
Exp3 and Variants

April 8, 2021

Exp 3
In this lecture we consider the adversarial setting for multi-armed bandits. In each round an adversary chooses a loss
vector `t, the learner picks an index It ∈ [k] and observes `t,i. The regret of the learner is given by,

Rt =
t∑

s=1
`s,Is −min

i∈[k]

t∑
s=1

`si

In general, we can consider two types of adversaries,
• arbitrary: where the adversary chooses it’s loss vector based on the previous actions of the player
• oblivious: where the set of losses is chosen ahead of time.

In general the regret is a random variable so we would like to consider the expectation,

ERs = E

[
t∑

s=1
`s,Is −min

i∈[k]

t∑
s=1

`s,i

]
= max

i∈[k]
E[

t∑
s=1

`s,Is − `s,i]

where the expectation is over the randomness in the learner and the adversary. However it’s easier to start with the
pseudo-regret,

PRs = E[
t∑

s=1
`s,Is −min

i∈[k]
E

t∑
s=1

`s,i]

And so, PRs ≤ ERs
Note that for an oblivious adversary,

min
i∈[k]

E
t∑

s=1
`i,s = min

i∈[k]

t∑
s=1

`i,s

so the expected regret is the same as the pseudo-regret.
At each round t we only see the reward of the arm It that was played. You can show that any deterministic policy will
necessarily incur linear regret so moving forward we will consider only randomized policies. In particular, in round t
we will choose a probability vector qt ∈ ∆k and select It ∼ pt. This random selection helps us be robust against an
adversary by letting us “surprise them” but also by allowing us to build unbiased rewards of each arm. In particular,
consider the importance weighted estimator,

ˆ̀
t,i = 1(It = i)`It

pt,i

then

E[ˆ̀t,i] = E[E[ˆ̀t,i|I1, `1,I1 , · · · , It−1, `It−1,`t−1,It−1
]]

= E[pt,i ·
`t,i
pt

+ (1− pt,i) · 0]

= E[`t,i]

1



2

In particular, we have the following estimator for the total reward,

Ŝt,i =
t∑

s=1

ˆ̀
s,i

Algorithm 1 EXP3
Input: γ ∈ [0, 1], η > 0, k, t
1: Initialize λ = ( 1

k , · · · ,
1
k ), p0 = λ.

2: for s = 1, · · · , t do
3: Let qs = (1− γ)ps + γλ
4: Draw Is ∼ qs and observe loss `s,Is

5: Calculate the estimated total rewards for each i ∈ [k]

Ŝsi =
s∑
r=1

1(Ir = i)`r,Ir

qri

.
6: Calculate the sampling distribution

ps+1,i = exp(−ηŜsi)∑k
j=1 exp(−ηŜsj)

for i ∈ [k].

7: end for

Theorem 1. Assume γ ∈ [0, 1], η > 0 and for all i ∈ [k] and s ≤ t, we have |`si| ≤ 1. Then for all i ∈ [k]

E

[
t∑

s=1
`s,Is − `s,i

]
≤ log(k)

η
+ 2γs+ ηE

 t∑
s=1

k∑
j=1

qs,jψ(−η ˆ̀
s,j)


where ψ(x) = ex − 1− x.

Let’s instantiate a special case. Take λ = (1/k, · · · , 1/k), γ = ηk and η =
√

3k log(k)/t. Then,

|η `t,j
qt,j
| ≤ η k

γ
≤ 1

In particular, using the fact that φ(x) ≤ x2 for x ≤ 1, we have

log(k)
η

+ 2ηkt+ ηE[
t∑

s=1

k∑
j=1

qs,j ˆ̀2
s,j ] = log(k)

η
+ 2ηkt+ η

t∑
s=1

k∑
j=1

r2
s,j

≤ log(k)
η

+ 3ηkT

≤
√

3kt log(k)

Proof. Firstly, note that

Es−1

[
1(It = i)`t,i

qt

]
= qt

`ti
qt

+ (1− qt) · 0 = `ti

thus,

E[Ŝti] = E

[
t∑

s=1
Et−1

[
1(It = i)`ti

qt

]]
= E[

t∑
s=1

`si].



3

In addition define Ŝt =
∑t
s=1

∑k
j=1 qtj

ˆ̀
tj andWt =

∑k
j=1 exp(−ηŜt,j). Note that,

exp(−ηŜti) ≤
k∑
j=1

exp(−ηŜtj) = Wt = W0 ×
W1

W0
· · · Wt

Wt−1
= k

t∏
s=1

Ws

Ws−1

So let’s consider this ratio,

Ws

Ws−1
=

k∑
j=1

exp(−ηŜsj)
Ws−1

=
k∑
j=1

exp(−ηŜs−1,j) exp(−η ˆ̀
sj)

Ws−1

=
k∑
j=1

psj exp(−η ˆ̀
sj) (Note that this is like a log-CGF)

=
k∑
j=1

psj(ψ(−η ˆ̀
sj) + 1− η ˆ̀

sj) (by definition of φ)

= 1− η
k∑
j=1

psj ˆ̀
sj +

k∑
j=1

psjψ(−η ˆ̀
sj)

≤ exp(−η
k∑
j=1

psj ˆ̀
s,j +

k∑
j=1

psjψ(−η ˆ̀
sj))

Multiplying through, we see that,

exp(−ηŜti) ≤ k exp

−η t∑
s=1

k∑
j=1

psj ˆ̀
s,j +

t∑
s=1

k∑
j=1

psjψ(−η ˆ̀
s,j)



which implies that,
t∑

s=1

k∑
j=1

psj ˆ̀
s,j ≤ Ŝti + log(k)

η
+ 1
η

t∑
s=1

k∑
j=1

psjψ(−η ˆ̀
s,j)

≤ Ŝti + log(k)
η

+ 1
η(1− γ)

t∑
s=1

k∑
j=1

qsjψ(−η ˆ̀
s,j)

where the second line followed from noting that psj = qsj−γλj

1−γ ≤ qsj

1−γ . Ok, we now multiply both sides by 1− γ and
add γ

∑t
s=1

∑k
j=1 λj

ˆ̀
t,j , we see

t∑
s=1

k∑
j=1

qsj ˆ̀
s,j −

t∑
s=1

ˆ̀
s,j ≤ −γŜti + γ

t∑
s=1

k∑
j=1

λj ˆ̀
t,j + log(k)

η
+ 1
η

t∑
s=1

k∑
j=1

psjψ(−η ˆ̀
s,j)

Now note that,

E[−γŜti + γ

t∑
s=1

k∑
j=1

λj ˆ̀
t,j ] = γE[

t∑
s=1

k∑
j=1

λj ˆ̀
t,j − ˆ̀

s,j ]

≤ γE[
t∑

s=1

k∑
j=1

λj`sj − `sj ]

≤ 2γT (Assuming |`sj | ≤ 1)



4

at which point the result follows.

Remarks.
• In the full information setting the regret scales like O(

√
T log(k)). We will prove this when we discuss mirror

descent.
• Instead of the exponential function, we could have used a different convex function. This leads to some of the
algorithms we will see later in the class.

• We can consider an algorithm with γ = 0 if `it ∈ [0, 1] since −η/pit ≤ 0. In this case we can get a slightly
tighter constant since ψ(x) ≤ 1

2x
2 when x ≤ 0.

• Can get the same regret guarantee as long as ˆ̀
s,i ≤ 1/ps,i for all s ≤ t, i ∈ [k].

EXP3-IX

Algorithm 2 EXP3-IX
Input: γ ∈ [0, 1], η > 0, k, t
1: Initialize p0 = ( 1

k , · · · ,
1
k ).

2: for s = 1, · · · , t do
3: Draw Is ∼ ps and observe loss `s,Is

4: Calculate the estimated total rewards for each i ∈ [k]

Ŝsi =
s∑
r=1

1(Ir = i)`r,Ir

pri + γ

5: Calculate the sampling distribution

ps+1,i = exp(−ηŜsi)∑k
j=1 exp(−ηŜsj)

for i ∈ [k].

6: end for

Theorem 2. Assuming that `t ∈ [0, 1]k, η =
√

2 log(k)
kt , γ =

√
3 log(2k/δ)

kt and t ≥ klog(k)/2 then with probability
greater than 1− δ

max
i∈[k]

t∑
s=1

`s,Is
− `s,i ≤ O(

√
kt log(/δ))

Proof. To make things a bit easier to parse, we vectorize all sums over k e.g. `t = (`t,1, · · · , `t,k) .
Then

t∑
s=1

`s,Is
− `s,i =

t∑
s=1

(eIs
− ei)>`s

=
t∑

s=1
(eIs − ps)>`s + (ps − ei)>`s

=
t∑

s=1
(eIs
− ps)>`s + (ps − ei)> ˆ̀

s + p>s (`s − ˆ̀
s) + e>i (ˆ̀

s − `s)

≤
t∑

s=1
(eIs − ps)>`s + sup

i∈[n]

t∑
s=1

(ps − ei)> ˆ̀
s +

t∑
s=1

p>s (`s − ˆ̀
s) + sup

i∈[n]

n∑
s=1

(ˆ̀
s,i − `s,i)



5

We will analyze each term separately. Term 2 should come out of the guarantees of Exp3 (see remark above), whereas
Terms 1,3,4 can be approached using concentration since our new estimator guarantees that ˆ̀

i,t is bounded by 1/γ.
Term 2:

t∑
s=1

(ps − ei)> ˆ̀
s =

t∑
s=1

 k∑
j=1

ps,j ˆ̀
s,i

− ˆ̀
s,i

≤ log(k)
η

+ η

2

t∑
s=1

k∑
j=1

psj ˆ̀2
s,j

≤ log(k)
η

+ η

2

t∑
s=1

k∑
j=1

ˆ̀
sj

≤ log(k)
η

+ ηkt

2 + η

2

t∑
s=1

k∑
j=1

(ˆ̀
sj − `sj)

≤ log(k)
η

+ ηkt

2 + kη

2 max
j∈[k]

t∑
s=1

ˆ̀
sj − `sj

To see the second to third line inequality note

ps,i ˆ̀̀ 2
s,i ≤

ps,i1{Is = i}`2
s,i

(ps,i + γ)2 ≤ 1{Is = i}`s,i
ps,i + γ

Finally, if t ≥ kη/2 with the choice of η =
√

2 log(k)
kt we see this is bounded by√
2kt log(k) + Term 4

Term 1:

Lemma 1 (Azuma-HoeffdingLemma). Fix anyλ > 0, and δ ∈ (0, 1). LetXt be a randomprocesswrt a filtrationFt with
µt = E[Xt|Ft−1] and assume E[exp(λ(Xt − µt))|Ft−1] ≤ exp(Rλ2/2). Then,

∑T
t=1(Xt − µt) ≤

√
2RT log(1/δ)

with probability at least 1− δ.

Let Fs = (I1, `1,I1 , · · · , Is, `s,Is
) then

E[(eIs
− ps)>`s|Fs−1] = E

`s,Is
−

k∑
j=1

ps,j`s,j |Fs−1

 = 0

and `s,Is
∈ [0, 1] so `s,Is

is (conditionally) 1/4-subGaussian so

t∑
s=1

(eIs
− ps)>`t ≤

√
T log(4/δ)/2

with probability greater than 1− δ/4
Term 3:

Lemma 2 (Friedman’s Inequality). Fix any λ > 0, and δ ∈ (0, 1). LetXt be a random process wr.t a filtration Ft with
µt = E[Xt|Ft−1] and Vt = E[X2

t |Ft−1] and assume λXt ≤ 1. Then with probability at least 1− δ, we have for all t,

t∑
s=1

Xs − µs ≤ λ
t∑

s=1
Vs + log(1/δ)

λ



6

t∑
s=1

k∑
j=1

psj`sj − psj ˆ̀
sj =

t∑
s=1

k∑
j=1

psj(`sj − E[ˆ̀sj |Ft−1]) +
t∑

s=1

k∑
j=1

psj(E[ˆ̀s,j |Ft−1]− ˆ̀
sj)

=
t∑

s=1

k∑
j=1

psj(`sj −
psj`sj
psj + γ

) +
t∑

s=1

k∑
j=1

psj(E[ˆ̀s,j |Ft−1]− ˆ̀
sj)

=
t∑

s=1

k∑
j=1

psj
γ`sj

psj + γ
+

t∑
s=1

p>s (E[ˆ̀s|Ft−1]− ˆ̀
s)

≤ γkt+
t∑

s=1
p>s (E[ˆ̀s|Ft−1]− ˆ̀

s)

Now, note that p>t (E[ˆ̀s|Ft−1]− ˆ̀
s) ≤ 1 and

E[(p>t ˆ̀
s)2] ≤ 1

so applying Friedman’s inequality with probability greater than 1− δ/4

t∑
s=1

k∑
j=1

psj`sj − psj ˆ̀
sj ≤ γkt+ γt+ γ−1 log(4/δ)

Term 4 This is the interesting one to bound and all proofs of high probability bounds depend on it to some degree. By
the computation in the second equality above,

E[ˆ̀si|Fs−1]− `si = −γ`si
psi + γ

E[ˆ̀2
si|Fs−1] = psi

`2
si

(psi + γ)2 ≤
`si

psi + γ

Thus we can apply Freedman’s inequality to the first term

t∑
s=1

(ˆ̀
si − E[ˆ̀si|Fs−1] + E[ˆ̀si|Fs−1]− `si) =

t∑
s=1

(ˆ̀
si − E[ˆ̀si|Fs−1])−

t∑
s=1

γ`si
psi + γ

≤

[
γ

(
t∑

s=1

`si
psi + γ

)
+ log(2k/δ)

γ

]
−

t∑
s=1

γ`si
psi + γ

= log(2k/δ)
γ

Where in the application of Bernstein we have considered a union bound over the k arms. In EXP3, this quantity is not
so well controlled! Let’s finally combine things,

t∑
s=1

`t,It
− `t,i ≤

√
T log(4/δ)/2 +

√
2kT log(k) + γ(k + 1)t+ γ−1 log(4/δ) + 2γ−1 log(2k/δ)

choosing γ =
√

3 log(2n/δ)
nt


