
Homework 2: Policy Gradient Methods
& RMax

CSE 599: Reinforcement Learning and Bandits

Instructions
Do any two of the six problems.

1 Policy Gradient Theorem
1. For any function f(s) (that is only a function of the states) show that:

∇V πθ =
1

1− γ
Es∼dπθ Ea∼πθ(·|s)

[(
Qπθ(s, a)− f(s)

)
∇ log πθ(a|s)

]
2. Use this to prove the third policy gradient expression in Theorem 4.3.
3. Bonus: Find the f(·) which leads to the minimum variance estimate of our gradient, assuming

that our gradient estimate will be:

∇̂V πθ =
1

1− γ

(
Qπθ(s, a)− f(s)

)
∇ log πθ(a|s)

where s ∼ dπθ , a ∼ πθ(·|s).

2 Policy Gradients for the Finite Horizon Case
1. Derive analogous expressions for the policy gradient theorem (in Theorem 4.3) for the (episodic)
H stage, undiscounted finite horizon MDPs. In particular, derive two expressions analogous to
the first two expressions in Theorem 4.3. An H stage finite horizon MDP is one which starts at
some fixed state s0, lasts for H steps, and the value is the undiscounted sum of the rewards in H
steps.

3 Compatible Function Approximation and Estimation
Read the compatible function approximation section in the notes.
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1. Provide a sample based estimation procedure for this approach. Use the same quantities Q̂t

defined in the “Monte Carlo estimation and stochastic gradient descent” section of the notes,
and explicitly setup the regression problem that you would solve.

2. Show that the samble based estimator you obtain will result in exactly the same estimator as that
provided in the “Monte Carlo estimation and stochastic gradient descent” section. In particular,
the estimate used by both procedures (on the same set of samples) will end up being identical to
each other.

4 Effect of Distribution Mismatch in Approximate Policy Eval-
uation

Recall the notation dπ,ν where states are sampled according to dπ and actions according to ν(a | s).
In the lecture, we showed the bound

‖fk −Qπ‖dπ,π ≤ γk/2‖f0 −Qπ‖dπ,ν +
k∑
i=1

γ(k−i)/2‖fi − Tπfi−1‖dπ,ν

1. Let ρ(s, a) = ν(s, a)/π(s, a). Show that the result above implies the bound:

‖fk −Qπ‖dπν ≤ max{ε, 1},

where

ε = γk/2
√
‖ρ‖∞‖1/ρ‖∞‖f0 −Qπ‖dπ,ν +

k∑
i=1

γ(k−i)/2
√
‖ρ‖∞‖1/ρ‖∞‖fi − Tπfi−1‖dπ,ν

2. Is this bound improvable in general? Consider the case when ν is uniform and π is deterministic
and show that the LHS can be as large as 1 for the iteration fk = T̂πFfk−1. Does the choice of F
matter?

Hint: What can you say about the behavior of fk on states which are not visited by π, but are
visited by ν? Does this matter?

5 Bandit algorithm variants
1. Consider the active arms elimination algorithm. At each round, it maintains a feasible action set
At, and bounds LCBt(a), UCBt(a) on the expected reward for each a ∈ At. It acts by playing
an action a ∈ At uniformly at random.

(a) Can you design an elimination strategy for removing an action from At, assuming you are
given LCBt and UCBt? What are reasonable values to use for LCBt and UCBt based on our
analysis of the UCB algorithm?

(b) Derive a bound on the regret of this algorithm. How does it compare with UCB?
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2. Consider a variant of the τ -GREEDY algorithm instead parametrized by ε. At round t, it has
a history (xs, as, ps, rs)

t−1
s=1. It computes the policy πt = argmaxπ∈Π

∑t−1
s=1 r̂s(π(xs)), where

r̂s(a) is computed via IPS as in the lectures. The algorithm then samples an action according to
pt(a) = (1− ε)πt(xt) + ε/K, and adds the resulting sample along with the reward to its history.
Modify the analysis of τ -GREEDY to obtain a regret bound for this scheme. Do you see any
practical benefits of this alternative approach?

6 Off-policy evaluation of contextual bandit exploration algo-
rithms

In the lecture, we saw how to evaluate a static policy, and by union bound, a large collection of
policies using IPS and improvements. A natural question is whether these techniques can be also
used to evaluate the regret we would incur when we run a contextual bandit exploration algorithm
online, using previously collected data. For instance, we could use such a scheme to tune param-
eters such as τ (or ε above), policy class, etc. in our algorithms. Turns out this is not possible.
To formalize this, an exploration algorithm A can be thought of as a mapping A(t, ht, xt) to a
distribution over actions, where ht is the history of interactions in the first t− 1 rounds. Show that
given a dataset (xt, at, rt, pt)Tt=1, and an arbitrary exploration algorithm A, no estimator such v̂T
can be computed such that

∣∣∣v̂T − 1
T

∑T
t=1 Ext∼D,a∼A(t,ht,xt)[r(a) | xt]

∣∣∣ ≤ 1/2, with probability at
least 1/3, no matter how large T is.

Hint: Think of contextual bandit algorithms which branch along two very different behaviors
based on some initial history.
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