
Lecture 7: Efficient filtering from spectral signatures for Gaussian data

October 20, 2025

In the last lecture, we established a stronger regularity condition that Gaussian data satisfies with high
probability, as well as a stronger notion of spectral signatures that they satisfy. In this class, we’ll show how
to use these ideas to devise robust mean estimation algorithms for Gaussian data that are able to obtain
much better error rates than the previous algorithm could achieve.

1 Recap: spectral signatures for Gaussian data

We briefly recall the definition of ε-goodness, and the resulting spectral signatures one obtains for Gaussian
data:

Definition 1.1. A set of points S is ε-good with respect to µ if it satisfies the following conditions:

• we have that

∥µ(S)− µ∥2 ≲ ε
√
log 1/ε , and

∥∥∥∥∥ 1

|S|
∑
i∈S

(Xi − µ) (Xi − µ)
⊤

∥∥∥∥∥
2

≲ ε log 1/ε , (1)

• for all T ⊂ S with |T | = εn we have

∥µ(T )− µ∥2 ≲
√

log 1/ε , and

∥∥∥∥∥ 1

|T |
∑
i∈T

(Xi − µ) (Xi − µ)
⊤

∥∥∥∥∥
2

≲ log 1/ε . (2)

As we saw in the previous lecture, a set of samples from a Gaussian of sufficiently large size is ε-good with
high probability. We then have the following spectral signature theorem:

Theorem 1.1. Let µ ∈ Rd and let ε ∈ (0, 1/2). Let S = Sgood ∪ Sbad \ Sr be an ε-corrupted set of points
where Sgood is ε-good with respect to µ. Let w ∈ WS,ε. Then

∥µ(w)− µ∥2 ≲ ε
√

log 1/ε+
√
ε (∥Σ(w)− I∥2 + ε log 1/ε) .

2 Filtering for Gaussian data

Recall that each iteration of the filtering algorithm presented before worked in two steps: first, we find the
top eigenvector and eigenvalue of Σ(w), checked if the eigenvalue was below a threshold, and if not, used the
top eigenvector to define scores, and applied the univariate filtering algorithm on these scores. The filtering
algorithm we’ll present here is extremely similar, but with one crucial difference in how we will apply the
univariate filter.

First, let’s see why second moment filter is insufficient here. Notice that it will achieve error O(
√
ε), since

ε-good data also satisfies the bounded covariance property that the second moment filter needs to get error
O(
√
ε). However, this analysis is tight: one can show that the second moment filter can only achieve error

Ω(
√
ε), as opposed to the O(ε

√
log 1/ε) that we will obtain later on.
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The main problem is that if univariate filter requires that the contribution to the weighted sum of
the scores from the points in Sbad is greater than the contribution from the points in Sgood. When
∥Σ(S)∥2 > C for some sufficiently large constant C, this is definitely true: by regularity, we should ex-

pect that
∑

i∈Sgood

1
n ⟨Xi − µ, v⟩2 ≈ 1, and so for ∥Σ(S)∥2 > C it must be that

∑
i∈Sbad

1
n ⟨Xi − µ, v⟩2

contributes an overwhelming fraction of the spectral norm. Indeed, this is roughly speaking how the proof
for robust mean estimation with bounded second moments works.

However, to get error ε
√
log 1/ε, we must now consider regimes where ∥Σ(S)∥2 ≈ 1+ o(1), and now it is

possible to construct instances where
∑

i∈Sgood

1
n ⟨Xi − µ, v⟩2 ≈ 1, and

∑
i∈Sgood

1
n ⟨Xi − µ, v⟩2 = o(1), and

yet, the mean shift is ω(ε
√
log 1/ε). In this case, if we naively applied the univariate filter, it would remove

substantially more mass from the good points from the bad points, which would violate the safety condition
and cause bad results.

To get around this, we will instead only apply the univariate filter on the top 2ε-quantile of scores. Recall
that given a set of weights w(t) at time t, the scores are given by

τ
(t)
i =

〈
v(t), Xi − µ

(
w(t)

)〉2
, (3)

where v(t) is the top eigenvector of Σ(t). At a high level, ε-goodness implies that that largest ε-quantile of
scores from the good points are at most O(log 1/ε) on average, but as we’ll see, Theorem 1.1 will imply that
if the mean shift is ω(ε

√
log 1/ε), then the scores of the largest bad points must be ω(log 1/ε), and hence

the univariate filter will remove more mass from the bad points than from the good points. The formal
pseudocode for this algorithm is presented in Algorithm 1. Our guarantee for this algorithm will be:

Algorithm 1 GaussianFilter

procedure GaussianFilter(S, ε)
Let w(0) = w(S).
Let C ≥ 11 be a universal constant.
Let Σ(0) = Σ(w(0)).
Let t = 0.
while

∥∥Σ(t) − I
∥∥
2
> Cε log 1/ε do

Let τ (t) be as defined in (3).

Sort the τ
(t)
i in decreasing order. WLOG assume that τ

(t)
1 ≥ τ

(t)
2 ≥ . . . ≥ τ

(t)
n .

Let N be the first index so that
∑N

i=1 w
(t)
i > 2ε.

Let τ ′ and w′ be the restriction of τ (t) and w(t) to the first N indices.
Let w′′ = 1DFilter(τ ′, w′).

Let w
(t+1)
i = w′′

i for i = 1, . . . , N , and w
(t+1)
i = w

(t)
i otherwise.

Let Σ(t+1) = Σ(w(t)).
Let t← t+ 1.

end while
return µ(w(t))

end procedure

Theorem 2.1. Let ε < c for some universal constant c > 0 sufficiently small, and let µ ∈ Rd. Let S =
Sgood∪Sbad \Sr be ε-corrupted of size n, so that Sgood is 3ε-good with respect to µ. Suppose that n = Ω(1/ε).

Then, Gaussian Filter(S, ε) runs in time poly(n, d) and outputs µ̂ so that ∥µ̂− µ∥2 ≲ ε
√

log 1/ε.

As before, the main work will be to establish the following invariant, which is the same as in the second
moment case: ∑

i∈Sgood∩S

1

n
− w

(t)
i <

∑
i∈Sbad

1

n
− w

(t)
i . (4)

Specifically, we will show:
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Lemma 2.2. Let s ≥ 0, and suppose that in iteration t = s, we have that (4) is satisfied and furthermore∥∥Σ(w(t))− I
∥∥
2
≳ ε log 1/ε. Then (4) is satisfied at iteration t = s+ 1.

As before, the proof of the Theorem given the Lemma is not so hard:

Proof of Theorem 2.1 given Lemma 2.2. It is not hard to see that each iteration can be implemented in
polynomial time, and again we cannot run for more than n iterations as the one dimensional filter removes
at least one point from the support of the w(t) in each iteration. Thus the overall runtime is polynomial in n
and d. We now turn our attention to correctness. The invariant (4) guarantees that at the final iterate T , we
have that w(T ) ∈ WS,2ε. Moreover, the termination condition guarantees that

∥∥Σ(w(T ))− I
∥∥
2
≲ ε
√
log 1/ε.

These two facts, along with Theorem 1.1, immediately yield correctness.

Thus the remaining work will be to show Lemma 2.2. As in the analysis of the bounded second moment
filter, Lemma 2.2 follows immediately from the following per-iterate guarantee, which is what we will actually
show:

Lemma 2.3. Let s ≥ 0, and suppose that in iteration t = s, we have that (4) is satisfied and furthermore∥∥Σ(w(t))− I
∥∥
2
≳ ε log 1/ε. Then ∑

i∈Sgood∩S

w
(t)
i − w

(t+1)
i <

∑
i∈Sbad

w
(t)
i − w

(t+1)
i . (5)

In the rest of this section we will prove Lemma 2.3. For simplicity of notation, since we consider a fixed
iteration t, let us drop the superscripts, and denote w(t+1) by w′. As in the algorithm, assume without loss
of generality that τ1 ≥ τ2 ≥ . . . τn, and let T denote the smallest index so that

∑T
i=1 wi ≥ 2ε. Note that

since n = Ω(1/ε), we may assume that
∑T

i=1 wi ≤ 3ε. Then, since wi = w′
i for i > T , (5) is equivalent to

the condition that ∑
i∈Sgood∩[T ]

wi − w′
i <

∑
i∈Sbad∩[T ]

wi − w′
i . (6)

Since we apply the one-dimensional filter only to the first T weights, the safety condition of the one-
dimensional filter guarantees that (7) holds so long as∑

i∈Sgood∩[T ]

wiτi <
∑

i∈Sbad∩[T ]

wiτi . (7)

Proving this will be a bit more delicate than the corresponding proof presented previously. There are two
places in which this analysis must deviate from the previous analysis. First, we are working with the matrix
Σ(w)−I, which is not necessarily PSD. This causes a number of obnoxious technical issues: for instance, the
largest eigenvalue of Σ(w)−I in magnitude could a priori be negative, which would be bad for the arguments
we wish to make. However, Corollary 1.6 from Lecture 6 essentially argues that this matrix can never be
too negative. As a result, by being sufficiently careful, we can essentially pretend that the matrix is PSD.

Secondly, our deviations are much smaller, which is why we needed to only filter a 2ε-quantile of the
scores. Therefore ultimately we care about “tail” properties of the scores, i.e. what is going on with relatively
small mass subsets of scores. However, our per-iteration guarantee, namely, that ∥Σ(w)− I∥ is large, is a
global guarantee, over the whole distribution of scores. Thus, our analysis will need to use global properties
of the scores as well to argue about the relative mass of the tails of the scores.

Let us see how to do this. Because our proofs will be a bit more complicated, we will not try to optimize
constants (i.e. breakdown point) in this proof. First, we will show:

Lemma 2.4. In the setting above, we have∑
i∈Sgood∩[T ]

wiτi ≲ ε log 1/ε+ ε2 ∥Σ(w)− I∥2 .
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Proof. Let v be the top eigenvector of Σ(w). Let w′′ be the set of weights defined so that w′′
i = wi for

i ∈ Sgood ∩ [T ] and w′′ = 0 otherwise. Observe that w′′ ∈ WS,3ε. We have∑
i∈S

w′′
i τi =

∑
i∈S

w′′
i ⟨Xi − µ(w), v⟩2

=
∑
i∈S

w′′ ⟨Xi − µ(w′′), v⟩2 + ∥w′′∥1 · ⟨µ(w)− µ(w′′), v⟩2

≤
∑
i∈S

w′′ ⟨Xi − µ(w′′), v⟩2 + 3ε ∥µ(w)− µ(w′′)∥22

≤
∑
i∈S

w′′ ⟨Xi − µ, v⟩2 + 3ε ∥µ(w)− µ(w′′)∥22 (8)

≲ ε log 1/ε+ 3ε ∥µ(w)− µ(w′′)∥22 (9)

where (8) follows since the summation is minimized by subtracting out µ(w′′), and the last inequality follows
from 3ε-goodness of Sgood. We also have that

∥µ(w)− µ(w′′)∥2 ≤ ∥µ(w)− µ∥2 + ∥µ− µ(w′′)∥2
≲ ∥µ(w)− µ∥2 +

√
log 1/ε

≲
√

ε(∥Σ(w)− I∥2 + log 1/ε) +
√
log 1/ε , (10)

where the last line follows from Theorem 1.1. Since (a+ b)2 ≲ a2 + b2, we have that

∥µ(w)− µ(w′′)∥22 ≲ ε ∥Σ(w)− I∥2 + log 1/ε .

Hence ∑
i∈S

w′′
i τi ≲ ε log 1/ε+ ε2 ∥Σ(w)− I∥2 ,

as claimed.

As a consequence of this, we have:

Corollary 2.5. τi ≲ log 1/ε+ ε ∥Σ(w)− I∥2 for all i > T .

Proof. This follows directly from Lemma 2.4 and since
∑

i∈Sgood∩[T ] wi ≥ ε, as∑
i∈Sbad∩[T ]

wi ≤
∑

i∈Sbad

wi ≤ ε ,

and we know that
∑

i∈[T ] wi ≥ 2ε.

We also have:

Lemma 2.6. We have ∑
i∈Sgood∩S

wiτi − 1 ≲ Cε log 1/ε+ Cε ∥Σ(w)− I∥2 .
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Proof. Recall v is the top eigenvector of Σ(w). Let wg denote the restriction of w to Sgood ∩ S. Expanding,
we have: ∑

i∈Sgood∩S

wiτi =
∑

i∈Sgood∩S

wi ⟨v,Xi − µ(w)⟩2

=
∑

i∈Sgood∩S

wi ⟨v,Xi − µ⟩2 + ∥w∥1 ·
(
⟨v, µ(wg)− µ(w)⟩2 − ⟨v, µ(w)− µ(wg)⟩2

)
≤

∑
i∈Sgood∩S

wi ⟨v,Xi − µ(w)⟩2 + ∥µ(wg)− µ∥22 (11)

≤ 1 + cε log 1/ε+ ∥µ(wg)− µ(w)∥22 , (12)

where (11) from Cauchy-Schwartz and by removing a negative term, and (12) follows from Corollary 1.6
from Lecture 6.

To conclude, we observe that

∥µ(wg)− µ(w)∥2 ≤ ∥µ(wg)− µ∥2 + ∥µ− µ(w)∥2 (13)

≲ ε
√
log 1/ε+

√
ε ∥Σ(w)− I∥2 , (14)

where the last inequality follows from Corollary 1.5 from Lecture 6 and Theorem 1.1. Squaring and combining
terms yields the desired result.

We are now (finally) ready to prove Lemma 2.3.

Proof of Lemma 2.3. As previously mentioned, it suffices to demonstrate (7). We are assuming that ∥Σ(w)− I∥2 >
Cε log 1/ε for some constant C > 0 sufficiently large. By Lemma 2.4, and our assumption, it suffices to show
that ∑

i∈Sbad∩[T ]

wiτi ≳ ∥Σ(w)− I∥2 . (15)

By definition, we know that ∑
i∈S

wiτi = v⊤ (Σ(w)− I) v + 1 .

Notice in particular that Corollary 1.6 from Lecture 6 implies that the largest eigenvalue of Σ(w) − I in
magnitude must be positive, as all negative eigenvalues of Σ(w) − I have magnitude at most cε log 1/ε <
Cε log 1/ε. Therefore we have that∑

i∈S

wiτi − 1 ≳ ε log 1/ε+ ∥Σ(w)− I∥2 .

Combining this with Lemma 2.6, we have that for ε sufficiently small,∑
i∈Sbad

wiτi ≳ ε log 1/ε+ ∥Σ(w)− I∥2 .

We now have ∑
i∈Sbad∩[T ]

wiτi ≳ ε log 1/ε+ ∥Σ(w)− I∥2 −
∑

i∈Sbad\[T ]

wiτi

≳ ε log 1/ε+ ∥Σ(w)− I∥2 −

( ∑
i∈Sbad

wi

)
(log 1/ε+ ε ∥Σ(w)− I∥2) (16)

≳ ε log 1/ε+ ∥Σ(w)− I∥2 ≳ ∥Σ(w)− I∥2 ,

where (16) follows from Corollary 2.5. This proves (15), which completes the proof of the Lemma.
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