Introduction to High-Performance GPU Programming, Part-2

Dr. Hari Sadasivan, Al Group, AMD

About Me

Dr. Hari Sadasivan MTS SDE in Al Group, AMD | Faculty (part-time), UW Seattle | Sr Member, IEEE

- Co-founder of AMD –omics group
- Tech-lead, AMD CoE in AI at UW Seattle
 - <u>CSE/ECE PMP 590</u>: Applied Parallel Programming on GPU

GPUs

- Evolution
- CPU vs GPU
- SIMT Programming Model
- Programming GPUs
 - Put together a complete HIP code
- Architecture
- Profiling
- The world of GPU Optimizations for AI
 - AMD Hiring

Vector Addition

void vecAdd(float* A, float* B, float* C, int n) {
 int size = n * sizeof(float);
 float* A_d, B_d, C_d;

// Allocate device memory
hipMalloc((void **) &A_d, size);
hipMalloc((void **) &B_d, size);
hipMalloc((void **) &C_d, size);

// Transfer A and B to device memory

hipMemcpy(A_d, A, size, hipMemcpyHostToDevice); hipMemcpy(B_d, B, size, hipMemcpyHostToDevice);

// Kernel invocation code

vecAddKernel<<<ceil(n/256.0), 256>>>(A_d, B_d, C_d, n); hipDeviceSynchronize();

// Transfer C from device to host

hipMemcpy(C, C_d, size, hipMemcpyDeviceToHost);

// Free device memory for A, B, C
hipFree(A_d); hipFree(B_d); hipFree (C_d);

CSE/EE P590A, Dr. Hari Sadasivan

Mapping to the data

Suppose we use 1d thread blocks of size 4

i = blockIdx.x * blockDim.x + threadIdx.x

1. How many floating operations are being performed in the vector add kernel? Give your answer in terms of N and explain.

2. How many global memory reads and writes are being performed by the vector add kernel? Give your answer in terms of N.

1. How many floating operations are being performed in the vector add kernel? Give your answer in terms of N and explain.

N, one for each pair of input vector elements

 How many global memory reads and writes are being performed by the vector add kernel? Give your answer in terms of N.
 Reads: 2N, one for each of the two input vectors elements.

Writes: N, one for each output vector element.

Blocking vs Nonblocking API functions

- The kernel launch function, hipLaunchKernelGGL, is **non-blocking** for the host.
 - After sending instructions/data, the host continues immediately while the device executes the kernel
 - If you know the kernel will take some time, this is a good area to do some work (i.e. MPI comms) on the host
- However, hipMemcpyis blocking.
 - The data pointed to in the arguments can be accessed/modified after the function returns.
- The non-blocking version is hipMemcpyAsync

hipMemcpyAsync(d_a, h_a, Nbytes, hipMemcpyHostToDevice, stream);

- Like hipLaunchKernelGGL, this function takes an argument of type hipStream_t
- It is not safe to access/modify the arguments of hipMemcpyAsyncwithout some sort of synchronization.

- A stream in HIP is a queue of tasks (e.g. kernels, memcpys, events).
 - Tasks enqueued in a stream complete in order on that stream.
 - Tasks being executed in different streams are allowed to overlap and share device resources.
- Streams are created via: hipStream_t stream; hipStreamCreate(&stream);
- And destroyed via: hipStreamDestroy(stream);
- Passing 0 or NULL as the hipStream_t argument to a function instructs the function

to execute on a stream called the 'NULL Stream':

- No task on the NULL stream will begin until all previously enqueued tasks in all other streams have completed.
- Blocking calls like hipMemcpy run on the NULL stream.

Suppose we have 4 small kernels to execute:

```
hipLaunchKernelGGL(myKernel1 dim3(1), dim3(256), 0, 0, 256, d_a1);
,
hipLaunchKernelGGL(myKernel2 dim3(1), dim3(256), 0, 0, 256, d_a2);
,
hipLaunchKernelGGL(myKernel3 dim3(1), dim3(256), 0, 0, 256, d_a3);
,
hipLaunchKernelGGL(myKernel4 dim3(1), dim3(256), 0, 0, 256, d_a4);
,
NULL Stream myKernel1 myKernel2 myKernel3 myKernel4
```

Even though these kernels use only one block each, they'll execute in serial on the NULL stream:

With streams we can effectively share the GPU's compute resources:

```
hipLaunchKernelGGL(myKernel1 dim3(1), dim3(256), 0, stream1, 256, d_a1);
,
hipLaunchKernelGGL(myKernel2 dim3(1), dim3(256), 0, stream2, 256, d_a2);
,
hipLaunchKernelGGL(myKernel3 dim3(1), dim3(256), 0, stream3, 256, d_a3);
,
hipLaunchKernelGGL(myKernel4 dim3(1), dim3(256), 0, stream4, 256, d_a4);
```

NULL Stream	
Stream1	myKernel1
Stream2	myKernel2
Stream3	myKernel3
Stream4	myKernel4

Note 1: Check that the kernels modify different parts of memory to avoid data races. Note 2: With large kernels, overlapping computations may not help performance.

- There is another use for streams besides concurrent kernels:
 - Overlapping kernels with data movement.
- AMD GPUs have separate engines for:
 - Host->Device memcpys
 - Device->Host memcpys
 - Compute kernels.
- These three different operations can overlap without dividing the GPU's resources.
 - The overlapping operations should be in separate, non-NULL, streams.
 - The host memory should be pinned.

Pinned Memory

Host data allocations are pageable by default. The GPU can directly access Host data if it is pinned instead.

- Allocating pinned host memory: double *h_a = NULL; hipHostMalloc(&h_a, Nbytes);
- Free pinned host memory: hipHostFree(h_a);
- Host<->Device memcpy bandwidth increases significantly when host memory is pinned.

- It is good practice to allocate host memory that is frequently transferred to/from the device as pinned memory.

Suppose we have 3 kernels which require moving data to and from the device:

```
hipMemcpy(d_a1, h_a1, Nbytes, hipMemcpyHostToDevice));
hipMemcpy(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice));
hipMemcpy(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice));
```

```
hipLaunchKernelGGL(myKernel1, blocks, threads, 0, 0, N, d_a1);
hipLaunchKernelGGL(myKernel2, blocks, threads, 0, 0, N, d_a2);
hipLaunchKernelGGL(myKernel3, blocks, threads, 0, 0, N, d a3);
```

```
hipMemcpy(h_a1, d_a1, Nbytes, hipMemcpyDeviceToHost);
hipMemcpy(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost);
hipMemcpy(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost);
```

 NULL Stream
 HToD1
 HToD2
 HToD3
 myKernel1
 myKernel2
 myKernel3
 DToH1
 DToH2
 DToH3

Changing to asynchronous memcpys and using streams:

```
hipMemcpyAsync(d_a1, h_a1, Nbytes, hipMemcpyHostToDevice, stream1);
hipMemcpyAsync(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice, stream2);
hipMemcpyAsync(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice, stream3);
```

hipLaunchKernelGGL(myKernel1, blocks, threads, 0, stream1, N, d_a1); hipLaunchKernelGGL(myKernel2, blocks, threads, 0, stream2, N, d_a2); hipLaunchKernelGGL(myKernel3, blocks, threads, 0, stream3, N, d_a3);

```
hipMemcpyAsync(h_a1, d_a1, Nbytes, hipMemcpyDeviceToHost, stream1);
hipMemcpyAsync(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost, stream2);
hipMemcpyAsync(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost, stream3);
```

NULL Stream						
Stream1	HToD1	myKernel1	DToH1			
Stream2		HToD2	myKernel2	DToH2		
Stream3			HToD3	myKernel3	DToH3	

Synchronization

How do we coordinate execution on device streams with host execution? Need some synchronization points.

- hipDeviceSynchronize();
 - Heavy-duty sync point.
 - Blocks host until **all work** in **all device streams** has reported complete.
- hipStreamSynchronize(stream);
 - Blocks host until all work in stream has reported complete.

Can a stream synchronize with another stream? For that we need 'Events'.

Events

A hipEvent_t object is created on a device via: hipEvent_t event; hipEventCreate(&event);

We queue an event into a stream: hipEventRecord(event, stream);

- The event records what work is currently enqueued in the stream.
- When the stream's execution reaches the event, the event is considered 'complete'.

At the end of the application, event objects should be destroyed: hipEventDestroy(event);

Events

What can we do with queued events?

- hipEventSynchronize(event);
 - Block host until event reports complete.
 - Only a synchronization point with respect to the stream where event was enqueued.
- hipEventElapsedTime(&time, startEvent, endEvent);
 - Returns the time in ms between when two events, startEvent and endEvent, completed
 - Can be very useful for timing kernels/memcpys
- hipStreamWaitEvent(stream, event);
 - Non-blocking for host.
 - Instructs all future work submitted to stream to wait until event reports complete.
 - Primary way we enforce an 'ordering' between tasks in separate streams.

Questions

1. If we want to copy 5000 bytes of data from host array h_A (h_A is a pointer to element 0 of the source array) to device array d_A (d_A is a pointer to element 0 of the destination array), what would be an appropriate API call for the data copy in HIP?

Questions

1. If we want to copy 5000 bytes of data from host array h_A (h_A is a pointer to element 0 of the source array) to device array d_A (d_A is a pointer to element 0 of the destination array), what would be an appropriate API call for the data copy in HIP?

Ans: hipMemcpy(d_A, h_A, 5000, hipMemcpyHostToDevice);

AMD GPU Libraries

- A note on naming conventions:
 - roc* -> AMGCN library usually written in HIP
 - cu* -> NVIDIA PTX libraries
 - hip* -> usually interface layer on top of roc*/cu* backends
- hip* libraries:
 - Can be compiled by hipcc and can generate a call for the device you have:
 - hipcc->hip-clang->AMD GCN ISA
 - hipcc->nvcc (inlined)->NVPTX
 - Just a thin wrapper that marshals calls off to a "backend" library:
 - corresponding roc* library backend containing optimized GCN
 - corresponding cu* library backend containing NVPTX for NVIDIA devices

CSE/EE P590A, Dr. Hari Sadasivan

- E.g., hipBLAS is a marshalling library:

Why libraries?

- Code reuse
- High Performance
 - Maximize compute
 - Maximize memory bandwidth
- No need to deal with low level GPU code

Math library equivalents

CUBLAS	ROCBLAS	Basic Linear Algebra Subroutines					
CUFFT	ROCFFT	Fast Fourier Transforms					
THRUST	ROCTHRUST	STL Library for parallel algos					
CUB	ROCPRIM	Optimized Parallel Primitives					
EIGEN	EIGEN	C++ Template Library for Linear Algebra					
MORE INFO AT GITHUR COM/ROCM-DEVELOPER-TOOLS/HIP II HIP PORTING GUIDE MD							

AMD GCN HW Layout

Nathan Otterness and James H. Anderson. 2021. Exploring AMD GPU Scheduling Details by Experimenting With "Worst Practices".

CSE/EE P590A, Dr. Hari Sadasivan

MI100 micro-architecture

Prof. Yifan Sun, Prof. David R. Kaeli and Dr. Trinayan Baruah

1.A user program calls the hipLaunchKernelGGL API function to launch a kernel.

1.A user program calls the hipLaunchKernelGGL API function to launch a kernel.

2.The HIP runtime inserts a kernel-launch command into a software queue managed by the ROCclr runtime library.

1.A user program calls the hipLaunchKernelGGL API function to launch a kernel.

2.The HIP runtime inserts a kernellaunch command into a software queue managed by the ROCclr runtime library.

3.ROCclr converts the kernel-launch command into an AQL (architected queuing language) packet.

1.A user program calls the hipLaunchKernelGGL API function to launch a kernel.

2.The HIP runtime inserts a kernel-launch command into a software queue managed by the ROCclr runtime library.

3.ROCclr converts the kernel-launch command into an AQL (architected queuing language) packet.

4.ROCclr inserts the AQL packet into an HSA (heterogeneous system architecture) queue.

1.A user program calls the hipLaunchKernelGGL API function to launch a kernel.

2. The HIP runtime inserts a kernel-launch command into a software queue managed by the ROCclr runtime library.

3.ROCclr converts the kernel-launch command into an AQL (architected queuing language) packet.

4.ROCclr inserts the AQL packet into an HSA (heterogeneous system architecture) queue.

5.In hardware, an asynchronous compute engine (ACE) processes HSA queues, assigning kernels to compute hardware.

HSA Queue Management

- HSA API creates & manages the memory-mapped queues & commands that interface with driver & software.
- HSA queues (4 in total) are ring buffers of AQL packets & shared directly between GPU & userspace memory
- On creation of a new HSA queue, amdgpu driver sends GPU an updated runlist
 - list of HSA queues & memory locations
- For in-stream ordering, ROCm uses both HW (barrier AQL packets) & SW (ROCclr's SW queues) mechanisms.

AMD GCN GPU Hardware Layout

GPU SKU	Shader Engines	CUs / SE
AMD Radeon Instinct [™] MI60	4	16
AMD Radeon Instinct [™] MI50	4	15
AMD Radeon™ VII	4	15
AMD Radeon Instinct™ MI25 AMD Radeon™ Vega 64	4	16
AMD Radeon™ Vega 56	4	14
AMD Radeon Instinct [™] MI6	4	9
AMD Ryzen™ 5 2400G	1	11

GPU Organization

- 1. Controlling
 - Command Processor (CP)
 - Asynchronouse Compute Engine (ACE)
 - Direct Memory Access (DMA)
- 2. User-programmable shader
 - Shader Engine
 - Shader Arrays
 - Compute Units (CU)
- 3. Memory
 - L2 cache, Memory controller

Controlling

- Command Processor (CP) receives memcopy/kernel launch commands from CPU.
- Kernel launching command is forwarded to Asynchronous Compute Engine (ACE).
- DMA engines oversees mem-copy

Prof. Yifan Sun, Prof. David R. Kaeli and Dr. Trinayan Baruah

Workgroup dispatching for kernels

- Asynchronous Compute Engines (ACEs) handle kernel launch commands.
- ACEs break down kernels into workgroups & distribute to Shader Pipe Input (SPI) blocks.
- SPI breaks down workgroups into wavefronts, dispatches wavefronts to CUs & initializes registers.
- SPI guarantees all wavefronts in a workgroup are dispatched to same CU.

Prof. Yifan Sun, Prof. David R. Kaeli and Dr. Trinayan Baruah

DMA Engines Accept Work from the Same Queues

DMA Engines Accept Work from the Same Queues **Command Queue Command Queue Command Processor** Step 3 This can take place in parallel CP sends transfer command to with other compute work & the target DMA Engine transfers DMA DMA System Other Engines L2 Cache Engines **GPUs** Memory **PCle®** Infinity **Memory Controllers** Fabric Controller Controllers S **HBM/GDDR Memory**

DMA Engines Accept Work from the Same Queues **Command Queue Command Queue Command Processor** Step 4 Transfer takes place within DMA Engines Transfer process's virtual memory space Data to/from GPU Memory GPU DMA DMA System Other Engines L2 Cache Engines **GPUs** Memory **PCle®** Infinity **Memory Controllers** Fabric Controller Controllers S **HBM/GDDR Memory**

- SIMD Units
 - 4x SIMD vector units (each 16 lanes wide)
 - 4x 64KiB (256KiB total) Vector General-Purpose Register (VGPR) file
 - A maximum of 256 total registers per SIMD lane each register is 64x 4-byte entries
 - Instruction buffer for 10 wavefronts on each SIMD unit
 - Each wavefront is local to a single SIMD unit, not spread among the 4 (more on this in a moment)

- 64KiB Local Data Share (LDS, or shared memory)
 - 32 banks with conflict resolution
 - Can share data between all threads in a block
- 16 KiB Read/Write L1 vector data cache
 - Write-through; L2 cache is the coherence point shared by all CUs

- Scheduler
 - Buffer for 40 wavefronts 2560 threads
 - Separate decode/issue for
 - VALU, VGPR load/store
 - SALU, SGPR load/store
 - LDS load/store
 - Global mem load/store
 - Special instructions (NoOps, barriers, branch instructions)

- Sequencer
 - At each clock, waves on **1 SIMD unit** are considered for execution (Round Robin scheduling among SIMDs)
 - At most **1 instruction per wavefront** may be issued
 - At most **1 instruction from each category** may be issued (S/V ALU, S/V GPR, LDS, global, branch, etc)
 - Maximum of 5 instructions issued to wavefronts on a single SIMD, per cycle per CU
 - Some instructions take 4 or more cycles to retire (e.g. FP32VALU instruction on 1 wavefront using 16-wide SIMD)
 - Round robin scheduling of SIMDs hides execution latency
 - Programmer can still 'pretend' CU operates in 64-wide SIMD

Registers contd.

- SPI dynamically maps HW registers to logical ones
- However, the following special registers are physically located in SQ's wavefront slots.
 - Program Counter (PC) stores 32b address
 - EXEC
 - 64b execution mask for predicated execution
 - Comparison registers:
 - VCC-64b
 - SCC-1b

Calculating GPU throughput

- For MI100 with 120CUs,
- Instruction throughput= 120CUs x 4 SIMDs x 16 ALUs = 7680 instructions/cycle (IPC)
- Fused Mul-Add is 2ops/cycle, clock is 1.5GHz.
- Theoretical max throughput (TFLOPS)=?

Calculating GPU throughput

- For MI100 with 120CUs,
- Instruction throughput= 120CUs x 4 SIMDs x 16 ALUs = 7680 instructions/cycle (IPC)
- Fused Mul-Add is 2ops/cycle, clock is 1.5GHz.
- Theoretical max throughput = $7680 \times 1.502 \times 10^9 \times 2 = 23$ TFLOPS

Amdahl's Law calculates upper bound on SpeedUp

Maximum speedup limited by serial portion: Serial bottleneck

Speed of Light Instruction Throughput can be derived

- Estimation by hand
 - #CUs x CLK x #Ops/cycle/CU
 - MI250 peak FP32 vector performance:
 - 104*1.7*(2x64) = 22.63TFLOPS
- Additionally, profiler displays SOL (more later)

Arithmetic Intensity checks if kernel is memory/compute bound

- Arithmetic Intensity (AI)
 - FLOPs/Bytes
 - For a GEMM problem of size A (MxK), B (KxN) & C(MxN):
 - AI = (#FLOPs) / (#Bytes)

= 2MNK/2(MK+NK+MN) = MNK/(MK+NK+MN)

- Estimating bounds:
 - FP16 SOL = 181TFLOPS/1.6TB/s = 113 FLOPs/B
 - If M or N=1, AI<1 => memory bound
 - For GEMM MxKxN: 8192x128x8192,

AI= 124.1FLOPs/B => compute bound

Roofline model guides optimization

- Attainable FLOPs/s =
 - Min(peak GB/s, peak FLOPs/s)
- Machine Balance:
 - Where $AI = \frac{Peak \ FLOPs/s}{Peak \ GB/s}$

Memory bound Compute bound

Optimization Strategies

- Know your architecture
- Optimize memory layouts, execution config
- Profile & find the bottleneck
- Balance compute & memory operations:
 - Datatypes
 - Arithmetic costs
 - Latencies
- Better hardware utilization:
 - Control flow
 - Reduce instruction count
 - High throughput instructions
 - Parallel compute resources
- Maximize data-independence
 - Minimize communication or synchronization required

rocprof Profiler

- Command line profiler
- GPU HW counters vary by architecture:
 - rocprof –list-basic
 - rocprof –list-derived
- rocprof –stats <your_app>

results.stats.csv

"Name","Calls","TotalDurationNs","AverageNs","Percentage" "vecAdd(double*, double*, double*, int) [clone.kd]",1,5920,5920,100.0

<u>https://rocm.docs.amd.com/projects/rocprofiler/en/latest/rocprof.html</u>

rocprof flags

- To get help: rocprof -h
- Useful housekeeping flags:
 - --timestamp <on|off> turn on/off gpu kernel timestamps
 - --basenames <on|off> turn on/off truncating gpu kernel names (i.e., removing template parameters and argument types)
 - -o <output csv file> Direct counter information to a particular file name
 - d <data directory> Send profiling data to a particular directory
 - -t <temporary directory> Change the directory where data files typically created in /tmp are placed. This allows you to save these temporary files.
- Flags directing rocprofiler activity:
 - -i input<.txt|.xml> specify an input file (note the output files will now be named input.*)
 - --hsa-trace to trace GPU Kernels, host HSA events (more later) and HIP memory copies.
 - --hip-trace to trace HIPAPI calls
 - --roctx-trace to trace roctx markers
 - --kfd-trace to trace GPU driver calls
- Advanced usage
 - -m <metric file> Allows the user to define and collect custom metrics. See rocprofiler/test/tool/*.xml on GitHub for examples.

rocprof contd.

- rocprof –i input.txt –o vadd_profile.csv ./vadd
- Measure RD/WR between cache & memory
 - TCC_EA_RDREQ
 - TCC_EA_WRREQ

input.txt

pmc: TCC_EA_RDREQ_sum, TCC_EA_WRREQ_sum
range: 0:1
gpu: 0
kernel: vecAdd

results.stats.csv

Index,KernelName,gpu-id,queue-id,queue-index,pid,tid,grd,wgr,lds,scr,vgpr
,sgpr,fbar,sig,obj,TCC_EA_RDREQ_sum,TCC_EA_WRREQ_sum
0,"vecAdd(double*, double*, double*, int) [clone .kd]"
 ,0,0,0,15239,15242,10240,256,0,0,12,24,0,0x0,0x7f9ba4c45800,2610,1280

RDs = 2 X WRs for vecAdd

rocprof: Commonly Used GPU Counters

VALUUtilization	The percentage of ALUs active in a wave. Low VALUUtilization is likely due to high divergence or a poorly sized grid
VALUBusy	The percentage of GPUTime vector ALU instructions are processed. Can be thought of as something like compute utilization
FetchSize	The total kilobytes fetched from global memory
WriteSize	The total kilobytes written to global memory
L2CacheHìt	The percentage of fetch, write, atomic, and other instructions that hit the data in L2 cache
MemUnitBusy	The percentage of GPUTime the memory unit is active. The result includes the stall time
MemUnitStalled	The percentage of GPUTime the memory unit is stalled
WriteUnitStalled	The percentage of GPUTime the write unit is stalled

AMD:20 together are advance

CSE/EE P590A, Dr. Hari Sadasivan

rocprof + Perfetto: Collecting and Visualizing Application Traces

- rocprof can collect traces
 - \$ /opt/rocm/bin/rocprof --hip-trace <app with arguments>
 - This will output a .json file that can be visualized using the chrome browser and Perfetto (https://ui.perfetto.dev/)

Omniperf profiler: rocprof metrics + SOL

[Public]

We use the example sample/vcopy.cpp from the Omniperf installation folder:

Compile with hipcc:

\$ hipcc -o vcopy vcopy.cpp

Profile with Omniperf:

\$ omniperf profile -n vcopy_all -- ./vcopy 1048576 256

A new directory will be created called workloads/vcopy_all

Analyze the profiled workload:

\$ omniperf analyze -p workloads/vcopy_all/mi200/ &> vcopy_analyze.txt

Θ. Το	p Stat					
	KernelName	Count	Sum(ns)	Mean(ns)	Median(ns)	Pc
Θ	vecCopy(double*, double*, double*, int, int) [clone .kd]	1	341123.00	341123.00	341123.00	100.0

2. System Speed-of-Light						7.1 Wavefront Launch Stats					
Index	Metric	Value	Unit	Peak	PoP	Index	Metric	Avg	Min	Max	Unit
2.1.0	VALU FLOPs	0.00	Gflop	23936.0	Θ.Θ	7.1.0	Grid Size	1048576.00	1048576.00	1048576.00	Work items
2.1.1	VALU IOPs	89.14	Giop	23936.0	0.37242200388114116						
2.1.2	MFMA FLOPs (BF16)	0.00	Gflop	95744.0	0.0	7.1.1	Workgroup Size	256.00	256.00	256.00	Work items
2.1.3	MFMA FLOPs (F16)	0.00	Gflop	191488.0	0.0	7.1.2	Total Wavefronts	16384.00	16384.00	16384.00	Wavefronts
2.1.4	MFMA FLOPs (F32)	0.00	Gflop	47872.0	0.0	7.1.3	Saved Wavefronts	0.00	0.00	0.00	Wavefronts
2.1.5	MFMA FLOPs (F64)	0.00	Gflop	47872.0	θ.θ	710	Bostoned Wavefrants	0.00	0.00	0.00	Wayofponts
2.1.6	MFMA IOPs (Int8)	0.00	Giop	191488.0	0.0	/.1.4	Rescored waverronts	0.00	0.00	0.00	waverronts
2.1.7	Active CUs	58.00	Cus	110	52.72727272727273	7.1.5	VGPRs	44.00	44.00	44.00	Registers
2.1.8	SALU Util	3.69	Pct	100	3.6862586934167525	7.1.6	SGPRs	48.00	48.00	48.00	Registers
2.1.9	VALU Util	5.90	Pct	100	5.895531580380328	7.1.7	LDS Allocation	0.00	0.00	0.00	Bytes
2.1.10	MFMA Util	0.00	Pct	100	0.0						
2.1.11	VALU Active Threads/Wave	32.71	Threads	64	51.10526315789473	7.1.8	Scratch Allocation	16496.00	16496.00	16496.00	Bytes
2 1 12	TDC Tarma	0.00	Tasta (sus] s	-	10 5566(00021020212						

CSE/EE P590A, Dr. Hari Sadasivan

Omniperf profiler: rocprof metrics + SOL

[Public]

SW Optimizations for AI can be classified into 3

Reducing compute

- Model Compression
 - Pruning
 - Quantization
 - Knowledge distillation
- Efficient architectures
 - Lightweight models
 - Linear Attention
- Sparse Computation

Increasing FLOPs/Byte

- Memory access optimization
 - Layout, Hierarchy
- Compute re-use
 - Caching, Kernel fusion
- Mixed-precision

Parallelism

- Inter-device
 - Data, model, pipeline
- Intra-device
 - Concurrency

AMD Hiring in AI

- 1. 80% of software engineer roles will adopt AI by '27 (ACM tech news, ITPro, Oct 3, '24)
- 2. Internships & Full-time
 - <u>https://careers.amd.com/careers-home/jobs</u>
 - <u>https://www.linkedin.com/in/hariss-</u>