
Parallelizing LLM Training
Deepak Narayanan

CSE 599K

2

LLM training is a huge computational challenge!

https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models

GPU 2

Parallel model training: an overview

GPU 1

Single copy of model parameters

GPU 2

GPU 1

GPU 1 GPU 2

𝑛 copies of model
parameters

Data parallelism (DP) Model parallelism (MP)

Tensor MP Pipeline MP

Data parallelism

• Naïvely, model copy on each GPU

• Reductions of weight gradients at the end of every iteration to
coalesce updates across replicas

• Typically can be implemented by a wrapper class around model

GPU 1 GPU 2 GPU 3 GPU 4

Distributed optimizer to reduce memory

Number of bytes of
state per parameter = 2 + 4 + 4 + 4 + 4

bf16 params
fp32 grads

fp32 copy of params
fp32 Adam states

Number of bytes of state for
Nemotron-4 340B model

= 18 ⋅ 340B = 6120 GB

Redundant optimizer state over DP replicas can be partitioned
fp32 gradient all-reduces →
fp32 gradient reduce-scatters + bf16 param all-gathers 5

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, arXiv:1909.08053, Shoeybi et al.

Tensor model parallelism

Each layer of model is partitioned over multiple GPUs

𝑔 → All-reduction (𝑌!𝐵! + 𝑌"𝐵") in forward pass

G
eLU

G
eLU

Dropout

𝑌 = GeLU(𝑋𝐴) 𝑍 = Dropout(𝑌𝐵)

𝐴 = [𝐴!, 𝐴"] 𝐵 = 𝐵!
𝐵"

𝑌!

𝑌"

𝑋𝐴!

𝑋𝐴"

𝑋

𝑋

𝑓𝑋

𝑌!𝐵!

𝑌"𝐵"

𝑔 𝑍

𝑍!

𝑍"

Slow across inter-server communication links

Tensor model parallelism implementation

• Core building blocks are RowParallelLinear and ColumnParallelLinear
• Simple underlying implementation: [Optional communication] →
	Linear operator → [Optional communication]

• Modules in models use these primitives under the hood as needed
• E.g., Previous MLP would use ColumnParallelLinear layer followed

by RowParallelLinear layer

https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/tensor_parallel/layers.py
https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/tensor_parallel/layers.py

Activation footprint with naïve tensor parallelism

Activation memory footprint per layer = 𝑏𝑠ℎ(10 + "#
$
+	…)

Reduce activation footprint further

Activation memory footprint per layer = 𝑏𝑠ℎ !%
$
+ "#

$
+	…

All-reduce → Reduce-scatter + all-gather

Reducing Activation Recomputation in Large Transformer Models, arXiv:2205.05198, Korthikanti et al.

Pipeline model parallelism

• Layers / operators in model sharded over GPUs (i.e., each GPU is
responsible for a subset of layers in the model)

• Each batch split into smaller microbatches and execution pipelined
across these microbatches

Pipeline model parallelism

Time

Time

A1 A2 A3 A4 A1 A2 A3 A4 B1 B2

A1 A2 A3 A4 A1 A2 A3 A4 B1

A1 A2 A3 A4 A1 A2 A3 A4

A1 A1 A2 A2 A3 A3 A4 A4

GPU 1
GPU 2
GPU 3
GPU 4

GPU 1
GPU 2
GPU 3
GPU 4

A

A

A

A A

Split batch into microbatches
and pipeline execution

Backward PassForward Pass

Pipeline model parallelism

• Layers / operators in model sharded over GPUs (i.e., each GPU is
responsible for a subset of layers in the model)

• Each batch split into smaller microbatches and execution pipelined
across these microbatches

• Point-to-point communication between consecutive pipeline stages

• Pipeline bubble at the start and end of every batch (equal to (𝑝 − 1)
microbatches’ forward and backward passes)

Interleaved pipeline parallelism:
fancier assignments of layers to GPUs!

1 2 3 4 1 2 3 4 5 6 7 1 8 2 5 3 6 4 7 1 8 2 3 4 5 6 7 8 5 6 7 8 9 1
0

1
1

1
2 9 1

0
1
1

1
2

1
3

1
4

1
5 9 1

6 10 1
3 11 1

4 12 1
5 9 1

6 10 11

1 2 3 4 1 2 3 4 5 1 6 2 7 3 8 4 5 1 6 2 7 3 8 4 5 6 7 8 5 6 7 8 9 1
0

1
1

1
2 9 1

0
1
1

1
2

1
3 9 1

4 10 1
5 11 1

6 12 1
3 9 1

4 10 1
5 11 1

6 12

1 2 3 4 1 2 3 1 4 2 5 3 6 4 7 1 8 2 5 3 6 4 7 5 8 6 7 8 5 6 7 8 9 1
0

1
1

1
2 9 1

0
1
1 9 1

2 10 1
3 11 1

4 12 1
5 9 1

6 10 1
3 11 1

4 12 1
5 13

1 2 3 4 1 1 2 2 3 3 4 4 5 1 6 2 7 3 8 4 5 5 6 6 7 7 8 8 5 6 7 8 9 1
0

1
1

1
2 9 9 1

0 10 1
1 11 1

2 12 1
3 9 1

4 10 1
5 11 1

6 12 1
3 13 1

4 14

1 2 3 4 1 5 2 6 3 7 4 8 5 6 7 8 9 10 11 12 9 10

1 2 3 4 1 2 5 3 6 4 7 5 8 6 7 8 9 10 11 12 9 10

1 2 3 4 1 2 3 5 4 6 5 7 6 8 7 8 9 10 11 12 9 13 10 11

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12

Time

GPU 1
GPU 2
GPU 3
GPU 4

Time

GPU 1
GPU 2
GPU 3
GPU 4

Assign multiple stages to each
device (interleaved schedule)

Backward PassForward PassSmaller pipeline bubble but more communication

Pipeline model parallelism implementation

• Can abstract away most of the complex scheduling code that
coordinates scheduling of forward and backward passes for different
microbatches, along with associated communication; doesn’t need to
be rewritten for a new model*

• Model should be written in a way that makes it easy to separate into
different pipeline stages

Pipeline model parallelism implementation details

From megatron/core/models/gpt/gpt_model.py:

if self.pre_process:
 self.embedding = LanguageModelEmbedding(
 config=self.config, vocab_size=self.vocab_size, ...
)

self.decoder = TransformerBlock(
 config=self.config, spec=transformer_layer_spec, ...)

if post_process:
 self.output_layer = tensor_parallel.ColumnParallelLinear(
 config.hidden_size, self.vocab_size, ...)

https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/models/gpt/gpt_model.py

…how about combining them?

Different schemes have different tradeoffs

• Each of these parallelism dimensions have different limiting factors
• E.g., pipeline parallelism only scales up to number of model layers
⇒ Need to combine parallelisms if scaling to 1000s of GPUs

• Naïvely combining parallelisms leads to poor throughput
• E.g., tensor-model-parallel communication can dominate

• Using 3D parallelism efficiently (i.e., determining degrees of each
parallelism) requires one to reason through these interactions

Tradeoffs between tensor and pipeline MP

Assume that total number of GPUs is 𝑛, tensor-model-parallel size is 𝑡,
pipeline-model-parallel size is 𝑝 (𝑡 ⋅ 𝑝 = 𝑛)

• Pipeline bubble size (fraction of ideal time spent idle) is then:
𝑝 − 1 ⋅ 𝑡! + 𝑡"
𝑚 ⋅ 𝑡! + 𝑡"

=
𝑝 − 1
𝑚 =

𝑛/𝑡 − 1
𝑚

 As 𝑡 increases, pipeline bubble size decreases

• However, as 𝑡 increases beyond the number of GPUs in a server, all-
reduce communication is now cross-server and more expensive

Number of
microbatches

in batch

Tradeoffs between tensor and pipeline MP
162B GPT model

64 80-GB A100 GPUs

������
 ������
 �����
 ������
 ������

�4MTIPMRI�TEVEPPIP�WM^I��8IRWSV�TEVEPPIP�WM^I

�

��

���

���

���
%G

LM
IZ
IH

�XI
VE
*0

3
4�

W
TI

V�+
49

&EXGL�WM^I�!���
&EXGL�WM^I�!����

Tradeoffs between tensor and pipeline MP
162B GPT model

64 80-GB A100 GPUs

������
 ������
 �����
 ������
 ������

�4MTIPMRI�TEVEPPIP�WM^I��8IRWSV�TEVEPPIP�WM^I

�

��

���

���

���
%G

LM
IZ
IH

�XI
VE
*0

3
4�

W
TI

V�+
49

&EXGL�WM^I�!���
&EXGL�WM^I�!����

All-reductions for tensor
MP across servers

Pipeline bubble large

How do we navigate this configuration space?

Degree of pipeline, tensor,
and data parallelism

Pipelining schedule

�� �� �� �� ��
&EXGL�WM^I

��

��

���

���

���

%G
LM
IZ
IH

�XI
VE
*0

3
4�

W
TI

V�+
49

2SR�MRXIVPIEZIH
-RXIVPIEZIH

New pipeline schedules affect throughput too!
175B GPT model

96 80-GB A100 GPUs

Large throughput increases at small
batch sizes, smaller at large batch sizes

More microbatches →

How do we navigate this configuration space?

Degree of pipeline, tensor,
and data parallelism

Global batch size

Pipelining schedule

Microbatch size

Each of these influence amount of
communication, size of pipeline bubble,
memory footprint, convergence rate

More details in our paper: https://arxiv.org/pdf/2104.04473.pdf

General rule of thumb: don’t over-parallelize!

• Use just data parallelism + distributed optimizer if possible

• If this OOMs, use tensor model parallelism + sequence parallelism

• If this OOMs, then add pipeline parallelism into the mix

Picking right configuration parameters
necessary but not sufficient!

SOTA models no longer just have more parameters!

Compute-optimal models: systems implications

• Models staying roughly the same size but the number of training
tokens is drastically increasing

Need to scale out: use more GPUs to get results faster (as opposed to using
more GPUs to just fit model parameters in GPU memory)

• ⇒ We need to train models efficiently in regimes where the batch
size per GPU is much smaller (e.g., batch size / # GPUs = ¼)

What happens when batch size per GPU is small?
• Number of microbatches in a pipeline is small → pipeline bubble (=
(𝑝 − 1)/𝑚) is large (bad for throughput)
• Use interleaved schedule which makes pipeline bubble smaller

but also increases communication?

• Need to perform data-parallelism communication more frequently
(bad for throughput)

BS = 2

BS = 2

BS = 1

BS = 1

BS = 1

BS = 1

BS = 2

BS = 2

BS = 1

BS = 1

BS = 1

BS = 1Global batch size = 4

How can we mitigate communication overhead?

Is it possible to hide communication behind compute?

Communication overlap: tensor parallelism

Communication overlap: tensor parallelism

Communication overlap: pipeline parallelism

Communication overlap: data parallelism

Compute Communication

Reduction in
end-to-end time

Layer 1

Layer 1

Most effective when
communication time < compute time

Putting it together for Nemotron-4 340B model

Tensor
parallelism = 8

Data parallelism
= 64 or 96

Pipeline parallelism = 12
34

Throughput of ~405 TFLOP/s/GPU with 6144 GPUs (41% of peak)

End result: efficient scaling to 1000s of GPUs!

Aggregate throughput on a model
with ~500B parameters over 6144

H100 GPUs = 2825 petaFLOP/s

Other forms of parallelism

• Long-context training: Context parallelism. Intermediate activations of
all layers sharded across multiple GPUs along sequence dimension.

• Mixture-of-expert models: Expert parallelism
• Expert weights sharded across multiple GPUs.

(num_tokens, h) (n, h) (n, h) (n, h)

Other forms of parallelism
• Training of large models with no model code changes*: FSDP
• Just-in-time gathering of model parameters when needed for

forward and backward computations
• Pros: should just work out of the box with a DDP-like wrapper*
• Cons: involves a lot of communication and can lead to poor

throughput, especially if you are not careful

Open questions

• Can we automate partitioning instead of applying human intuition
for every different type of model architecture?

• What about inference?
• Autoregressive inference involves potentially long bandwidth-bound

token generation phase (GEMVs instead of GEMMs)
• Requests of different types and sizes can come in at any time without

prior notification, making it hard to schedule computation efficiently

• What about self-play models like o1?

Megatron-LM: efficient scaling to 1000s of GPUs

We can train transformer models with 100s of billions of parameters
at scale with high efficiency: 2825 petaFLOP/s or 47% of peak

• Carefully composing pipeline, tensor and data parallelism
• Overlapping communication with computation as much as possible

https://deepakn94.github.io/ dnarayanan@nvidia.com

Implementation available at https://github.com/nvidia/megatron-lm

