1 Summary

In this lecture, we theoretically analyze the bias introduced by traceroute sampling methods. For the analysis, we assume that the sampling is done using a breadth first search from a single monitor node. A surprising consequence of the analysis is that the degree distribution estimated by the sampling method on a randomly chosen d-regular graph follows a power law with high probability. This points to the fact that there is a significant bias in the estimate for the degree distribution if we use such traceroute sampling methods.

2 Bias in Traceroute Sampling

2.1 Problem Definition

We begin by introducing some notation.

- The input graph for traceroute sampling is denoted by G.
- Let $\bar{d} = \{d_1, d_2, \ldots, d_n\}$ be a degree sequence over n nodes. We assume that the graph G is given by $G_{n, \bar{d}}$. Thus G is randomly chosen from the set of graphs with n nodes and degree sequence \bar{d}.
- There is a single monitor node m. All other nodes of G are target nodes.
- $\text{traceroute}(m, t)$ finds the shortest path from the monitor node m to a target node t.
- Let T denote the shortest path tree obtained as a result of finding the $\text{traceroute}(m, t)$ for each node t in G.

Problem Statement: Compute the degree distribution of T and compare it with G.

2.2 Analysis

The degree of any node in G is a positive integer less than n. This allows us to represent the degree sequence \bar{d} as a sequence $\{a_1, a_2, \ldots, a_n\}$, where a_k denotes the probability that a randomly chosen node from G has degree k.

$$a_k = \frac{\#\{v : \text{deg}(v) = k\}}{n}$$

We denote the sequence $\{a_1, a_2, \ldots, a_n\}$ as \bar{a}. We require that the degree sequence of G be reasonable. The definition of a reasonable degree sequence follows:

Definition 1. A degree sequence \bar{a} is reasonable iff
- $a_k = 0$ for $k < 3$
• $\exists \alpha > 2, c > 0$ such that $a_k < ck^{-\alpha}$ for all $k \geq 3$

Theorem 1 (Main). Let \tilde{d} be a degree sequence such that corresponding \tilde{a} is reasonable and let $G = G_{n, \tilde{d}}$ be the graph over which trace route sampling is done. Let T be the shortest path tree obtained. If $A^\text{obs}_k = \# \{ v : \text{deg}_T(v) = k \}$ then there exists $\delta > 0$ such that with high probability $|A^\text{obs}_k - na^\text{obs}_k| = o(n^{1-\delta})$ for all k where

\[
a^\text{obs}_{m+1} = \sum_i a_i \left[\int_0^1 it^{i-1} \left(\frac{i - 1}{m} \right) p_{\text{vis}}(t)^m (1 - p_{\text{vis}}(t))^{i-m-1} \right]
\]

\[
p_{\text{vis}}(t) = \frac{1}{\sum_j ja_j t^j} \sum_k k a_k t^k \left(\frac{\sum_j ja_j t^j}{dt^2} \right)^k
\]

Intuition: Theorem 1 relates the observed degree sequence \tilde{a}^obs with the correct degree sequence \tilde{a}. It shows that the observed and the correct degree sequence may be quite different. For example consider the sequence \tilde{a} corresponding to a 3-regular graph. Theorem 1 shows the observed degree sequence is

\[
\{1/3, 1/3, 1/3, 0, 0, \ldots, 0\}
\]

which can be thought of as following a power law.

Proof of Theorem 1: The key to the analysis is choosing the right generation process for the random graph. Given the degree sequence $\tilde{d} = \{d_1, d_2, \ldots, d_n\}$ the graph is generated as follows:

• For each node $i \in [n]$ make d_i copies.
• For each copy c, compute x_c a uniformly chosen r.v in $[0, 1]$.
• Initialize a queue and enqueue all the copies of the monitor node.
• Use the following iterative process to maintain the queue:
 – Dequeue the copy from the front of the queue
 – Match it to the copy with the highest x_c.
 – If c is a copy of a unvisited vertex u, enqueue all other copies of u.

It is easy to see that the above process gives a uniformly random matching on the copies. Let G be the graph obtained. The relationship between G and T is simple and given below.

Claim 2. An edge $e = (u, v)$ of G is created when a copy c of u is popped from the queue and matched with a copy of v. It appears in T iff v is unvisited (not in the queue) when c is popped from the queue.

Another useful way to think about the above process is to imagine it using *time*. Let $t \in [0, 1]$ be a monotonically increasing variable which in some sense represents the time at any instant. At time t check if a copy c has $x_c = t$. If true then match c with the copy from the front of the queue. In addition, if c is unvisited then enqueue all siblings of c. This representation of random process allows us to define the following random variables.
• $A(t) = \text{number of unmatched copies at time } t$. Note that $E[A(t)] = dnPr[c \text{ is unmatched at time } t]$ = $dn t^2$. Moreover the actual value of $A(t)$ is w.h.p within $o(\sqrt{n})$ from $E[A(t)]$.

• $B(t) = \text{number of unvisited copies at time } t$. Note that probability that a copy of vertex of degree k is unvisited at time t is simply t^k. Thus $E[B(t)] = \sum_k k a_k n t^k$. Moreover the actual value of $B(t)$ is w.h.p within $o(n^{1-\beta})$ (for some constant β) from $E[B(t)]$.

• $v_j(t) = \text{number of vertex of degree } j \text{ unvisited at time } t$. Note that $E[v_j(t)] = a_j n t^j$. Moreover the actual value $v_j(t)$ is w.h.p within $o(\sqrt{n})$ from $E[v_j(t)]$.

Thus for $A(t), B(t)$ and $v_j(t)$ their expected values give a good approximation to their true values, w.h.p. We will use this fact to simplify expressions involving these random variables.

Next we compute the probability that a degree k vertex v has a degree l in the tree T given that v is visited at time t. Let this probability be denoted as $P_{k,l,t}$. To compute it, we use the following property of the random process: When v is visited for the first time, all the copies of v are enqueued. All edges of v are decided by matching a copy of v with a copy of some node w. If the matched node w is already visited then the edge (v, w) occurs in G but not in T. If the matched node w is unvisited then the edge (v, w) occurs in both G as well as T.

Using this property we compute the probability that an edge (v, w) of G is also present in T given that v is visited at time t. Denote this probability as $p_{\text{vis}}(t)$. This is equivalent to probability that w is unvisited at the time when it is matched with a copy of v from the queue. This means that w should have been unvisited at time t (when v was visited). The probability of this happening is simply $B(t)/A(t)$. Moreover, when at time t the copies of v were enqueued, there might be copies of other nodes already in the queue. w should remain unvisited as the copies ahead of the copies of v are matched. This happens when all the copies of w are eventually matched with copies of nodes that were visited after time t. Thus

$$p_{\text{vis}}(t) = \frac{B(t)}{A(t)} \sum_j j v_j(t) B(t) / A(t) ^{j-1}$$

$$\sim \frac{1}{\sum_j j a_j t^j} \sum_k k a_k t^k \left(\frac{\sum_j j a_j t^j}{dt^2} \right)^k$$

Eq 2 occurs w.h.p and is obtained by replacing $A(t), B(t)$ and $v_j(t)$ with there expected values. $P_{k,l,t}$ is the probability that $l-1$ of the $k-1$ nodes w were unvisited at the time copies of v were being matched. This is simply the binomial distribution with parameters $k-1$ and $p_{\text{vis}}(t)$. Thus $P_{k,l,t} = \binom{k-1}{l-1} p_{\text{vis}}(t)^{l-1} (1 - p_{\text{vis}}(t))^{k-l}$. Integrating over t gives the desired result proving Theorem 1.

2.3 Regular Graphs

If the graph is Δ-regular then the expressions for \tilde{a}^{obs}_{m+1} can be simplified.

$$a^{obs}_{m+1} = \sum a_i \left[\int_0^1 (\frac{i-1}{m}) j v_j(t)^m (1 - p_{\text{vis}}(t))^{i-m-1} \right]$$

$$= \sum b_i \int_0^1 \left(\frac{i-1}{m} \right)^x (\Delta-2)(l-1)(1-x)(\Delta-2)^{l-1}$$

For a 3-regular the expression gets simplified to $\sum b_i \int_0^1 (\frac{i-1}{m}) x (l-1)(1-x)(1-x)^{l-1}$. This gives the degree sequence $\tilde{a}^{obs} = \{1/3, 1/3, 1/3, 0, 0, \ldots, 0\}$
3 Further reading

D. Achlioptas, A. Clauset, D. Kempe, and C. Moore, On the bias of Traceroute sampling, STOC’05.