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LLM training is a huge computational challenge!
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Parallel model training: an overview

Data parallelism (DP) Model parallelism (MP)
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Data parallelism
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 Naively, model copy on each GPU

« Reductions of weight gradients at the end of every iteration to
coalesce updates across replicas

« Typically can be implemented by a wrapper class around model



Distributed optimizer to reduce memory

Number of bytes of

= 244 + 4+ 4+4
state per parameter
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fp32 grads fp32 Adam states

Number of bytes of statefor = 18.340B
Nemotron-4 340B model

6120 GB

Redundant optimizer state over DP replicas can be partitioned /
fp32 gradient all-reduces —
fp32 gradient reduce-scatters + bf16 param all-gathers



Tensor model parallelism

Each layer of model is partitioned over multiple GPUs
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Slow across inter-server communication links
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, arXiv:1909.08053, Shoeybi et al.



Tensor model parallelism implementation

« Core building blocks are RowParallelLinear and ColumnParallelLinear
 Simple underlying implementation: [Optional communication] -
Linear operator - [Optional communication]

* Modules in models use these primitives under the hood as needed
* E.g., Previous MLP would use ColumnParallelLinear layer followed
by RowParallelLinear layer


https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/tensor_parallel/layers.py
https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/tensor_parallel/layers.py

Activation footprint with naive tensor parallelism
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Reduce activation footprint further
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Pipeline model parallelism

 Layers / operators in model sharded over GPUs (i.e., each GPU is
responsible for a subset of layers in the model)

« Each batch split into smaller microbatches and execution pipelined
across these microbatches



Pipeline model parallelism
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Pipeline model parallelism

Layers / operators in model sharded over GPUs (i.e., each GPU is
responsible for a subset of layers in the model)

« Each batch split into smaller microbatches and execution pipelined
across these microbatches

 Point-to-point communication between consecutive pipeline stages

 Pipeline bubble at the start and end of every batch (equal to (p — 1)
microbatches’ forward and backward passes)



Interleaved pipeline parallelism:
fancier assignments of Iayers to GPUs!
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Pipeline model parallelism implementation

« Can abstract away most of the complex scheduling code that
coordinates scheduling of forward and backward passes for different
microbatches, along with associated communication; doesn’t need to
be rewritten for a new model*

* Model should be written in a way that makes it easy to separate into
different pipeline stages



Pipeline model parallelism implementation details

From megatron/core/models/gpt/gpt model.py:

i1f self.pre_process:
self.embedding = LanguageModelEmbedding(
config=self.config, vocab_size=self.vocab_size,
)

self.decoder = TransformerBlock(
config=self.config, spec=transformer_layer_spec, ...)

1f post_process:
self.output_layer = tensor_parallel.ColumnParallellLinear(
config.hidden_size, self.vocab_size, ...)


https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/models/gpt/gpt_model.py

...how about combining them?



Different schemes have different tradeoffs

» Each of these parallelism dimensions have different limiting factors
* E.g., pipeline parallelism only scales up to number of model layers
= Need to combine parallelisms if scaling to 1000s of GPUs

 Naively combining parallelisms leads to poor throughput
« E.g., tensor-model-parallel communication can dominate

 Using 3D parallelism efficiently (i.e., determining degrees of each
parallelism) requires one to reason through these interactions



Tradeoffs between tensor and pipeline MP

Assume that total number of GPUs is n, tensor-model-parallel size is t,
pipeline-model-parallel sizeisp (t - p = n)

« Pipeline bubble size (fraction of ideal time spent idle) is then:

Number of (P_l)'(tf+tb)=}9—1=n/t—1
microbatches —— m - (tf 4+ tb) m m
in batch

As t increases, pipeline bubble size decreases

* However, as t increases beyond the number of GPUs in a server, all-
reduce communication is now cross-server and more expensive



Tradeoffs between tensor and pipeline MP
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Tradeoffs between tensor and pipeline MP
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How do we navigate this configuration space?

Degree of pipeline, tensor,
and data parallelism

Pipelining schedule



New pipeline schedules affect throughput too!
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How do we navigate this configuration space?

Degree of pipeline, tensor,
and data parallelism

Each of these influence amount of
- communication, size of pipeline bubble,
memory footprint, convergence rate

Pipelining schedule
Global batch size

Microbatch size




General rule of thumb: don't over-parallelize!

» Use just data parallelism + distributed optimizer if possible

 |f this OOMSs, use tensor model parallelism + sequence parallelism

* |f this OOMs, then add pipeline parallelism into the mix



Picking right configuration parameters
necessary bhut not sufficient!




SOTA models no longer just have more parameters!
@DeepMind

Training Compute-Optimal Large Language Models

Jordan Hoffmann*, Sebastian Borgeaud*, Arthur Mensch*, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan,
Erich Elsen, Jack W. Rae, Oriol Vinyals and Laurent Sifre*

*Equal contributions

We investigate the optimal model size and number of tokens for training a transformer language model
under a given compute budget. We find that current large language models are significantly under-
trained, a consequence of the recent focus on scaling language models whilst keeping the amount of
training data constant. By training over 400 language models ranging from 70 million to over 16 billion
parameters on 5 to 500 billion tokens, we find that for compute-optimal training, the model size and
the number of training tokens should be scaled equally: for every doubling of model size the number
of training tokens should also be doubled. We test this hypothesis by training a predicted compute-
optimal model, Chinchilla, that uses the same compute budget as Gopher but with 70B parameters and
4x more more data. Chinchilla uniformly and significantly outperforms Gopher (280B), GPT-3 (175B),
Jurassic-1 (178B), and Megatron-Turing NLG (530B) on a large range of downstream evaluation tasks.
This also means that Chinchilla uses substantially less compute for fine-tuning and inference, greatly
facilitating downstream usage. As a highlight, Chinchilla reaches a state-of-the-art average accuracy of
67.5% on the MMLU benchmark, greater than a 7% improvement over Gopher.



Compute-optimal models: systems implications

* Models staying roughly the same size but the number of training
tokens is drastically increasing

Need to scale out: use more GPUs to get results faster (as opposed to using
more GPUs to just fit model parameters in GPU memory)

« = We need to train models efficiently in regimes where the batch
size per GPU is much smaller (e.g., batch size / # GPUs = %)



What happens when batch size per GPU is small?

« Number of microbatches in a pipeline is small — pipeline bubble (=

(p — 1)/m) is large (bad for throughput)

« Use interleaved schedule which makes pipeline bubble smaller

but also increases communication?

* Need to perform data-parallelism communication more frequently

(bad for throughput)
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How can we mitigate communication overhead?

Is it possible to hide communication behind compute?
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Communication overlap: tensor parallelism
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Communication overlap: pipeline parallelism
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Communication overlap: data parallelism
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Putting it together for Nemotron-4 340B model

Data parallelism
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End result: efficient scaling to 1000s of GPUs!
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Other forms of parallelism

 Long-context training: Context parallelism. Intermediate activations of
all layers sharded across multiple GPUs along sequence dimension.

* Mixture-of-expert models: Expert parallelism
« Expert weights sharded across multiple GPUs.

(num_tokens, h)—-— (n, h) (n, h) I (n, h)



Other forms of parallelism

* Training of large models with no model code changes*: FSDP
» Just-in-time gathering of model parameters when needed for
forward and backward computations
 Pros: should just work out of the box with a DDP-like wrapper*
« Cons: involves a lot of communication and can lead to poor
throughput, especially if you are not careful

Data-Parallel & DistOpt =
[1 x all-gather,
1 x reduce-scatter]

FSDP-full_shard
[ 2GA x all-gather,
GA x reduce-scatter]




Open questions

« Can we automate partitioning instead of applying human intuition
for every different type of model architecture?

« What about inference?
» Autoregressive inference involves potentially long bandwidth-bound
token generation phase (GEMVs instead of GEMMs)
« Requests of different types and sizes can come in at any time without
prior notification, making it hard to schedule computation efficiently

« What about self-play models like 017?



Megatron-LM: efficient scaling to 1000s of GPUs

We can train transformer models with 100s of billions of parameters
at scale with high efficiency: 2825 petaFLOP/s or 47% of peak

 Carefully composing pipeline, tensor and data parallelism
« Overlapping communication with computation as much as possible

Implementation available at https://github.com/nvidia/megatron-Im

| https:/deepakn94.github.io/ ;E dnarayanan@nvidia.com




