
Lecture 8: Gaussian polynomials, and overview of robust covariance
estimation

October 22, 2025

We have so far focused exclusively on the task of robust mean estimation. In this lecture, we will branch
out into a somewhat more sophisticated task, namely, that of robust covariance estimation, specifically for
Gaussian data. Here, we consider the setting where we are given ε-corrupted samples from a d-dimensional
Gaussian N (µ,Σ) with unknown covariance Σ, and our goal is to robustly recover Σ, in the appropriate
sense. For now, let’s also assume that we know the mean µ, and so without loss of generality let µ = 0.

Remark 0.1. There is a simple trick that lets us reduce from the case of unknown µ to the case of µ = 0
while at most doubling the value of ε. Do you see it?

Throughout these lectures, let Sd denote the set of d× d symmetric matrices.

1 Mahalanobis distance

Recall from Lecture 2 that the key criteria that will determine how well one can hope to recover Σ is the
relationship between total variation distance between N (0,Σ1) and N (0,Σ2), and the appropriate notion of
distance between Σ1 and Σ2. On the homework, you’re asked to show the following:

Theorem 1.1. Let Σ1,Σ2 ≻ 0. Then

dTV(N (0,Σ1),N (0,Σ2)) = Θ
(
min

(∥∥∥Σ−1/2
1 Σ2Σ

−1/2
1 − I

∥∥∥
F
, 1
))

. (1)

Here ∥·∥F denotes the Frobenius norm of the matrix, and for M ⪰ 0, we let M−1/2 denote the unique
positive semi-definite square root of the matrix M . We pause here to parse this esoteric-looking expression
somewhat. First, observe that if Σ1 = I, then the key part of the expression on the RHS of (1) is just
∥Σ2 − I∥F , i.e. the Frobenius norm difference between the two covariance matrices. Indeed, when Σ2 is
close-ish to identity (i.e. if all of its eigenvalues are very close to 1), it turns out that this exactly captures
the total variation distance between the two Gaussians.

However, this expression becomes very lossy when Σ1 is ill-conditioned. This is because we should
expect that for N (0,Σ2) to be close to N (0,Σ1), the covariances should be multiplicatively close along
every direction—even in one dimension. Formally, this is because TV distance is affine invariant : if I have
two random variables X,Y so that dTV(X,Y ) = α, and I apply any bijective linear transform x 7→ Ax
for some non-degenerate matrix A, one can easily verify that dTV(AX,AY ) = α as well (why?). So, in

particular, if X ∼ N (0,Σ1) and Y ∼ N (0,Σ2), if I apply the map x 7→ Σ
−1/2
1 x to both random variables,

then we have that Σ
−1/2
1 X ∼ N (0, I) and Σ

−1/2
1 Y ∼ N (0,Σ

−1/2
1 Σ2Σ

−1/2
1 ), and the TV distance between

these two random variables is the same as the TV distance between X and Y , by what we asserted above,
the TV distance between these two transformed random variables is exactly the Frobenius norm distance
between their covariance matrices, which results in the expression above, which can be interpreted as a
“preconditioned” Frobenius norm distance between the two covariance matrices.

This notion of preconditioned closeness will come up repeatedly, and is known as the Mahalanobis
distance between the two covariance matrices [1], after the great Indian statistician P.C. Mahalanobis.
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In general, given any positive semidefinite matrix Σ, we define its associated Mahalanobis norm to be
∥A∥Σ = ∥Σ−1/2AΣ−1/2∥F . With this, we can represent the RHS of (1) somewhat more concisely as
min(∥Σ1 − Σ2∥Σ1

, 1). With this alongside Theorem 1.1, we can also now state the natural notion of ro-
bustly learning a covariance matrix:

Problem 1.2. Let Σ ≻ 0 be an arbitrary positive definite matrix, and let ε > 0. Given an ε-corrupted set
of samples from N (0,Σ), find Σ̂ so that with high probability, ∥Σ− Σ̂∥Σ is small.

The spoiler of the next couple of lectures will be that it turns out there is an efficient algorithm, once
again based on filtering, that will be able to achieve error O(ε log 1/ε). This is what we will build up to.
Moreover, on the homework, you will see that by combining this routine with a slight modification of the
filtering for robust mean estimation, this will actually give an algorithm that robustly learns an arbitrary
Gaussian to total variation distance O(ε log 1/ε).

2 From matrices to polynomials

For now, let’s focus on the setting where the unknown covariance Σ is guaranteed to be close to the identity:
i.e. let us assume that 0.5I ⪯ Σ ⪯ 2I; that is, all of Σ’s eigenvalues are between 1/2 and 2. This is the
setting where the Mahalanobis distance is essentially just the Frobenius distance up to constant factors, and
so our job is more or less equivalent to learning Σ to good Frobenius error.

A first naive attempt at covariance estimation is to observe that in a formal sense, covariance estimation
is just a special case of robust mean estimation! Indeed, if we define the matrix Yi = XiX

⊤
i , then the whole

goal of covariance estimation is to obtain an accurate estimate of Yi given ε-corrupted samples. If we think

of Yi as a Rd2

length vector, then this is exactly a question of mean estimation in this higher dimensional
setting. So what goes wrong?

The main problem is that the covariance of Yi (which, recall, is really the covariance of the covariance of
Xi) is kind of nasty to work with. In particular, the covariance of Yi will depend on the unknown covariance
Σ. In contrast, for mean estimation, the covariance of the data clearly does not depend on the mean.

To get around this issue, it will turn out that, in this setting, it will be convenient to interpret matrices
as quadratic polynomials, in the following sense. Let S be a dataset of n points, and let Σ̂ = 1

n

∑n
i=1 XiX

⊤
i

be the empirical second moment of this dataset. By the self-duality of Frobenius norm, we have that

∥Σ− Σ̂∥F = sup
A∈Sd:∥A∥F=1

⟨A, Σ̂− Σ⟩ (2)

= sup
A∈Sd:∥A∥F=1

(
1

n

n∑
i=1

⟨A,XiX
⊤
i ⟩ − E

X∼N (0,Σ)
⟨A,XX⊤⟩

)
(3)

= sup
A∈Sd:∥A∥F=1

(
1

n

n∑
i=1

p(Xi)− E
X∼N (0,Σ)

p(X)

)
, (4)

where p(x) = ⟨A, xx⊤⟩ = x⊤Ax is a homogeneous, quadratic polynomial in x. In other words, the Frobenius

norm difference between the Σ and Σ̂ is large if and only if there is some quadratic polynomial whose
empirical expectation differs dramatically from the true expectation under N (0,Σ). This is the degree-2
analog of the same phenomena for robust mean estimation, where the empirical mean differed from the true
mean if and only if there was some linear function whose expectation differed dramatically. But whereas in
the linear case we didn’t have to explicitly take the perspective of linear functions, and could just directly
work with matrices, in this case it will be somewhat helpful to take the functional perspective.

Before we do so, it will be necessary to establish some properties of how these polynomials behave under
Gaussian input. First, observe that there is are canonical mappings between Sd, homogeneous quadratic

polynomials, and vectors in R(
d+1
2 ):
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• For any matrix A ∈ Sd, we let pA(x) = x⊤Ax be its associated polynomial. Alternatively, for any
homogeneous quadratic polynomial p : Rd → R with form p(x) =

∑
i,j aijxixj , we let its associated

matrix A ∈ Sd be given by Aij =
1
2 (aij + aji), for all i, j.

• Let eij denote the d × d matrix which is 1 in the (i, j)-th position and 0 elsewhere. Note that the

matrices {eii}di=1∪{ 1√
2
(eij + eji)}i<j form a orthonormal basis for Sd. We let Ld : Sd → R(

d+1
2 ) be the

bijective linear mapping which sends these vectors to the standard basis elements of R(
d+1
d ). We call

this operator the flattening operator, as its effect is to reshape a matrix into a corresponding vector.

It turns out that we can relate the norms of these objects in natural ways:

Lemma 2.1. Let A ∈ Sd. Then:

∥A∥2F = ∥Ld(A)∥22 =
1

2
Var

X∼N (0,I)
pA(X) .

Proof. That ∥A∥F = ∥Ld(A)∥2 follows immediately from definition. To prove the remaining equality, let

A =
∑d

i=1 λiviv
⊤
i be the diagonalization of A. Then,

pA(x) =

d∑
i=1

λi⟨vi, x⟩2 .

In particular, since the vi are orthogonal, if X ∼ N (0, I), then the random variables Yi = ⟨vi, X⟩ are
independent, standard normal Gaussians, and hence

Var
X∼N (0,I)

pA(X) =

d∑
i=1

λ2
i Var
X∼N (0,I)

⟨vi, X⟩2 (5)

=

d∑
i=1

λ2
i VarY

2
i = 2

d∑
i=1

λ2
i = 2∥A∥2F , (6)

where here we are using that the variance of a chi-squared random variable is 2.

As a consequence of this is as follows. Observe that X ∼ N (0,Σ) is equivalent to saying that X = Σ1/2Y
for Y ∼ N (0, I). Therefore,

pA(X) = X⊤AX = Y ⊤Σ1/2AΣ1/2Y = pΣ1/2AΣ1/2(Y ) ,

and so
Var

X∼N (0,Σ)
pA(X) = 2 · ∥Σ1/2Y Σ1/2∥2F . (7)

3 Spectral signatures for quadratic polynomials

Now, let’s see how to try to adapt the algorithmic strategy for mean estimation to this language. We will
first need a natural polynomial analog of the notion of ε-goodness. Formally:

Definition 3.1. We say a set of points S is ε-good with respect to some covariance Σ if for all polynomials
pA with ∥A∥F = 1:

• We have that∣∣∣∣∣ 1|S|∑
i∈S

pA(Xi)− tr(AΣ)

∣∣∣∣∣ ≲ ε log 1/ε and

∣∣∣∣∣ 1|S|∑
i∈S

pA(Xi)
2 − 2∥Σ1/2AΣ1/2∥2F

∣∣∣∣∣ ≲ ε log2 1/ε ,
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• For all subsets T ⊂ S with |T | = εn, we have that∣∣∣∣∣ 1

|T |
∑
i∈T

pA(Xi)

∣∣∣∣∣ ≲ log 1/ε and

∣∣∣∣∣ 1

|T |
∑
i∈T

pA(Xi)
2

∣∣∣∣∣ ≲ log2 1/ε .

Note that in the second set of conditions, we’re not centering around the expectations, but it doesn’t
matter since the bound we want is so large relative to the expectations (which are always at most constant).
This is an almost direct analog the notion of goodness for mean estimation, and one can also show that this
is satisfied whp by a sufficiently large set of samples from N (0,Σ):

Lemma 3.1 (see e.g. Appendix B in [2]). Let ε, δ > 0, and let S be a set of n independent draws from
N (0,Σ), for some Σ satisfying ∥Σ∥2 ≲ 1, and where

n ≳
d2 poly log(d/δ)

ε2
.

Then with probability 1− δ, S is ε-good with respect to Σ.

Let us see how this can be used to obtain a quadratic version of the spectral signatures we saw in previous
lectures. Let Σ̂ denote the empirical covariance of the corrupted dataset. In fact, let’s consider the setting
for now where Σ̂ = I, but where ∥Σ− I∥F = η for some η sufficiently large.

How can this happen? By the above, this means there is some pA with ∥A∥F = 1 so that

1

n

∑
i∈S

pA(Xi)− E
X∼N(0,Σ)

pA(X) = η .

Once again decomposing S = Sgood ∪ Sbad \ Sr, ε-goodness implies that∣∣∣∣∣∣ 1n
∑
i∈Sg

pA(Xi)− E
X∼N(0,Σ)

pA(X)

∣∣∣∣∣∣ ≲ ε log 1/ε

∣∣∣∣∣ 1n ∑
i∈Sr

pA(Xi)

∣∣∣∣∣ ≲ ε log 1/ε ,

and so, assuming η ≫ ε log 1/ε, we obtain that

1

|Sbad|
∑

i∈Sbad

pA(Xi) ≳
η

ε
,

and so by Jensen’s inequality, we have that

1

|Sbad|
∑

i∈Sbad

pA(Xi)
2 ≳

η2

ε2
≫ log2 ε .

We claim that this will cause pA to have noticeably large variance. Since the empirical dataset has
covariance Σ̂ = I, our best guess of the true variance of any polynomial will be 2∥A∥2F = 2, so it seems
reasonable to hope that

1

|S|
∑
i∈S

pA(X)2 − 2

will be large. Indeed, by ε-goodness, we have that:

1

n

∑
i∈Sgood\Sr

p2A(X) =
1

n

∑
i∈Sgood

p2A(X)− 1

n

∑
i∈Sr

p2A(X)

= 2∥Σ1/2AΣ1/2∥2F ±O(ε log 1/ε) .
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Therefore,

1

|S|
∑
i∈S

pA(X)2 − 1 =
1

|Sbad|
∑
i∈S

pA(X)2 +
∑

i∈Sgood

pA(X)2 − 2

≫ η2

ε
+ 2− 2∥Σ1/2AΣ1/2∥2F ±O(ε log 1/ε) .

Since η ≫ ε log 1/ε, the error term is bounded, but now there’s one additional term, namely, the error
because the true covariance is Σ, not I. However, it turns out that this can also be controlled, as long as Σ
is not too large:

Lemma 3.2. Suppose that Σ ⪯ 2I. Then, we have that

1− ∥Σ1/2AΣ1/2∥2F ≳ −∥Σ− I∥2 ≥ −∥Σ− I∥F .

Proof. The last inequality is trivial. To show the first inequality, let δ = ∥Σ−I∥2. Then Σ ⪯ (1+min(1, δ))I.
Thus,

∥Σ1/2AΣ1/2∥2F = tr
(
Σ1/2AΣAΣ1/2

)
≤ (1 + min(1, δ))2tr(A2) ≤ 1 + 3δ ,

from which the claim follows.

Combining this with the previous calculation, we obtain that

1

|S|
∑
i∈S

pA(X)2 − 1 ≫ η2

ε
− η ≳

η2

ε
.

We have essentially proven the following “spectral signatures” lemma:

Lemma 3.3. Let ε be sufficiently small, let Σ ⪯ 2I, let Sgood be an ε-good set of points with respect to Σ,
and let S = Sgood ∪ Sbad \ Sr be an ε-corruption of Sgood satisfying

1

n

∑
i∈S

XiX
⊤
i = I .

Then, we have that

∥Σ− I∥F ≲ ε log 1/ε+

√√√√ε

(
max

∥A∥F=1

1

n

∑
i∈S

pA(Xi)2 − 2

)
.

4 Obtaining efficient algorithms

Given this lemma, it is natural to pursue the following algorithmic paradigm, in analogy to what we’ve done
so far:

• Find an A with ∥A∥F = 1 that maximizes 1
n

∑
i∈S pA(Xi)

2.

• Define scores τi = pA(Xi)
2.

• Perform (weighted) iterative filtering with these scores.

Indeed, this more or less works, but there are several complications:
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Making things isotropic Let’s start with the easiest problem, which is that this lemma assumes that

1

n

∑
i∈S

XiX
⊤
i = I ,

i.e. the empirical samples are in isotropic position. But this is easy enough to fix: if we let Σ̂ = 1
n

∑
i∈S XiX

⊤
i ,

we can just define X̃i = Σ̂−1/2Xi. In general, this is known as whitening the data. Then, these points will
satisfy the desired property. Additionally, one can check that this will not alter the ε-goodness properties of
Sgood in any meaningful way.

Spectral upper bound The lemma also assumes that Σ ⪯ 2I. But it turns out that this whitening
procedure also guarantees this. This is because one can show that with very high probability, (1− ε)Σ ⪯ Σ̂.

Since the whitened points are of the form Σ̂−1/2Xi, the new effective covariance of the good points is

Σ̂−1/2ΣΣ̂−1/2 ⪯ 1

1− ε
I ,

which is stronger than we needed.
You might worry that the whitened points are no longer independent Gaussian points—and this is true,

because Σ̂ depends on the empirical datapoints. But crucially, we are only using a set of deterministic
conditions on the points (namely, ε-goodness), and this will not be violated by rescaling.

Efficiently finding pA Finally, we come to the issue that it’s not a priori clear how to find A which
maximizes this quadratic form. However, this is where we can turn back to the linear algebraic interpretation.
Observe that ⟨Ld(A), Ld(XiX

⊤
i )⟩ = pA(Xi), and so ⟨Ld(A), Ld(XiX

⊤
i )⟩2 = pA(Xi)

2. Thus,

1

n

∑
i∈S

pA(X
2
i ) =

1

n

∑
i=S

⟨Ld(A), Ld(XiX
⊤
i )⟩2 = Ld(A)⊤

(
1

n

∑
i∈S

Ld(XiX
⊤
i )Ld(XiX

⊤
i )⊤

)
Ld(A) .

Moreover, the set of vectors Ld(A) with ∥A∥F = 1 is just the set of unit vectors in R(d+1
2 )! Thus, if we define

Yi = Ld(XiX
⊤
i ) ∈ R(

d+1
2 ), we have that

max
∥A∥F=1

1

n

∑
i∈S

pA(X
2
i ) = max

∥v∥=1
v⊤

(
1

n

∑
i∈S

YiY
⊤
i

)
v ,

and so we can find the maximizing A just be finding the top eigenvector of this R(d+1
2 )×(d+1

2 )-sized matrix,
and given the eigenvector, by Lemma 2.1 we can also find the associated matrix.
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