case ∇2F = I so

Rt ≤
‖x− x1‖22

η
+ η

2

t∑
s=1
‖gt‖22 ≤

D

η
+ ηTL

2 ≤
√
LDT

using η =
√
D√
LT

which matches the result from gradient descent.
Example 2 continued. We compute the Hessian,

∇2F (x) = diag({ 1
xi
}di=1)
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From the above calculation when ‖gt‖∞ ≤ 1, ‖gt‖2(∇2F (zt))−1 =
∑d
i=1 zt,ig

2
t,i ≤ 1

Rt ≤
log(d)
η

+ ηT

2 ≤ O(
√
T log(d))

Now we apply OSMD to the setting where A = {e1, · · · , ed} with the entropic regularizer. This just reduces to the
multi-armed bandit setting. We set Pt = āt and g̃t = 1{at=ei}

āt,i
gt,i. Then,

E[‖g̃‖2(∇2F (z′t))−1 ] = E[
d∑
i=1

z′t,i
1{at = ei}

ā2
t,i

g2
t,i]

≤ E[
d∑
i=1

āt,i
1{at = ei}

ā2
t,i

g2
t,i]

≤ E[
d∑
i=1

1{at = ei}
āt,i

g2
t,i]

≤
d∑
i=1

g2
t,i ≤ d (assume an oblivious adversary)

where the first to second line used yt+1 = āt exp(−ηgt) ≤ āt so since ‖g‖∞ ≤ 1 we have that z′t,i ≤ āt,i for all
1 ≤ i ≤ d. We can now compute the final regret to be O(

√
Td log(d)). The log(d) can be removed with a more careful

choice of the potential function.
Rewriting OMD:
Here is another way to write the mirror descent update:

at+1 = arg min
a∈A

BF (a, yt+1)

= arg min
a∈A

F (a)−∇F (yt+1)>a

= arg min
a∈A

F (a)− (∇F (at)− ηg)>a

= arg min
a∈A

F (a)− F (at)−∇F (at)>(a− at) + ηg>a

= arg min
a∈A

ηg>t a+BF (a, at)

Finally we remark that due to the assumption that F is Legendre and strongly convex with domain D then

yt+1 = arg min
a∈D
〈ηgt, a〉+BF (a, at).

Indeed,

arg min
a∈D
〈ηgt, a〉+BF (a, at) = arg min

a∈D
〈ηgt, a〉+ F (a)−∇F (at)>a

= arg min
a∈D
〈ηgt −∇F (at), a〉+ F (a)

This last function is also Legendre so it’s minima occurs in the interior of D and so by the first order optimality
conditions,

ηgt −∇F (at) = ∇F (a)
so we see that yt+1 is indeed the minimum.
Proof of Theorem 1 We need two facts. Firstly the “law of cosines”

BF (z, x) +BF (x, y)−BF (z, y) = 〈∇F (y)−∇F (x), z − x〉.

Secondly, for a ∈ A and y ∈ D, let y′ = arg mina∈ABF (a, y), then

BF (a, y′) +BF (y′, y) ≥ BF (a, y)
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Now,

`t(at)− `t(a) ≤ ∇g>t (at − a)

= 1
η

(∇F (yt+1)−∇F (at))>(a− at)

= 1
η

(BF (a, at)−BF (a, yt+1) +BF (at, yt+1))

≤ 1
η

(BF (a, at)−BF (a, at+1)−BF (at+1, yt+1) +BF (at, yt+1))

where the first inequality is from convexity, the second is from the definition of the step, the third is the law of cosines,
the last is from projections. Thus summing overall iterations we see

Rt ≤
B(a, a1)

η
+

T∑
t=1

BF (at, yt+1)−BF (at+1, yt+1)

Now,

BF (at, yt+1)−BF (at+1, yt+1) = F (at)− F (yt+1)−∇F (yt+1)>(at − yt+1)
− F (at+1) + F (yt+1) +∇F (yt+1)>(at+1 − yt+1)

= F (at)− F (at+1)−∇F (yt+1)>(at − at+1)
= F (at)− F (at+1)− (∇F (at)− ηgt)>(at − at+1)
= 〈ηgt, at − at+1〉 −BF (at+1, at)

This expression on it’s own is pretty useful for regret minimization. However, we still need to get to the theorem
statement. By Taylor’s theorem,

BF (at+1, at) = 1
2(at+1 − at)>∇2F (zt)(at+1 − at)

where zt is some point on the line xt + t(xt+1 − xt), 0 ≤ t ≤ 1. Thus using the fact that 〈x, y〉 ≤ ‖x‖
2
2+‖y‖2

2
2 (the

Fenchel-Young inequality)

〈ηgt, at − at+1〉 −BF (at+1, at) ≤
η2

2 ‖gt‖
2
(∇2F (zt))−1 + 1

2‖at − at+1‖2(∇2F (zt))−1 −BF (at+1, at) = η2

2 ‖gt‖
2
(∇2F (zt))−1

For the second term in the minimum, note that by definition,

〈ηgt, at − at+1〉 −BF (at+1, at) ≤ max
a∈D
〈ηgt, at − a〉 −BF (a, at)

≤ −(min
a∈D
〈ηgt, a− at〉+BF (a, at)))

≤ 〈ηgt, at − yt+1〉 −BF (yt+1, at)

and now proceed as before.
Remark: We finally mention one other expression for this term that is useful in it’s own right (and can give a slightly
less informative but perhaps more algebraic proof of the guarantees of EXP3). Recall that by definition,

F ∗(y) = sup
x∈D
〈y, x〉 − F (y)

is the Fenchel conjugate of F . The Fenchel conjugate satisfies two extremely useful properties:
• ∇F−1 = ∇F ∗

• BF (x, y) = BF∗(∇F (y),∇F (x))
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The second fact is a consequence of the first. Thus,

BF (at, yt+1)−BF (at+1, yt+1) ≤ BF∗(∇F (yt+1),∇F (at)).

Follow the Regularized Leader: Now consider the setting where A = D and F is Legendre. Then

∇F (at+1) = ∇F (at)− ηgt = ∇F (a1)− η
t∑

s=1
ys = η

t∑
s=1

gs

This algorithm has a nice interpretation. Instead of mapping back to the primal space, we do our gradient steps in the
dual space and map back at the end. Follow the Regularized Leader chooses

at+1 = arg min
a∈A

t∑
s=1
〈a, ηgt〉+ F (a)

which leads to the same update! In general if A 6= D then the projection onto A can lead to a setting where the two
algorithms have different updates. In the case of exponential weights, the two algorithms agree.
The material in this section is cobbled together from:

• Bandit Algorithms, Lattimore and Szepesvari
• Regret Analysis of Stochastic and Nonstochastic Multi-armed, Bubeck and Cesa-Bianchi
• Introduction to Online Convex Optimization, Hazan
• A Modern Introduction to Online Learning, Orabona


