Parallelizing LLM Training

Deepak Narayanan
CSE 599K

<A NVIDIA

LLM training is a huge computational challenge!

° ° ° P
Cloud compute cost to train frontier Al models over time Z EPOCH Al
Cost (2023 USD, log scale) —— Regression mean 95% Cl of mean
1B
Gemini 1.0 Ultra
100M GPT-4
PaLM (5405)\

10M GPT-3175B (davinci)

[

™ ion-
GNMT Inflection-2
AlphaZero
100k /
DALL-E

10k 2.6x/year
1000

100

10
2016 2017 2018 2019 2020 2021 2022 2023 2024

Publication date

https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models

Parallel model training: an overview

Data parallelism (DP) Model parallelism (MP)

—_— o . . .y —_— o . . .y

e e e el e

i —

o' o
o !, T
c ! C
N_\
l;ID
S S
|
——'——
L
———

)
]
—

T Ilv__/ __ i ___ . .
Tensor MP Pipeline MP

n copies of model
parameters

J [Single copy of model parameters J

Data parallelism

P —
L
[——

— e —,
—

I\

]
—

L S ——

————————————————————————————

 Naively, model copy on each GPU

« Reductions of weight gradients at the end of every iteration to
coalesce updates across replicas

« Typically can be implemented by a wrapper class around model

Distributed optimizer to reduce memory

Number of bytes of

= 244 + 4+ 4+4
state per parameter

\) \)
| |

bfle params fp32 copy of params
fp32 grads fp32 Adam states

Number of bytes of statefor = 18.340B
Nemotron-4 340B model

6120 GB

Redundant optimizer state over DP replicas can be partitioned /
fp32 gradient all-reduces —
fp32 gradient reduce-scatters + bf16 param all-gathers

Tensor model parallelism

Each layer of model is partitioned over multiple GPUs

e — — — — — — — — — — — — —— — T — — —— — —— —— — — — —

Y = GeLU(X4) > /7 Z=Dropout(YB) >\
[— — \ — — \
I @ I { I
| =|X = X4, =2 =Wl =b | 1B, =2 = |
: 1 | N [
|| X |=|f . || Joi =S = :
| E =l | e |
I —

| =X =] XA, :>‘,£:>Y2|?|F> YoB, |=|Zo — :
| C | |
I L L J l I Bll __J l
\ A=[A, A 8B =
_________[_1__2l__/// \ﬁ__BE __________ ///

g — All-reduction (Y;B; + Y,B,) in forward pass

Slow across inter-server communication links
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, arXiv:1909.08053, Shoeybi et al.

Tensor model parallelism implementation

« Core building blocks are RowParallelLinear and ColumnParallelLinear
 Simple underlying implementation: [Optional communication] -
Linear operator - [Optional communication]

* Modules in models use these primitives under the hood as needed
* E.g., Previous MLP would use ColumnParallelLinear layer followed
by RowParallelLinear layer

https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/tensor_parallel/layers.py
https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/tensor_parallel/layers.py

Activation footprint with naive tensor parallelism

Transformer Layer
Output

I

H%w

Dropout
1l
e fge=—-—" s
| Linear ,_
| E 53 |
o Gl] 2T
| o &l
“ 1 — W.a _
! Linear :
o . /
,M H LayerNorm g
D
i)
H Dropout g
ft
—— e T 4
_ Linear _— _
| 0 2=
[c (L]
_ v g |
| | Self Attention | + & _
\ . J
/M H LayerNorm w
Transformer Layer
Input

)

t

Activation memory footprint per layer = bsh(10 + 24

Reduce activation footprint further

_____ AR TNV 2000 N
= | I | v | | | l | |
= | N | | | | l | |
5%- i | : > — : I g rl : = o = | I g
= = > >
T 3 AEd BRI E BHIEEEEIEE HATEBEATE R
- 0 o) = Y o) o)) = o || I {Q
e I I = || E= | [1= = =
- (=7 = = | | |
- I | (- I | | I | |
| | | | | | | |
Sequence: : Tensor : : Sequence | : Tensor | | Sequence
Parallel) |\ Parallel) \ Parallel /} \ Parallel ’ '\ Parallel
______ p. T N e _______// P e S e e

Activation memory footprint per layer = bsh (1—t0 + % +)
All-reduce — Reduce-scatter + all-gather

Reducing Activation Recomputation in Large Transformer Models, arXiv:2205.05198, Korthikanti et al.

indinQ
J9Ae Jawioysues |

Pipeline model parallelism

 Layers / operators in model sharded over GPUs (i.e., each GPU is
responsible for a subset of layers in the model)

« Each batch split into smaller microbatches and execution pipelined
across these microbatches

Pipeline model parallelism

GPU 1 A
GPU 2
GPU 3
GPU 4 A A

Time — 1

Al A2 A3 A4 -3 B1 B2

A1 A2 A3 A4 AT || A2 | A3 || A4 B1

Split batch into microbatches
and pipeline execution

 r2 3 G AL D D

A1 I A2 B ~: DS 4 Y

Forward Pass Backward Pass

Pipeline model parallelism

Layers / operators in model sharded over GPUs (i.e., each GPU is
responsible for a subset of layers in the model)

« Each batch split into smaller microbatches and execution pipelined
across these microbatches

 Point-to-point communication between consecutive pipeline stages

 Pipeline bubble at the start and end of every batch (equal to (p — 1)
microbatches’ forward and backward passes)

Interleaved pipeline parallelism:
fancier assignments of Iayers to GPUs!

GPU 1 i e | 1 0 2 B 3 W 8 6 7 O 9 10 11 12

W o nBBnBoRn - nn

o> (ORI I B B B I I
GPU 4 1 IR > P BE < B s B - B 7 IR ¢ IR o ICIN 10 IRIH 11 SRR 12 kP
Time . .

Assign multiple stages to each

device (interleaved schedule)
GPU 1 123 44p 25 6 4 |7l

oz (LT RREN

GPU3 1234Q 5671823H 5
GPU4 1234Q CEEIES5 1 6 2 7 3 8 4 HEAE 1115 12 : 2a
Time ——

8| 6

Smaller pipeline bubble but more communication

Pipeline model parallelism implementation

« Can abstract away most of the complex scheduling code that
coordinates scheduling of forward and backward passes for different
microbatches, along with associated communication; doesn’t need to
be rewritten for a new model*

* Model should be written in a way that makes it easy to separate into
different pipeline stages

Pipeline model parallelism implementation details

From megatron/core/models/gpt/gpt model.py:

i1f self.pre_process:
self.embedding = LanguageModelEmbedding(
config=self.config, vocab_size=self.vocab_size,
)

self.decoder = TransformerBlock(
config=self.config, spec=transformer_layer_spec, ...)

1f post_process:
self.output_layer = tensor_parallel.ColumnParallellLinear(
config.hidden_size, self.vocab_size, ...)

https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/models/gpt/gpt_model.py

...how about combining them?

Different schemes have different tradeoffs

» Each of these parallelism dimensions have different limiting factors
* E.g., pipeline parallelism only scales up to number of model layers
= Need to combine parallelisms if scaling to 1000s of GPUs

 Naively combining parallelisms leads to poor throughput
« E.g., tensor-model-parallel communication can dominate

 Using 3D parallelism efficiently (i.e., determining degrees of each
parallelism) requires one to reason through these interactions

Tradeoffs between tensor and pipeline MP

Assume that total number of GPUs is n, tensor-model-parallel size is t,
pipeline-model-parallel sizeisp (t - p = n)

« Pipeline bubble size (fraction of ideal time spent idle) is then:

Number of (P_l)'(tf+tb)=}9—1=n/t—1
microbatches —— m - (tf 4+ tb) m m
in batch

As t increases, pipeline bubble size decreases

* However, as t increases beyond the number of GPUs in a server, all-
reduce communication is now cross-server and more expensive

Tradeoffs between tensor and pipeline MP

162B GPT model
64 80-GB A100 GPUs

200 1

Y
ol
o

a
o

0

Achieved teraFLOP/s
per GPU
o
o

(2,32) (4,16) (8, 8) (16,4) (32,2)
(Pipeline-parallel size, Tensor-parallel size)

Tradeoffs between tensor and pipeline MP

162B GPT model
64 80-GB A100 GPUs

2001

- M
—e— Batchsize=32 . >
—— Batchsize=128 Pipeline bubble large

Y
ol
o

a
o
1

0

Achieved teraFLOP/s
per GPU
S
o

(2,32) (4,16) (8, 8) (16,4) (32,2)
(Pipeline-parallel size, Tensor-parallel size)

< >

All-reductions for tensor
MP across servers

How do we navigate this configuration space?

Degree of pipeline, tensor,
and data parallelism

Pipelining schedule

New pipeline schedules affect throughput too!

175B GPT model
96 80-GB A100 GPUs

150 1

: t

3 125+ —

=S

o O .

29100+ I //kMore microbatches —

o

S o —&— Non-interleaved

) 75_

= Interleaved

2 50 ! T T T T
12 24 36 48 60

Batch size

Large throughput increases at small
batch sizes, smaller at large batch sizes

How do we navigate this configuration space?

Degree of pipeline, tensor,
and data parallelism

Each of these influence amount of
- communication, size of pipeline bubble,
memory footprint, convergence rate

Pipelining schedule
Global batch size

Microbatch size

General rule of thumb: don't over-parallelize!

» Use just data parallelism + distributed optimizer if possible

 |f this OOMSs, use tensor model parallelism + sequence parallelism

* |f this OOMs, then add pipeline parallelism into the mix

Picking right configuration parameters
necessary bhut not sufficient!

SOTA models no longer just have more parameters!
@DeepMind

Training Compute-Optimal Large Language Models

Jordan Hoffmann*, Sebastian Borgeaud*, Arthur Mensch*, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan,
Erich Elsen, Jack W. Rae, Oriol Vinyals and Laurent Sifre*

*Equal contributions

We investigate the optimal model size and number of tokens for training a transformer language model
under a given compute budget. We find that current large language models are significantly under-
trained, a consequence of the recent focus on scaling language models whilst keeping the amount of
training data constant. By training over 400 language models ranging from 70 million to over 16 billion
parameters on 5 to 500 billion tokens, we find that for compute-optimal training, the model size and
the number of training tokens should be scaled equally: for every doubling of model size the number
of training tokens should also be doubled. We test this hypothesis by training a predicted compute-
optimal model, Chinchilla, that uses the same compute budget as Gopher but with 70B parameters and
4x more more data. Chinchilla uniformly and significantly outperforms Gopher (280B), GPT-3 (175B),
Jurassic-1 (178B), and Megatron-Turing NLG (530B) on a large range of downstream evaluation tasks.
This also means that Chinchilla uses substantially less compute for fine-tuning and inference, greatly
facilitating downstream usage. As a highlight, Chinchilla reaches a state-of-the-art average accuracy of
67.5% on the MMLU benchmark, greater than a 7% improvement over Gopher.

Compute-optimal models: systems implications

* Models staying roughly the same size but the number of training
tokens is drastically increasing

Need to scale out: use more GPUs to get results faster (as opposed to using
more GPUs to just fit model parameters in GPU memory)

« = We need to train models efficiently in regimes where the batch
size per GPU is much smaller (e.g., batch size / # GPUs = %)

What happens when batch size per GPU is small?

« Number of microbatches in a pipeline is small — pipeline bubble (=

(p — 1)/m) is large (bad for throughput)

« Use interleaved schedule which makes pipeline bubble smaller

but also increases communication?

* Need to perform data-parallelism communication more frequently

(bad for throughput)
m]: :Bs=2:i’:88=2:
Mm: (Bs-=2 BS=2

Global batch size = 4

o7

)

BS =1

How can we mitigate communication overhead?

Is it possible to hide communication behind compute?

IS

tensor paralleli

Communication overlap

7\

Transformer Layer
Output

ﬁ LayerNorm g

Transformer Layer
Input

Sequence \ Sequence

Parallel

Sequence

Parallel

.

Parallel)

SXh2

Sth

B

i N ™
Ny Ny Ny

X
w w . oW w

-

(P}

=

fas]

29

=
— 2.3 <t
w w w w
- N Mm%
- > sy (i s
(a8 o (o R o T
O @) i Sl o

Communication overlap: tensor parallelism

hy s;h, s,h,
h, S5, s3h,
Stage 1 Stage 2 X =
hy s3hy s,hs
h, s:h, s,h,
Operations: Send to prev neighbor || Recv from next neighbor || Local Gemm
h; s,h, s,h, s3h;, s,hy
h, s;h, s,h, szh, s4h,
Stage 3 Stage 4 X =
h, s;h; s,hy s3hy s4hs
h, s.hy s,hy szh, s4hy

Operations: Send to prev neighbor || Recv from next neighbor || Local Gemm Operations: Send to prev neighbor || Recv from next neighbor || Local Gemm

Communication overlap: pipeline parallelism

fprop bprop
fprop bprop
fprop bprop
fprop bprop

fprop bprop
fprop bprop
fprop bprop
fprop bprop

e buf b

fprop bprop‘~“\ fprop ¢ bprop
\W‘_\~ /M

fprop bprop‘~‘\ fprop ¢ bprop
™ lbufh o o butf

fprop bprop‘~‘\ fprop ¢ bprop
™ oufh o o [OUTY

fprop bprop\‘\ fprop, bprop

o buf|’

Communication overlap: data parallelism

/ Layer 1

Layer 1
Compute

Communication

Reduction in

Most effective when
communication time < compute time

end-to-end time

Putting it together for Nemotron-4 340B model

Data parallelism

= 64 or 96

Q

>
>

Y (L x) (Bl Q«

Vé§

(on) [BB) [,

Lmq@ B

&) (7.

N7,/

Throughput of ~405 TFLOP/s/GPU with 6144 GPUs (41% of peak)

Ténsor
Parallelism

Tensor
parallelism=8

8

s z
ﬂ NVLINK - ﬂ z H - NVLINK - H z H - NVLINK - H
b 2
RAON RO g ERTTTEIIA 03 z A ﬁ' er
5 AR LB :
: 7
: :
ver
DGX Server / \ DGX Server / \ DGX Server /
|
i .
Pipeli llelism = 12
. PaAEIElSH et Ipeline paralielism =

34

End result: efficient scaling to 1000s of GPUs!

1000.0 +

500.0 +

1000 1 , Aggregate throughput on a model
with ~500B parameters over 6144
H100 GPUs = 2825 petaFLOP/s

50.0 +

Aggregate throughput (petaFLOP/s)

50 100 500 1000 5000

Number of GPUs

Other forms of parallelism

 Long-context training: Context parallelism. Intermediate activations of
all layers sharded across multiple GPUs along sequence dimension.

* Mixture-of-expert models: Expert parallelism
« Expert weights sharded across multiple GPUs.

(num_tokens, h)—-— (n, h) (n, h) I (n, h)

Other forms of parallelism

* Training of large models with no model code changes*: FSDP
» Just-in-time gathering of model parameters when needed for
forward and backward computations
 Pros: should just work out of the box with a DDP-like wrapper*
« Cons: involves a lot of communication and can lead to poor
throughput, especially if you are not careful

Data-Parallel & DistOpt =
[1 x all-gather,
1 x reduce-scatter]

FSDP-full_shard
[2GA x all-gather,
GA x reduce-scatter]

Open questions

« Can we automate partitioning instead of applying human intuition
for every different type of model architecture?

« What about inference?
» Autoregressive inference involves potentially long bandwidth-bound
token generation phase (GEMVs instead of GEMMs)
« Requests of different types and sizes can come in at any time without
prior notification, making it hard to schedule computation efficiently

« What about self-play models like 017?

Megatron-LM: efficient scaling to 1000s of GPUs

We can train transformer models with 100s of billions of parameters
at scale with high efficiency: 2825 petaFLOP/s or 47% of peak

 Carefully composing pipeline, tensor and data parallelism
« Overlapping communication with computation as much as possible

Implementation available at https://github.com/nvidia/megatron-Im

| https:/deepakn94.github.io/ ;E dnarayanan@nvidia.com

