Homework 1

October 12, 2025

Instructions: Please submit a written solution to at least one problem below. You are welcome to submit
more, but your grade will be the highest score for any single problem you submit.

Problem 1: Completing the picture for univariate robust mean estimation. Recall that in Lecture 1 we
showed that the truncated mean recovered the mean of a distribution D with mean p and variance
o? with additively corrupted samples. However, the instructor was very sloppy about constants, and
moreover, the algorithm was presented only for additive corruption. Here you'll work out the complete
picture.

(a)

(Breakdown point.) It is a bit of a pain to formally define breakdown point, but intuitively, it
just captures the largest fraction of outliers that an estimator can tolerate before its error becomes
unbounded large. Formally, an estimator for this problem is a collection of (potentially randomized)
functions {4,,}22 ,, where A,, : R™ — R is a function which takes a dataset S of size n and outputs
a candidate mean A, (S) for this dataset. One definition of the breakdown point of this estimator
relative to some class of distributions D can be defined to be the largest g > 0 so that for all
€ < €9, we have that

sup dm B [[A(S) — ppl] < oo, (1)
where we let S ~, . D denote that S is an e-corrupted set of samples from D, and we let pp
denote the mean of D. You may recall that in class, we (informally) argued that the breakdown
point of the median for the class of Gaussian distributions is 1/2.
Devise a refinement of the truncated mean for robust mean estimation in this setting that achieves
breakdown point 1/2 for the class of distributions with variance at most 2.

Obtain tight rates (up to sub-constant factors) for the best error achievable by any algorithm for
learning the mean of a distribution with variance at most o2, with breakdown point 1/2. That is,
for some constant C' > 0, demonstrate some algorithm (which may be similar to the one above)
that, for all e < 1/2 and ¢ > 0, outputs /1 so that with probability 1 — 4, we have that

i — 1l < (14 0,(1)Covz + f(n,1/5).

so that f(n,1/§) — 0 as n — oo, for any fixed ¢, and moreover, demonstrate a lower bound,
stating that any algorithm, even with unboundedly many samples, must incur error |g — p| >

(1 - o(1))Co/z.

Problem 2: Statistical bounds for high-dimensional Gaussians. In this problem, we will work out a fairly
tight bound for the statistical distance between two high-dimensional Gaussians. Throughout this
problem, let 31,35 > 0 be two positive definite d x d-sized covariance matrices, and 1, o € R

(a)

First, prove that

drv(N (1, 1), N (p, 1)) S min (|1 — pally, 1)
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Problem 4:

(b) Next, prove that
dTV(N(O7I)7N(Oa 22)) S min (”I - 22||F ) 1) .

Hint: Use Pinsker’s inequality.

(c¢) From this, derive a general form for the TV distance between N (0,3;) and N (0, X2) in terms of
Mahalanobis distance. Crucially, this bound should yield non-vacuous results (i.e. TV distances
which are < 1) even when ¥; and ¥ could be very ill-conditioned.

(d) Now, using these sub-problems, derive a bound for the total variation distance between N (1, 1)
and ./\/'(/,627 22).
Hint: Note that there are two ways that a mean shift could cause a large TV distance between
two Gaussians: either as in part (a) where the distance is legitimately large in some direction
witnessed by both covariances, or, where the distance is in some direction not witnessed by at least
one covariance matrix.

(e) Extra credit: For imaginary extra-credit points, prove that your bound is tight up to constant
factors.

Population level spectral signatures. In this problem you will prove Lemma 4.1 from Lecture 4.
We reproduce the lemma below for completeness.

Lemma 0.1. Let ¢ € [0,1/2), and let 6 > 0. Let D be a distribution over R® with mean pu and
covariance X = I. Let Xq,...,X,, ~ D be i.i.d random variables. Then, there exist universal constants
¢, so that with probability 1 — 6 — exp(—Q(em)), there exists a set Sgooa C [m] so that |S| > (1—¢e)m

and:
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where I = Boood] Zz‘esgood X;.

The following matrix Chernoff bound will be useful, and you may use it without proof:

Fact 0.2. Let My, ..., M, € R¥™? be a sequence of independent random PSD matrices. Assume that
|M;ll, < L for all i = 1,...,n almost surely, and suppose that |E[Y>""" | M;]||l, < n. Then, for all
t > 2, we have

Pr
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> tn] < dexp(—Qtn/L)) .

Hint: The naive way to apply this matrix Chernoff bound would be to attempt to take M; = (X; —
1)(X; — 1) T. However, this is tricky in two ways: first, it a necessary condition to apply this matrix
Chernoff bound is an deterministic bound on the M;, and second, 1 makes these random matrices
dependent.

Implementation of the filter

Write (but don’t submit) code that implements the spectral filter for bounded second moment distri-
butions, as discussed in class. Recall that a key subroutine for this spectral filter is a downweighting or
removal scheme, where given non-negative scores 7y, ..., 7T,, and potentially weights wy, ..., w,, either
removes points from the dataset or downweights the weights based on the scores. Write three variants
of the downweighting scheme:
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(i) The weighted downweighting scheme as described in class:

Ti
max; 7;

(ii) The independent subsampling scheme: for each point, throw it out of the dataset with probability
Pbi X rnazi Ti '

(iii) A randomized threshold subsampling scheme: choose a threshold T' € [0, max; 7] uniformly at
random, and throw away all points so that , > T.

In the rest of the problem you will compare their performance against each other.

(a) Try running these schemes on synthetically generated data. Find an inlier distribution D with
covariance ¥ < [ and a e-corruption scheme for this distribution so that empirically, all three of
these algorithms pay O(y/€) error when given e-corrupted samples from D. What differences do
you notice in the behavior of these algorithms?

(b) Try implementing another scheme, in which you design some deterministic threshold T, and throw
away all points so that 7; > T. Compare the performance of the error of this scheme.

(¢) Find a corruption scheme which forces all three of the downweighting schemes to run for as many
iterations of the filter as possible. How many iterations as a function of the dimension are necessary?

Completing the picture for robustly learning Gaussians. Let ¢ > 0 be sufficiently small, and
let ¥ > 0. Throughout this problem, suppose you have a polynomial-time estimator which, given

g-corrupted samples S from N (0, 3), outputs 3 so that HE — f)HE <.

(a) Redo the analysis of the the Gaussian filter to demonstrate that it can still achieve non-trivial
recovery, if the covariance ¥ of the Gaussian is unknown but satisfies || X — I||, < 6. What is the
final error you get, as a function of € and 47

(b) Using parts (a) and (b), give a polynomial-time algorithm which, given an e-corrupted set of
samples from N (u, ), outputs i and X so that

dry (N (1, ), N (1, %)) S 0+ /elog T /e .

As a remark, because the best efficiently achievable ¢ is O(elog 1/¢), this yields an algorithm which
achieves overall error O(elog1/e).



