Lecture 6: Stronger spectral signatures for Gaussian datasets

October 12, 2025

In the past couple of lectures, we saw how to use spectral signatures to build the filtering algorithm
for robust mean estimation when you assume that your dataset has bounded second moment. In the next
couple of lectures, we’ll show how to get stronger guarantees when your dataset satisfies stronger regularity
conditions. This happens for instance when your data is Gaussian. Before we do so, it will be helpful to
understand exactly what these stronger regularity conditions should look like.

1 Regularity of Gaussian datasets

At a high level, the key fact we will use is that small subsets of points cannot cause very large variance
in any one direction. This is already true for the setting we considered before: if S is a set of points with
empirical mean p, satisfying
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However, when the data comes from a Gaussian distribution, we will be able to show a much stronger fact.
Recall that given a set of points S, for any set T' C S, we let p(T") denote the empirical mean of the points
inT.

Theorem 1.1. Let Xy,..., X,, ~N(u,I), and let € € (0,1/2) and § € (0,1). Then, with probability 1 — 4,
we have that for all T C S with |T| = en,
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Before we prove Theorem 1.1, we need the following standard tail bounds for Gaussians.

Fact 1.2 (see e.g. [1]). Let X1,...,Xm ~N(u,I). Then there exist universal constants A,c > 0 so that:
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We can now prove Theorem 1.1:

Proof of Theorem 1.1. We'll just prove the concentration of the empirical mean of subsets. The correspond-
ing proof for the covariance follows from exactly the same technique while substituting the appropriate tail
bound. Note that for any fixed subset T C S with |T| = en, Fact 1.2 immediately implies that

Pr{|u(T) — plly >t] < exp(Ad — cent?) .

The difficulty with this proof is to get this bound to hold simultaneously for all subsets T. We will do so
by union bounding over all sets T of size en. This is a bit unusual: that as we take n larger, the number of
things over which we union bound also increases. As we’ll see, this is the technical reason why we will never
be able to achieve error that is asymptotically better than /log1/e.

Formally, there are (;) subsets T of size en, and so therefore

Pr(3T :|T| =enand ||u(T) — pll, >t < (1) exp (Ad — cent?) .

~

We now use the estimate that log, () < nH(e), where H(y) = ylog1/y+ (1 —y)log1/(1—y) is the binary
entropy function. Since H(e) < 2eclog1/e for € € (0,1/2), we have that

Pr(37 : |T| =enand ||u(T) — pll, > t] < exp(2enlog1/e + Ad — cent?) .

Therefore, by a choice of 31, we have that 2log 1/ < ct?/2, and therefore
Pr(3T :|T| =enand ||u(T) — plly > B1] S exp (Ad — %E’I’LB%) <4,

as claimed. The bound for the covariance follows from the same proof, except by plugging in the correspond-
ing tail bound for the covariance, and since 8; > 1 and so we get subexponential-style tails (i.e. exp(—cent)
rather than exp(—cent?)), and so we only get non-trivial estimates at 87 rather than j3;. O

Motivated by Theorem 1.1, let us make the following definition.
Definition 1.1. A set of points S is e-good with respect to p if it satisfies the following conditions:

e we have that
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Notice that by Theorem 1.1 and Fact 1.2, if S is a set of n = Q (m) samples from AN (p,T), then
they are e-good with respect to p with high probability. In the definition, unlike in Theorem 1.1, we don’t
subtract the identity for the spectral norm bounds in (4), but since the identity only has spectral norm 1,
the result still follows immediately from Theorem 1.1 by a triangle inequality. We now show that such a

regularity condition yields a strong notion of spectral signatures:

Theorem 1.3. Let u € R? and let ¢ € (0,1/2). Let S = Sgo0d U Shaa \ Sy be an e-corrupted set of points
where Sgooa 15 £-good with respect to j1. Let w € Ws .. Then

l(w) = plly S ev/logl/e + \/6(\\2(10) — Iy +elogl/e) .



We note two key differences between this theorem and the theorem presented in an earlier lecture giving
spectral signatures assuming bounded covariance. First, the additive term out in front is £4/log 1/e rather
than /e. Second, the term involving the covariance has the identity subtracted out, whereas the previous
theorem did not subtract the identity. This is crucial to get the sorts of bounds we wish to obtain in this
setting, as the deviations of ¥ (w) from I will be much smaller than X(w) itself. To see this, it’s not hard
to show that ||X(w)||, = ©(1) with high probability, for any w € #5.. In contrast, Definition 1.1 allows
us to hope that the deviations from the identity can have norm which is much smaller. In particular, if
[|X(w) — I, < elogl/e, we have that ||u(w) — pll, S ey/logl/e. Recall that the Tukey median obtained
error O(g), and this error is asymptotically optimal. Up to log factors, this allows us to certify down to the
same threshold, using an efficient algorithm.

Before we prove the theorem, we note the following two facts. The first states that no set of weights over
the good points that has small mass can induce a large second moment. Formally:

Lemma 1.4. Let ¢ € (0,1/2) and u € R%. Let Sgood be a set of points of size n which are e-good with

respect to p. Then, for all w € Ty, so that w; < % for all i € Sgo0a and Ziesgood w; < €, we have

S wi (Xi—p) (Xi—p)' || Selogl/e.
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Proof. Without loss of generality, we may assume that > w; = &. Otherwise, we can form w’ > w by

1€ Sgoo0d
adding mass on coordinates which are less than 1/n so that >
Then, since

i€Sg00a w; =¢ and w] < 1/n for all i € Sgood-

0= > wi(Xi—mXi-p)' = Y wi(Xi—p)(Xi—p)',
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a spectral norm bound on X(w’) would also immediately imply the same spectral norm bound on ¥(w). But
now observe that the set of matrices

Z wi (X — p) (Xi —p) " 2wy < 1/m, Z w; =€
iESgOOd ieSgOod

is convex, and the vertices of this set are given by

%Z(Xi—u)(Xi—u)T ,

ieT
for T' C S with |T'| = en. Therefore the desired result follows from e-goodness and convexity. O
We note a couple of consequences of this:

Corollary 1.5. Let ¢, w, Sgood be as in Lemma 1.4. Then HZiGSgood w; (X; — ,u)”2 <ey/logl/e.

Proof. For any unit vector v, we have
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where the second line follows from Holder’s inequality, and the final inequality follows from Lemma 1.4. The
desired result follows by taking a supremum over all v and then take the square root on both sides. O



Corollary 1.6. Let Sgood be an e-good set of points with respect to p of size n. Let w be a set of weights so
that w; < 1/n for alli € S and |w —w(S)||; <e. Then there is some universal constant ¢ > 0 so that

Z wi (X —p) (Xi—p) " —1|| <celogl/e,

iESgood 2

and furthermore

S wi (X — p(w)) (X — p(w)) " = (1= celog 1/)1 = 0.
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Proof. We first observe that

Yo wi (X = pw) (X = p(w)) " = Y wi (Xy =) (Xs = )" = [fw]ly - (= p(w)) (o= p(w)) " . (8)
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We first bound the spectral norm of the second term on the RHS:
T
[lrwlly - (= ) G = o)) | < Ml = )13 - 9)

Let §; = % — w;. Then, by Corollary 1.5, we have

e = p(w)lly < = 1(Ssooa)lly + || D 0:i(Xi— )| $ev/logl/e.
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Simultaneously, we have
T 1 T T
Soowi(Xi—p)(Xi—p) = > - (Xi—p) (Xi—p) = D 6(Xi—p)(Xi—p) (10)
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By the e-goodness of S, the first term can be written as I + N; where || Ni||, < ¢, and by Lemma 1.4, the
second term has spectral norm at most celog1/e. Hence overall the LHS of (8) can be written as I + Na,
where ||N2|| < celog1/e. Therefore the smallest eigenvalue of the LHS of (8) is at least 1 — celog1/e, from
which the claim follows. O

We now have the tools necessary to prove Theorem 1.3.

Proof of Theorem 1.3. As in the bounded second moment case, we begin with a sequence of equalities. Let
A = p(w) — p. Then we have
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[wlly - 1Al = flwlly - lp(w) = pll;

:Zwi <Xi—,u,A>
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= (u(Sgood) — H: A) + ‘ Z w; — n) (Xi —p,A) + Z wi (X; —p, A) (11)
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We bound these terms separately. By Cauchy-Schwarz, we have that
[{(1(Sgooa) = t1: A)| < ||1e(Sgooa) — milly 1Al S ev/logl/e - [Al, (12)



by e-goodness. We also have
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<e’logl/e- Al (14)

where (13) follows from Holder’s inequality and (14) follows from the definition of #5 . and Lemma 1.4.
It remains the control the contribution from Sy.q. We first observe that

Z w; (Xi — p, A) = Z w; (X — p(w), A) + ( Z wi) A3 -

1€ Sbad 1€ Shad 1€ Sbad

As we did for the previous term, we have

(Z w; <X¢—u(w),A>> < ( > wi> D wi (X — p(w),A) (15)
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<e < Z w; (X; — ,u(w),A>2> . (16)
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We now seek to relate the term in (16) to |[3(w) — I|,. By our convention that w; = 0 for i € Sgood \ S, we
have

ST (X — p(w), A)?

1€ Shad
= > wi (X —p(w), A = Y wi (X — p(w), A)°
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= ATS)A = AT [ > wiX — plw) (X — pw)) " | A

iESgood
< ATS(w)A - AT(1 - celog1/e)IA
< (IZ(w) = Il + celog 1/e) - | A]l3,

where the first inequality is due to Corollary 1.6. Plugging this into (16), we obtain that

( Y w <X¢—u(w)7A>> < e (IS(w) — 1|l + celog 1/) [|A]l3 - (17)
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By simplifying (12), (14), and (17), and using that ¢ < 1/2, we obtain the theorem. O
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