Homework 3: The State-Action Polytope and the Dual Linear Program

CSE 599: Reinforcement Learning and Bandits

1 Constraints on the state-action visitation μ^{π} [10 points]

Verify the following: for all states $s \in S$, μ^{π} satisfies:

$$\sum_{a} \mu^{\pi}(s, a) = (1 - \gamma) d_0(s) + \gamma \sum_{s', a'} P(s|s', a') \mu^{\pi}(s', a') \,.$$

2 Completeness of the μ^* [30 points]

Consider the state-action polytope \mathcal{K} , as defined in the notes. Now let us prove the Lemma in section 7.1.2. Specifically, after doing the previous problem, the questions asks you to show that: if $\mu \in \mathcal{K}$ then there exists a (stationary) policy π such that $\mu^{\pi} = \mu$.

3 Non-stationary policies and μ^* [40 points]

Now consider a possibly non-stationary (i.e. time dependent) policy π , which may depend on the history of observed states and actions. The visitation distribution μ^{π} is also well defined in this case (exactly as before). Now prove the following stronger lemma:

Lemma 1. For all non-stationary policies π , we have that $\mu^{\pi} \in \mathcal{K}$. Furthermore, if $\mu \in \mathcal{K}$, then there exists a (stationary) policy π such that $\mu^{\pi} = \mu$.

(note that you already proved the second claim in the previous problem).

4 **Recovering the optimal policy** [20 points]

Suppose μ^* is the solution to the dual LP (as defined in the notes). Define:

$$\pi(a|s) := \frac{\mu^{\star}(s,a)}{\sum_{a'} \mu^{\star}(s,a')}.$$

. .

Show that π is an optimal policy in the MDP. Furthermore, show that $\mu^{\pi} = \mu^{\star}$. You may use the fact that μ^{\star} is the state-action visitation distribution of an optimal policy.