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Lecture 7

1 Summary

In this lecture, we theoretically analyze the bias introduced by traceroute sampling methods. For
the analysis, we assume that the sampling is done using a breadth first search from a single monitor
node. A surprising consequence of the analysis is that the degree distribution estimated by the
sampling method on a randomly chosen d-regular graph follows a power law with high probability.
This points to the fact that there is a significant bias in the estimate for the degree distribution if
we use such traceroute sampling methods.

2 Bias in Traceroute Sampling
2.1 Problem Definition
We begin by introducing some notation.
e The input graph for traceroute sampling is denoted by G.

e Let d = {dy,ds,...,d,} be a degree sequence over n nodes. We assume that the graph G is
given by G, 7. Thus G is randomly chosen from the set of graphs with n nodes and degree
sequence d.

e There is a single monitor node m. All other nodes of G are target nodes.

traceroute(m,t) finds the shortest path from the monitor node m to a target node t.

e Let T denote the shortest path tree obtained as a result of finding the traceroute(m,t) for
each node ¢ in G.

Problem Statement: Compute the degree distribution of 7" and compare it with G.

2.2 Analysis

The degree of any node in G is a positive integer less than n. This allows us to represent the degree
sequence d as a sequence {a1,as,...,a,}, where ai denotes the probability that a randomly chosen
node from G has degree k.
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We denote the sequence {ay,ag,...,a,} as a. We require that the degree sequence of G be reason-
able. The definition of a reasonable degree sequence follows:

Definition 1. A degree sequence a is reasonable iff

e ap, =0 fork<3



e da > 2 ¢ >0 such that ap, < ck™ for allk > 3

Theorem 1 (Main). Let d be a degree sequence such that corresponding a is reasonable and let
G = Gn,d be the graph over which trace route sampling is done. Let T' be the shortest path tree
obtained. If Azbs = #{v : degr(v) = k} then there exists 6 > 0 such that with high probability
| A% — na®s| = o(n'=%) for all k where
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Intuition: Theorem 1 relates the observed degree sequence a°®® with the correct degree sequence

a. It shows that the observed and the correct degree sequence may be quite different. For example
consider the sequence a corresponding to a 3-regular graph. Theorem 1 shows the observed degree
a°®® sequence for a 3-regular graph is {1/3,1/3,1/3,0,0,...,0} which can be thought of as following
a power law.

Proof of Theorem 1: The key to the analysis is choosing the right generation process for the
random graph. Given the degree sequence d = {d;,ds,...,d,} the graph is generated as follows:

e For each node ¢ € [n] make d; copies.

e For each copy ¢, compute z. a uniformly chosen r.v in [0, 1].

e Initialize a queue and enqueue all the copies of the monitor node.
e Use the following iterative process to maintain the queue:

— Dequeue the copy from the front of the queue
— Match it to the copy ¢ with the highest x..

— If ¢ is a copy of a unvisited vertex u, enqueue all other copies of w.

It is easy to see that the above process gives a uniformly random matching on the copies. Let
G be the graph obtained. The relationship between G and T is simple and given below .

Claim 2. An edge e = (u,v) of G is created when a copy ¢ of u is popped from the queue and
matched with a copy of v. It appears in T iff v is unvisited (not in the queue) when c is popped
from the queue.

Another useful way to think about the above process is to imagine it using time. Let t € [0, 1]
be a monotonically increasing variable which in some sense represents the time at any instant. At
time t check if a copy ¢ has x. = ¢. If true then match ¢ with the copy from the front of the queue.
In addition, if ¢ is unvisited then enqueue all siblings of ¢. This representation of random process
allows us to define the following random variables.



e A(t) = number of unmatched copies at time ¢. Note that E[A(t)] = dnPr[c is unmatched at
time t] = dnt?. Moreover the actual value of A(t) is w.h.p within o(y/n) from E[A(t)].

e B(t) = number of unvisited copies at time ¢. Note that probability that a copy of vertex of
degree k is unvisited at time ¢ is simply t*. Thus E[B(t)] = Y, kagnt*. Moreover the actual
value of B(t) is w.h.p within o(n'~?) (for some constant 3) from E[B(t)].

e v;(t) = number of vertex of degree j unvisited at time t. Note that E[v;(¢)] = ajnt’. Moreover
the actual value v;(t) is w.h.p within o(y/n) from E[v;(t)].

Thus for A(t), B(t) and v;(t) their expected values give a good approximation to their true values,
w.h.p. We will use this fact to simplify expressions involving these random variables.

Next we compute the probability that a degree k vertex v has a degree [ in the tree T given
that v is visited at time ¢. Let this probability be denoted as P, ;. To compute it, we use the
following property of the random process: When v is visited for the first time, all the copies of v are
enqueued. All edges of v are decided by matching a copy of v with a copy of some node w. If the
matched node w is already visited then the edge (v, w) occurs in G but not in 7. If the matched
node w is unvisited then the edge (v, w) occurs in both G as well as T'.

Using this property we compute the probability that an edge (v, w) of G is also present in T
given that v is visited at time ¢. Denote this probability as py;s(t). This is equivalent to probability
that w is unvisited at the time when it is matched with a copy of v from the queue. This means that
w should have been unvisited at time ¢ (when v was visited). The probability of this happening
is simply %. Moreover, when at time ¢ the copies of v were enqueued, there might be copies of
other nodes already in the queue. w should remain unvisited as the copies ahead of the copies of v
are matched. This happens when all the copies of w are eventually matched with copies of nodes
that were visited after time ¢. Thus
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Eq 2 occurs w.h.p and is obtained by replacing A(t), B(t) and v;(t) with there expected values.
Py, 11 is the probability that I-1 of the k-1 nodes w were unvisited at the time copies of v were being

matched. This is simply the binomial distribution with parameters k — 1 and py;s(t). Thus Py =
k—1
(=

)Pvis(t) (1 — puis(t))* L. Integrating over ¢ gives the desired result proving Theorem 1. [
2.3 Regular Graphs

If the graph is A-regular then the expressions for a®®® can be simplified.
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For a 3-regular the expression gets simplified to >, fol (i;l)a:(lfl)(l — )7, This gives the degree
sequence a®® = {1/3,1/3,1/3,0,0,...,0}



3 Further reading

D. Achlioptas, A. Clauset, D. Kempe, and C. Moore, On the bias of Traceroute sampling, STOC’05.

http://www.cs.ucsc.edu/ optas/papers/traceroute.pdf



