
Reinforcement Learning and Bandits Spring 2019

Off-policy Evaluation and Learning
Instructors: Alekh Agarwal, Sham Kakade Lecture 7

In the last lecture, we saw the basic setup of the contextual bandit problem, as well as the really simple greedy strategy
which can be used in an i.i.d. setting, but only if we observe the reward of every action at each round. In this lecture,
we will introduce the relevant ideas to extend the computation of such greedy strategies to the partial feedback setting.

7.1 Formal problem setting

For readers familiar with supervised machine learning, off-policy evaluation and learning questions are probably the
most natural ones in the contextual bandits. For the off-policy setting, the most natural description consists of a fixed
and unchaging distribution Dt ≡ D over contexts and rewards. The learner has access to a dataset (xi, ai, ri)

n
i=1,

where xi ∼ D, ri ∼ D(·|xi, ai) for all i and actions ai are chosen according to some fixed logging policy µ. In
practice, µ might be the behavior resulting from following some existing system, or from an experiment designed in
order to collect data for subsequent learning.

In off-policy evaluation, the learner has a target policy π of interest, and seeks to estimate the value of π, which we
recap from the previous lecture as:

V (π) =
1

T

T∑
t=1

Ex∼Dt [E[rt|x, π(x)]] . (7.1)

Note that this is a counterfactual question. That is, we seek to ask what would have happened if we had use π at the
time of data collection. This might not be a causal statement about the future if the data distribution is non-stationary.
In stationary settings, we can however interpret the estimates we obtain as accurate predictions about the future.

It is clear that such an estimation is not possible in general. If µ never chooses actions which π would pick, then we
cannot plausibly estimate V (π). More generally, if π and µ systematically disagree on some fraction ε of the contexts,
then a bias of O(ε) in any estimate of V (π) is unavoidable in general. If π is known at data collection time, then the
simplest alternative is to choose the actions according to π with some positive probability (say 1/2) on each context.
However, π is often not known at data collection time, or we wish to evaluate not just one but a number of different
policies. In such cases, the general solution relies on collecting data using some randomized policy µ. Estimates of
V (π) can then be constructed, whose quality scales with the amount of similarity between π and µ.

In off-policy learning, the learner has access to a policy class π, and wishes to find a policy π̂n from the dataset
collected with µ such that

V (π̂n) ≥ max
π∈Π

V (π)− εn,

for some suitable slack εn. In principle, there is an elementary way of doing learning given the evaluation ability.
We could simply evaluate all the different policies in Π on our data, and pick the best. This is quite inefficient
computationally, of course. The focus of this part will be computational, and we will see how the off-policy learning
questions can be turned into specific types of classification problems, such as mutliclass classification.

We conclude the setting by laying down a couple of formal assumptions which will be necessary throughout this
lecture. In order to be concise, it would be helpful to extend the distributions µ and π to be viewed as distributions
over the (x, a, r) triples, where we have contexts x drawn according to D, actions a drawing according to µ or π given

1

2 Lecture 7:

x and rewards according toD(·|a, x). Throughout this lecture, we assume that the number of actions is finite, although
the techniques largely apply to continuous action spaces as well with slight generalizations.

Assumption 1 (Bounded rewards). For any x, a, the rewards are bounded in [0, 1]. For a fixed (x, a), we denote
Var[r|x, a] = σ2(x, a).

Assumption 2 (Coverage in logging). For any x, a, if π(a|x) > 0, then we also have µ(a|x) > 0.

7.2 Off-policy evaluation

For evaluating a policy π using data collected according to µ, it suffices to ask a simpler question. For a fixed context
x and action a, can we estimate v(x, a) := E[r|x, a] using data collected according to µ? It turns out that we have
already seen an instance of such an estimator in defining the reduction from adversarial bandits to full information in
Lecture 5. We begin with this estimator before presenting improvements.

7.2.1 Inverse Propensity Scoring

Recalling that we have n i.i.d. samples (xi, ai, ri) according to µ, we translate the notation to we present the basic
estimator again as

v̂IPS(xi, a) = ri
1(ai = a)

µ(ai|xi)
. (7.2)

Here the name IPS stands for Inverse Propensity Scoring, where the probability µ(ai|xi) is referred to as the propen-
sity score. This estimator goes back at least to the work of Horvitz and Thompson [1952]. The estimator is unbiased
under Assumption 2.

Theorem 3 (Unbiasedness of IPS). For any x and a, if µ(a|x) > 0, then E[v̂IPS(x, a) | x, a] = v(x, a).

Proof: The proof essentially follows from definitions. We have

E[v̂IPS(xi, a) | xi, a] =
∑
a′∈A

µ(a′|xi)E[v̂IPS(xi, a) | xi, a, ai = a′]

(a)
=
∑
a′∈A

µ(a′|xi)v(xi, a
′)
1(a′ = a)

µ(a′|xi)
(b)
= v(xi, a).

Here the equality (a) uses the fact that the only randomness present after fixing a, x and ai = a′ is that in the rewards
being drawn according to D, which has the expected value of v(xi, a

′) as per our earlier definition. Equality (b) uses
the fact that the indicator only preserves the term corresponding to a′ = a in the sum, as long as µ(a|xi) 6= 0, as per
our assumption.

The result tells us that we can estimate the reward of any action in an unbiased manner, given logged exploration data.
A natural unbiased estimator for any policy π is then immediately obtained as well.

Corollary 4. Given logged exploration data with a policy µ, and an evaluation policy π such that Assumption 2 holds,
the following IPS estimator for value of π is unbiased:

V̂IPS(π) =
1

n

n∑
i=1

∑
a∈A

π(a|xi)v̂IPS(xi, a) =
1

n

n∑
i=1

π(ai|xi)
µ(ai|xi)

ri. (7.3)

Lecture 7: 3

This basic result tells us that given sufficiently large log of exploration data, we can aim to estimate any policies whose
actions are chosen with non-zero probabilities in the logs. It is natural to ask how large is sufficiently large? A first
step towards answering this is by understanding what controls the variance of the IPS estimator. In order to state the
subsequent results concisely, we introduce the notation w(x, a) = π(x, a)/µ(x, a) to denote the propensity scores.
With this notation, we have

V̂IPS(π) =
1

n
w(xi, ai)ri.

We have the following result.

Theorem 5 (Variance of IPS). Under Assumption 2, we have

Var[V̂IPS(π)] =
1

n

[
E(x,a,r)∼µ[σ2(x, a)w2(x, a)] + Var(x,a,r)∼µ[v(x, a)w(x, a)]

]
.

Proof: Since the (xi, ai, ri) are jointly i.i.d., we know that

Var[V̂IPS(π)] =
1

n
Var(x,a,r)∼µ[w(x, a)r(x, a)],

where we recall our notational convention of extending µ to a distribution over triples.

By the law of total variance (i.e. Var[Y] = E[Var[Y |X]] + Var[E[Y |X]]), we have

Var(x,a,r)∼µ[w(x, a)r(x, a)] = Eµ [Var[r(x, a)w(x, a)|x, a]] + Varµ [E[w(x, a)r(x, a)|x, a]]

= Eµ
[
w2(x, a) Var[r(x, a)|x, a]

]
+ Varµ [w(x, a)v(x, a)]

= Eµ
[
w2(x, a)σ2(x, a)

]
+ Varµ [w(x, a)v(x, a)] .

Dividing by n completes the proof.

The two terms in the variance upper bound are quite intuitive. The first term captures the joint variance due to the
distributions of (x, a, r) ∼ µ. This is unavoidable in off-policy evaluation, even if the context distribution is degenerate
and consists of just one context. It scales quadratically with both the variance in rewards, as well as the propensity
score w. In off-policy evaluation, we are generally trying to keep the dependence on w as mild as possible, so as to
allow the policy π to be as dissimilar from µ as possible while still having good evaluation. From the first term, we see
that the dependence on w is poor if the rewards have a sizeable variance, but becomes much smaller when the rewards
are nearly deterministic.

The second term has already taken variance over the randomness in rewards, and is capturing the joint variance due
to the actions a and the contexts x. This term generally scales quadratically in v and w, and can be large even if the
rewards are completely deterministic. The dependence stays this way, even if the context distribution is degenerate
and consists of just a single x.

Remark: Owing to the second term, we will generally think of the variance of IPS as scaling quadratically in the
propensity score w. Thus, we have smaller errors in estimating the value of π when the propensity scores are small,
meaning that µ and π are very similar in the induced distributions over actions.

Remark: Since IPS is unbiased, its variance is also equal to its Mean Squared Error (MSE) in estimating V (π). That

is, Theorem 5 also provides an upper bound E
[(
V̂IPS(π)− V (π)

)2
]

.

As the remark indicates, we can further interpret Theorem 5 as giving a bound on how far the IPS estimate might
be from the true value of the policy π, as a function of the context and reward distributions, as well as the mismatch

4 Lecture 7:

between µ and π. However, the MSE is an error bound only in expectation. A more refined question is to further
examine how fast the errors in our estimation start behaving like this expectation. Alternatively, given a finite number
n of samples in our log, can we obtain an upper bound on V̂IPS(π)−V (π) which holds with overwhelming probability?
This is the issue we tackle with our next result.

Theorem 6 (Deviation bound for IPS). Under conditions of Theorem 5, let us further assume that the propensity
scores satisfy w(x, a) ≤ ŵmax almost surely. Then with probability at least 1− δ, we have∣∣∣V̂IPS(π)− V (π)

∣∣∣ ≤ ŵmax

√
1

2n
log

2

δ
.

Proof: The proof follows from an application of Hoeffding’s inequality (Lemma 6.1 in the previous lecture). By
Theorem 3, we know that V̂IPS(π) is a sum of n i.i.d. random variables, each with mean V (π). Since the rewards
are in [0, 1], and the propensity scores are non-negative and at most ŵmax almost surely, each random variable takes
values in [0, ŵmax]. The result now directly follows from Lemma 6.1.

Remark: This theorem seems remarkably crude in comparison with our previous result in Theorem 5. While Theo-
rem 5 carefully accounts for the mismatch between π and µ as well as the context and reward distributions, Theorem 6
only looks at the largest propensity score. Even if π and µ mostly agree on their actions, but choose very different
things on occassion, largest score can be large meaning the theorem will allow the error in IPS to be rather large.

This discrepancy between the results of Theorem 5 and 6 is because Hoeffding’s inequality does not account for
any properties of a random variable apart from the range in which they take values. But a random variable might
have a small variance despite the range being large. Should this lead to better concetration around the mean? We
will formalize this notation by using Bernstein’s inequality, which is an improvement upon Hoeffding’s in taking the
variance of the random variables into account.

Lemma 7 (Bernstein’s inequality). Suppose X1, . . . , Xn are i.i.d. with 0 mean, variance σ2 and |Xi| ≤ M almost
surely. Then with probability at least 1− δ, we have∣∣∣∣∣ 1n

n∑
i=1

Xi

∣∣∣∣∣ ≤
√

2σ2

n
log

2

δ
+

2M

3n
log

2

δ
.

Noting that we have bounds on both the range and variance of the IPS estimator from Theorems 5 and 6, we imme-
diately obtain a different upper bound by the application of Bernstein’s inequality.

Theorem 8 (Sharper deviation bound for IPS). Under conditions of Theorem 6, with probability at least 1 − δ, we
have ∣∣∣V̂IPS(π)− V (π)

∣∣∣ ≤
√

2 log
2

δ

Var(x,a,r)∼µ[V̂IPS(π)]

n
+

2ŵmax

3n
log

2

δ
.

Remark: We notice that the first term in the upper bound scales roughly as square root of the variance bound in
Theorem 5, which is to be expected since we are bounding the error in absolute value rather than the MSE. Here, we
see that the additional log 2/δ term is present in order to account for the failure probability, while the MSE bound only
considers expectation.

Remark: We also observe that the second term still depends on the largest propensity score ŵmax. However, this
term now goes to zero as 1/n rather than 1/

√
n in Theorem 6. This is a major improvement when n is large, since

1/n is substantially smaller than 1/
√
n. As a result, we will say that the asymptotically dominant term when n gets

large is governed by the variance of the IPS estimator, like in the MSE bound. At the same time, given a desired error
threshold, Theorem 8 allows us to obtain an estimate of the number of samples before V̂IPS(π) can approximate V (π)
to that error.

Lecture 7: 5

Computation of IPS estimates: So far we have only discussed the statistical aspects of V̂IPS. However, its relatively
simple structure implies that it is computationally cheap to obtain. Given our log, it suffices to just stream over the data
in it. For each sample, we check whether the recorded action matches that of π, and if so, accumulate the propensity-
weighted reward. Consequently, V̂IPS(π) for a fixed policy π is computed in time linear in the size of the logs, and
requires constant storage due to the streaming nature of the computation.

7.2.2 Improved Estimators beyond IPS

As we have seen so far, IPS fulfils the simplest goal of providing unbiased off-policy evaluation. However, it suffers
from a large variance when the propensity scores are large. There is a whole body of literature in machine learning,
statistics and econometrics that has subsequently worked on developing better estimators to address this shortcoming
of IPS. We will present one such estimator in some detail and provide pointers to other improvements.

7.2.2.1 Doubly Robust Estimators

A common approach to off-policy evaluation comes from viewing it as a supervised learning problem. Given data
(xi, ai, ri), we can treat this as a supervised dataset to learn a mapping v̂ : X × A 7→ R. Given such a mapping, a
straightforward estimator for V (π) is the use v̂ as the true reward function for evaluating π, that is

V̂DM(π) =
1

n

n∑
i=1

v̂DM(π(xi)). (7.4)

Here DM stands for Model-Based, to reflect that this reward estimator is based on first fitting a model v̂DM of the reward
function. Note that there is no importance weighting here, since given v̂, we can evaluate the reward of π’s action on
each round, whether we chose that action in our dataset or not.

The quality of DM estimators heavily relies upon the quality of v̂ in estimating v. If we happen to find an estimator v̂
which has a small MSE in estimating v, then it is easy to show that V̂DM(π) is also a good estimator for V (π). However,
in general v̂ might be a biased estimator for v, and the bias might not even go down with the number of samples n
in our dataset. For instance, if we estimate v̂ as the solution to a linear regression for predicting the rewards, but the
true reward function is highly non-linear, then any estimator v̂ we come up with is going to be extremely inaccurate
in many cases. This is in contrast with IPS, where the error goes down provably as the size of our exploration data
increases.

At the same time, when v̂ is a good estimator for v, then the resulting estimator V̂DM(π) can have significantly lower
variance than IPS. This arises since there is no division by potentially small probabilites in V̂DM(π). For instance, if v̂
was estimated by a linear regression, and if v is indeed a linear function of the contexts for each action, then we might
hope to quickly obtain a small MSE in predicting the rewards and obtain a high quality DM estimator.

This motivates a natural quest for estimators which retain the worst-case robustness of IPS-style unbiased approaches,
while benefitting from good reward models when possible. One such line of inquiry leads to the so-called doubly
robust estimators [Bang and Robins, 2005, Rotnitzky et al., 2012, Dudı́k et al., 2011]. To formally define the doubly
robust (DR) estimator, we first create a different reward estimator given a context and action, and assuming access to
a model-based reward estimator v̂DM(x, a):

v̂DR(xi, a) = v̂DM(x, a) + (ri − v̂DM(x, a))
1(ai = a)

µ(ai|xi)
. (7.5)

Remark: In order to avoid carrying subscripts througout, we will now use ṽ to denote the arbitrary reward function
which goes into the doubly robust estimator, rather than the more cumbersome v̂DM notation.

6 Lecture 7:

That is, we follow the prediction of the reward estimator ṽ(x, a) to evaluate any (x, a) pair’s reward. But this estimator
might be arbitrarily biased. So on the actions ai in our dataset, we add an importance weighted reward taking the
ri − ṽ(x, a). This additional term can be seen as a correction for the bias in ṽ(x, a). When ṽ(x, a) is close to ri, the
residual is small meaning that we have a small penalty in variance from the importance weights. But if the estimator
is completely off, we still correct the bias as opposed to blindly following ṽ(x, a). We now define the doubly robust
estimator for policies in the natural manner, and study its bias and variance properties formally.

V̂DR(π) =
1

n

n∑
i=1

v̂DR(xi, π(xi)) =
1

n

n∑
i=1

[
ṽ(x, a) + (ri − ṽ(x, a))

1(ai = a)

µ(ai|xi)

]
. (7.6)

Theorem 9 (Unbiasedness of DR). Given logged exploration data with a policy µ, an evaluation policy π such that
Assumption 2 holds and an arbitrary reward estimator ṽ, E[V̂DR(π)] = V (π).1

Proof: The proof follows by showing that for every xi, a such that µ(a|xi) > 0, we have E[v̂DR(xi, a)|xi, a] =
v(xi, a). This follows essentially from the unbiasedness of IPS, since

E[v̂DR(xi, a)|xi, a] = ṽ(xi, a) + E
[
(ri − ṽ(x, a))

1(ai = a)

µ(ai|xi)

]
(a)
= ṽ(xi, a) + v(x, a)− ṽ(x, a) = v̂(x, a).

Here (a) follows since the second term is effectively IPS, but using a reward of ri − ṽ(x, a) instead of just ri.
Consequently, the unbiasedness of IPS tells that the conditional expectation is equal to v(x, a)− ṽ(x, a). Noting that
under the conditions of the theorem, π only takes actions with non-zero probabilities under µ completes the proof.

The unbiaedness result tells us that DR is indeed robust to the potential poor quality of ṽ, resulting in the first type
of robustness in this estimator. We will now see the second type of robustness, which is to large importance weights
when the reward predictor ṽ is good.

Theorem 10 (Variance of DR). Under Assumption 2, we have

Var[V̂DR(π)] =
1

n

[
E(x,a,r)∼µ[σ2(x, a)w2(x, a)] + Ex∼D

[
Vara∼µ(·|x) w(x, a)(v(x, a)− ṽ(x, a))

]
+ Varx∼D

[
Ea∼µ(·|x) [v(x, a)w(x, a)|x]

]]
.

Remark: The first term is same as in the variance of IPS, and is still quadratic in w. The main saving comes in the
second variance term of IPS replaced by the second and third terms in Theorem 10. First note that the law of total
variance

Var(x,a,r)∼µ[w(x, a)v̂(x, a)] = Ex∼D
[
Vara∼µ(·|x) w(x, a)v(x, a)

]
+ Varx∼D

[
Ea∼µ(·|x) [v(x, a)w(x, a)|x]

]
.

So the only change is the residual relative to ṽ in the second term. When ṽ is a good predictor for v̂, this term can
be quite small. Intuitively, this term is capturing the expected variance due to the action selection based on µ, and
observed actions and rewards in our dataset become largely irrelevant to the quality of estimation, if someone gives us
a great reward predictor for all contexts and actions.

At the same time, access to ṽ does not completely avoid the quadratic dependence on w if one of the reward or
context distributions is non-degenerate, as shown by the first and third terms. The reward variance arises as the

1The expectation does not need to include any randomness in ṽ.

Lecture 7: 7

importance weighted term in the DR estimator takes the difference between an observed reward and ṽ. Even if ṽ was
deterministically equal to v̂, this term will be on the order of reward variance on average. The last term in variance
bound of DR comes from the richness of the context distribution. If we see only n samples, the sample average reward
over these contexts is only a proxy for the actual expectation over contexts, with the gap governed by the variance in
the context distribution.

Proof: We will be terse since the proof large mirrors that of IPS. We note that

Var[V̂DR(π)] = E[Var[V̂DR(π)|x, a]] + Var[E[V̂DR(π)|x, a]]

= E[w2(x, a)σ2(x, a)] + Ex[Vara∼µ(·|x) Er[V̂DR(π)|x, a]]︸ ︷︷ ︸
T

+ Varx[Ea∼µ(·|x)Er[V̂DR(π)|x, a]].

Now the third term directly follows due to the unbiasedness of the doubly robust estimator. For the middle term, note
that each individual summand in V̂DR(π) can be written as

v̂(xi, π(xi)) = ṽ(xi, π(xi)) + (ri − ṽ(xi, π(xi))
1(ai = π(xi))

µ(ai|xi)
.

Since ṽ(xi, π(xi)) does not depend on the action ai chosen in our dataset, this is a constant offset which does not
count towards the variance in the term T , which is only with respect to the conditional distribution over actions.
Taking variance just of the remaining estimator gives the result.

By taking the variance upper bound, and using it in Bernstein’s inequality, we also obtain a finite sample error bound
on the quality of V̂DR(π). This bound also improves upon that for IPS in the same ways as the variance bound.

Where does ṽ come from? A natural next question to consider is how to get reward estimators ṽ in practice. A
common practice is to in turn take the logged data, and perform regression with it to obtain ṽ. From the variance upper
bound in Theorem 9, we see that the second term is effectively the MSE of ṽ in predicting v̂, although on a sample
reweighted according to the propensity scores w. Consequently, a natural estimation procedure for ṽ is to take some
class of regression functions and minimize propensity-weighted squared loss over that class. That is,

ṽ = arg min
f∈F

∑
(x,a,r)∈S

w(x, a)(f(x, a)− r)2,

where f is our class of regression functions and S is the dataset we use for regression. Common choices for F are
linear functions using some joint feature representations of contexts and actions, regression trees or random forests
and neural networks. In statistics and econometrics, where the features are often relatively low-dimensional, more
non-parametric regression approaches are also often used.

One concern with this approach might be that the regression function ṽ is itself dependent on the samples now, and
this dependence was not accounted for in our bias and variance calculations above. To avoid dependence issues, the
common approach is to take the entire logged datasetD and break it up into two equal halvesD1 andD2. We first train
ṽ1 onD1 and use it for evaluating π onD2. We similarly train ṽ2 onD2 and use it forD1. The two estimates for V (π)
are finally averaged to lower the variance. This is also easily generalized to a k-fold or leave-one-out methodology.

7.2.3 Other improvements and lower bounds

Note that we have only considered unbiased estimators for V (π) so far. Noting that the MSE of an estimator is sum
of its variance and squared bias, it is natural to consider estimators with a small bias that might have a lower variance.

8 Lecture 7:

Biased estimators using propensity score surrogates ŵ Since the biggest source of variance in our estimators
is large propensity scores, several works have investigated the use of lower variance surrogates. Two common ap-
proaches are to pick a threshold τ , and use ŵ(x, a) = max(w(x, a), τ) (see e.g. [Bembom and van der Laan, 2008])
or ŵ(x, a) = w(x, a)1(w(x, a) < τ) (e.g. [Bottou et al., 2013]). Alternatively, some works also use the observed
propensities w(x, a) to create a smoother surrogate ŵ(x, a), which is then used in evaluation.

For the first two proposals, controlling the bias is easy. We are effectively allowing bias whenever w(x, a) > τ , so the
probability of this event yields a direct estimate on the bias.

When a reward estimator ṽ is present, we can take these approaches a bit further. In the work of Bottou et al. [2013],
the reward is estimated by 0 wheneverw(x, a) is larger than τ . A natural alternative is to instead replace it with ṽ(x, a)
on this event. This is the approach motivated in Wang et al. [2016] under the name of SWITCH estimators, and they
also prescribe an empirical procedure for setting a good threshold τ . As the empirical results in these works show,
such modifications can result in substantial improvements in our value estimates.

Lower bounds on error: There are a number of estimators for off-policy evaluation, each with its corresponding
MSE upper bound. It is natural to ask how far we can lower the error, and what are fundamental lower bounds for
the hardness of the problem of off-policy evaluation. This question has been studied in the literature from at least two
perspectives.

Wang et al. [2016] take a finite sample minimax approach to the problem. That is, given n samples according to µ, a
fixed evaluation policy π and context distribution D, what is the smallest possible error of any potential estimator of
V (π), when we take worst case over all possible reward distributions? Under certain moment conditions, they show
that the simplest IPS estimator is already optimal up to constant factors according to this criterion. However, they
also observe that this is only true in the worst-case over arbitrary reward structures, and we have already seen possible
improvements when we have additional knowledge of the function v̂(x, a), allowing us to create a good predictor
ṽ(x, a) for DR or SWITCH estimators.

A second viewpoint comes from the asymptotic theory, where a similar question is asked as above, but in the limit
of infinite sample size, and the emphasis is on identifying the precise constants in the error bound. Under certain
conditions (see e.g. [Rothe, 2016]), effectively implying that a non-trivial estimator ṽ can be obtained, DR is shown to
be better than IPS in such settings.

7.3 Off-policy learning

Off-policy evaluation is a useful tool, if we have a collection of data and a policy in mind that we wish to evaluate. But
more commonly, we only have our dataset, and would like to find a policy attains a high value. Often, we may further
have a parametrized policy class in mind, such as by the weights in a linear function or neural network. In this case,
we would really like to find a set of weights such that the policy corresponding to them has a high estimate for V (π)
based on the data we have.

7.3.1 Statistical Analysis

Given the power to do off-policy evaluation, this question is not too hard statistically. Indeed, let us suppose that we
have access to a finite policy class π, with |Π| = N . Then we can easily prove the following corollary of Theorem 6.

Corollary 11 (Deviation bounds for policy optimization). Given a finite policy class Π with |Π| = N , assume that

Lecture 7: 9

the conditions of Theorem 6 are satisfied for each π ∈ Π. Then with probability at least 1− δ, we have

sup
π∈Π
|V̂IPS(π)− V (π)| ≤ ŵmax

√
1

2n
log

2N

δ
.

In particular, we can define π̂n = arg maxπ∈Π V̂IPS(π). Applying the corollary twice, once with π̂n and once with
π?, we obtain

VIPS(π) ≥ V (π?)− ŵmax

√
2

n
log

2N

δ
. (7.7)

The corollary follow from Theorem 6 using a union bound over policies in Π. Effectively, this is the same calculation
we saw for analyzing the GREEDY and τ -GREEDY algorithms in the previous lecture, except we do not need full
information or uniform randomization anymore! We can also use the same idea with better deviation bounds, such as
in Theorem 8, but we have to instead use a uniform upper bound on the variance for all policies in Π now.

7.3.2 Computational Algorithms

While the statistical analysis of off-policy learning follows relatively straightforwardly given that for off-policy eval-
uation, the computational story is now significantly more complex. A naı̈ve algorithm for off-policy learning would
evaluate our favorite off-policy evaluator for every π ∈ Π, and then return the policy with the best estimated value.
This would require O(N) computation, prohibitive if Π is continuously parametrized or exponentially large.

However, it is difficult to do much better. Consider a special case of two actions, with ri taking values in {0, 1} and
µ(a|xi) = 0.5 for each action a. Assume further exactly one action gets a reward of one on each context. Suppose
we can efficiently compute the best policy π̂n for a sample generated from this distribution, for our policy class Π. It
means that we can compute

π̂n = arg max
π∈Π

V̂IPS(π) = arg max
π∈Π

n∑
i=1

ri
1(ai = π(xi))

1/K

= arg max
π∈Π

n∑
i=1

1(ai = π(xi), ri = 1)

= arg max
π∈Π

∑
i : ri=1

1(ai = π(xi))

= arg min
π∈Π

∑
i : ri=1

1(āi 6= π(xi)),

where āi is the action not in the logs (for this two action case). Note that the last computation is a 0 − 1 loss
minimization problem for binary classification. For most classes Π of interest, this computation is known to be NP-
hard (examples include linear as well as non-linear classes such as decision trees and neural networks). Consequently,
it is hopeless to expect that we can have computationally efficient algorithms for off-policy learning under all data
distributions, which we have just shown to be a more general case of an NP-hard computation.

However, the important thing to remember in this conclusion is that it is something which holds in worst-case over all
distributions. On the other hand, there are a number of distributional assumptions under which 0−1 loss minimization
can be done efficiently in theory, or where we have empirical evidence of the ability to learn good classifiers. In order

10 Lecture 7:

to leverage the existence of several efficient classification algorithms, tailored to representations of common interest,
we will build our policy learning algorithms which assume access to a certain kind of classification algorithm over the
policies π ∈ Π.

Formally, we first define a cost-sensitive classification problem.

Definition 12 (Cost-sensitive classification). Suppose we are given an input space X and let D be any distribution
over X × [0, 1]K . Then the cost-sensitive classification error of a function h : X 7→ {1, 2, . . . ,K} is given by
E(x,c)∼D[c(h(x))].

An algorithm for cost-sensitive classification then takes a setH of cost-sensitive classifiers, and promises to return

arg min
h∈H

E(x,c)∼D[c(h(x))].

For instance, a common structure for designing cost-sensitive classifiers is to start with a base class of regressors f ,
where f(x, a) ∈ [0, 1] for any a ∈ {1, 2, . . . ,K}. Then we can associate a classifier with f that predicts hf (x) =
arg mina∈{1,2,...,K} f(x, a). That is, the classifier hf treats f as a proxy for the expected cost of a given x and
predicts accordingly. For such classifiers, it is know that if there exists f? ∈ F such that f?(x, a) = E(x,c)∼D[c(a)|x],
then a good classifier can be found by first regressing on the observed costs and then taking the classifier induced
by the resulting function. This strategy works whenever we have efficient regression algorithms such as with linear
representations, regression tree ensembles etc. Alternatively, reductions from cost-sensitive classification to multiclass
classification also exist, so that we can use existing classification algorithms to find a good cost-sensitive classifier.

In summary, cost-sensitive classification problems admit practical algorithms for most representations of interest. This
observation matters as we will now show that computations required for off-policy learning can be efficiently per-
formed assuming access to a cost-sensitive classification algorithm. We begin by noting that our off-policy evaluation
estimates so far take the form

V̂ (π) =
1

n

n∑
i=1

v̂(xi, π(xi)).

Defining c(x, a) = −v̂(x, a), we further observe that

arg max
π∈Π

V̂ (π) = arg max
π∈Π

1

n

n∑
i=1

v̂(xi, π(xi)) = arg min
π∈Π

1

n

n∑
i=1

c(xi, π(xi)),

where we have used the definition of costs as negative rewards to switch from minimization to maximization in the
last equality. That is, off-policy learning is equivalent to cost-sensitive classification for appropriate cost definition.

As a final remark, we will also show that the problem simplifies even further in the case of the IPS estimator. Note
that

arg max
π∈Π

n∑
i=1

v̂(xi, π(xi)) = arg max
π∈Π

n∑
i=1

ri
1(ai = π(xi))

µ(ai|xi)

= arg max
π∈Π

n∑
i=1

ri
µ(ai|xi)

1(ai = π(xi))

= arg min
π∈Π

n∑
i=1

ri
µ(ai|xi)

1(ai 6= π(xi)).

Lecture 7: 11

Now the last problem is simply a multiclass classification problem, where we treat each example with a different
importance weight, rather than the standard formulation of equal importance weight 1 on every example. Since most
existing multiclass classification techniques allow this additional importance weights, there is indeed a large number
of algorithms at our disposal to find the best policy according to the IPS estimator’s value.

Given all this discussion, we finally also observe that the computation of the GREEDY estimator in the previous
lecture is precisely a cost-sensitive classification problem, and is efficiently implementable assuming access to such
an algorithm.

7.4 Evaluating contextual bandit algorithms

So far, we have seen how to estimate the value of a given policy, and how to search for the best policy from a class.
This might be a good idea if we have done a one-off experiment to do some randomized data collection, and want
to use the best policy we find from the data to drive our application for the future. In many real world applications
though, the data distribution as well as actions available change over time, meaning that a policy which was once
good might no longer stay good. This also means that the randomized data we collected at some point in the past
may no longer point us towards sound conclusions in the future. This is effectively the difference between causal and
counterfactually accurate predictions we discussed before. Our techniques give sound counterfactual predictions, but
they might not be causally correct if the past and present have diverged.

As a result, a preferred mode in such applications is to not do one-off randomized experiments, but actually use
explore-exploit algorithms to constantly obtain some amount of randomization over plausibly good actions. In the
previous lecture, we saw two examples, EXP4 and τ -GREEDY of such explore-exploit algorithms.2 These explore-
exploit algorithms for contextual bandits have tunable parameters as well, such as the amount of uniform exploration
in EXP4 and the parameter τ in τ -GREEDY. Given some exploration data, how do we evaluate the performance of an
explore-exploit algorithm for different settings of its parameters? If we could answer this, then we can instantiate the
algorithm with the best setting we find when running it.

It turns out, however, that this question cannot be answered for arbitrary bandit algorithms. This is shown below
through a pathological example which was descibed in Li et al. [2011].

Example 13 (Impossibility of evaluating contextual bandit algorithms from logged data). Consider a CB problem with
K = 2 actions, x ∈ {0, 1} and r(1) = 1, r(2) = 0 independent of which context is chosen. Consider an algorithm A

which chooses at = 1 if the first context x1 = 1, otherwise always chooses at = 2. Suppose xt are chosen uniformly
at random each time. Now with probability 0.5, A always plays action 1 and with probability 0.5, always plays action
2. Hence, it has an expected reward of 0.5. However, given any logged dataset, we will either have recorded x1 = 1
on the first example, or x1 = 0. In the first case, we will estimate the average reward of A to be 1, while it will be 0 in
the second case.

The example points out a pathology. Since exploration algorithms are stateful objects, one large logged dataset is not
enough to get a good estimate of the algorithms average reward. Of course, one could take many such datasets, and
for the example above we will see a reward of 1 on roughly half the datasets and we can conclude that the average
reward is 0.5. But this is extremely data inefficient.

A saving grace is that the above example is truly pathological. For most contextual bandit algorithms of interest, we
can indeed estimate their expected reward using logged data. While we will not go into the precise conditions here,
we intuitively think of good contextual bandits as reasonably stable, so that any indiosyncracies in the logged dataset
do not hurt these algorithms significantly.

2Of course τ -GREEDY also explores just once and is not a good fit to such changing environments. We will see better algorithms in the next
lecture.

12 Lecture 7:

One evaluator for exploration algorithms is shown in Algorithm 1. The algorithm goes over the dataset, and for each
x queries the action of our exploration algorithm A one x. If the chosen action is the same as the one in our dataset,
we supply its reward to A, or we do not provide any feedback. Throughout, given a set of examples denoted by h (for
history), we will use A(h, x) to denote the action chosen by A on x after observing rewards for its chosen actions on
the samples in h.

Algorithm 1 Off-policy evaluation of exploration algorithms
Require: Exploration algorithm A and dataset D

Set h = ∅ . An initially empty history
Set GA = 0 . Initialize net reward of the algorithm
Set T = 0 . Initialize number of updates done
for (x, a, p, r) ∈ D do

if A(h, x) = a then
Update h← h ∪ {(x, a, r)}
Update GA ← GA + r
Update T ← T + 1

end if
end for
return GA/T

To get intuition about the procedure, let us consider the case when the logged data has uniformly chosen actions, that
os p = 1/K in all the records. Then on each example, A’s action matches the recorded one with probability 1/K. That
is, we would expect to end up with T ≈ |D|/K, and the estimate we get is for the expected reward which A obtains
after running on |D|/K contextual bandit examples.

An alternative evaluator we can use is closer to IPS. For each (x, a, p, r) in the logged data, we first query a′ =
A(h, x). We then update h = h ∪ {(x, a, p, r′)}, where r′ = r1(a = a′)/p. That is, we update the algorithm using an
importance weighted reward, which is unbiased, but injects additional variance as usual.

In general, the evaluation of exploration algorithms in this manner is often prone to significant variance though, and
is not quite as robust to its counterpart for fixed policies. For this reason, exploration algorithms often end up being
eventually evaluated using online testing.

References
Heejung Bang and James M Robins. Doubly robust estimation in missing data and causal inference models. Biomet-

rics, 61(4):962–973, 2005.

Oliver Bembom and Mark J van der Laan. Data-adaptive selection of the truncation level for inverse-probability-of-
treatment-weighted estimators. 2008.

Léon Bottou, Jonas Peters, Joaquin Quinonero Candela, Denis Xavier Charles, Max Chickering, Elon Portugaly,
Dipankar Ray, Patrice Y Simard, and Ed Snelson. Counterfactual reasoning and learning systems: the example of
computational advertising. Journal of Machine Learning Research, 14(1):3207–3260, 2013.

Miroslav Dudı́k, John Langford, and Lihong Li. Doubly robust policy evaluation and learning. In ICML, 2011.

Daniel G Horvitz and Donovan J Thompson. A generalization of sampling without replacement from a finite universe.
Journal of the American statistical Association, 1952.

Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. Unbiased offline evaluation of contextual-bandit-based news
article recommendation algorithms. In Proceedings of the fourth ACM international conference on Web search and
data mining, pages 297–306. ACM, 2011.

Lecture 7: 13

Christoph Rothe. The value of knowing the propensity score for estimating average treatment effects. IZA Discussion
Paper Series, 2016.

Andrea Rotnitzky, Quanhong Lei, Mariela Sued, and James M Robins. Improved double-robust estimation in missing
data and causal inference models. Biometrika, 99(2):439–456, 2012.

Yu-Xiang Wang, Alekh Agarwal, and Miroslav Dudı́k. Optimal and adaptive off-policy evaluation in contextual
bandits. arXiv preprint arXiv:1612.01205, 2016.

	Formal problem setting
	Off-policy evaluation
	Inverse Propensity Scoring
	Improved Estimators beyond IPS
	Doubly Robust Estimators

	Other improvements and lower bounds

	Off-policy learning
	Statistical Analysis
	Computational Algorithms

	Evaluating contextual bandit algorithms

