
Introduction to High-Performance GPU

Programming, Part-2

Dr. Hari Sadasivan,
AI Group, AMD

About Me

Dr. Hari Sadasivan
MTS SDE in AI Group, AMD |
Faculty (part-time), UW Seattle |
Sr Member, IEEE

• Co-founder of AMD –omics group
• Tech-lead, AMD CoE in AI at UW Seattle

• CSE/ECE PMP 590: Applied Parallel
Programming on GPU

Home: https://harisadasivan.com/ Contact: hari.sadasivan@amd.com

https://sites.google.com/uw.edu/hipgpuprogramming
https://harisadasivan.com/

Agenda

GPUs
• Evolution
• CPU vs GPU
• SIMT Programming Model
• Programming GPUs

• Put together a complete HIP code
• Architecture
• Profiling

• The world of GPU Optimizations for AI
• AMD Hiring

CSE/EE P590A, Dr. Hari Sadasivan

void vecAdd(float* A, float* B, float* C, int n) {

int size = n * sizeof(float);

float* A_d, B_d, C_d;

// Allocate device memory

hipMalloc((void **) &A_d, size);

hipMalloc((void **) &B_d, size);

hipMalloc((void **) &C_d, size);

// Transfer A and B to device memory

hipMemcpy(A_d, A, size, hipMemcpyHostToDevice);

hipMemcpy(B_d, B, size, hipMemcpyHostToDevice);

// Kernel invocation code

vecAddKernel<<<ceil(n/256.0), 256>>>(A_d, B_d, C_d, n);

hipDeviceSynchronize();

// Transfer C from device to host

hipMemcpy(C, C_d, size, hipMemcpyDeviceToHost);

// Free device memory for A, B, C

hipFree(A_d); hipFree(B_d); hipFree (C_d);

}

Vector Addition

CSE/EE P590A, Dr. Hari Sadasivan

Mapping to the data

V[0] V[1] V[2] V[3] V[4] V[5] V[6] V[7] V[8] V[9]

Suppose we use 1d thread blocks of size 4

0 1 2 3Thread 0 1 2 3

Block 0 Block 1 Block 2

0 1 2 3

Boundary

Check!

i = blockIdx.x * blockDim.x + threadIdx.x

CSE/EE P590A, Dr. Hari Sadasivan

Questions

1. How many floating operations are being performed in the vector add

kernel? Give your answer in terms of N and explain.

2. How many global memory reads and writes are being performed by the

vector add kernel? Give your answer in terms of N.

CSE/EE P590A, Dr. Hari Sadasivan

Questions

1. How many floating operations are being performed in the vector add

kernel? Give your answer in terms of N and explain.

N, one for each pair of input vector elements

2. How many global memory reads and writes are being performed by the

vector add kernel? Give your answer in terms of N.

Reads: 2N, one for each of the two input vectors elements.

Writes: N, one for each output vector element.

CSE/EE P590A, Dr. Hari Sadasivan

Blocking vs Nonblocking API functions

▪ The kernel launch function, hipLaunchKernelGGL, is non-blocking for the host.

- After sending instructions/data, the host continues immediately while the device executes

the kernel

- If you know the kernel will take some time, this is a good area to do some work (i.e. MPI

comms) on the host

▪ However, hipMemcpyis blocking.

- The data pointed to in the arguments can be accessed/modified after the function returns.

▪ The non-blocking version is hipMemcpyAsync

hipMemcpyAsync(d_a, h_a, Nbytes, hipMemcpyHostToDevice, stream);

▪ Like hipLaunchKernelGGL, this function takes an argument of type hipStream_t

▪ It is not safe to access/modify the arguments of hipMemcpyAsyncwithout some sort of

synchronization.

CSE/EE P590A, Dr. Hari Sadasivan

Streams

▪ A stream in HIP is a queue of tasks (e.g. kernels, memcpys, events).

- Tasks enqueued in a stream complete in order on that stream.

- Tasks being executed in different streams are allowed to overlap and share device resources.

▪ Streams are created via:

 hipStream_t stream;

 hipStreamCreate(&stream);

▪ And destroyed via:

hipStreamDestroy(stream);

▪ Passing 0 or NULL as the hipStream_t argument to a function instructs the function

 to execute on a stream called the ‘NULL Stream’:

- No task on the NULL stream will begin until all previously enqueued tasks in all other

 streams have completed.

- Blocking calls like hipMemcpy run on the NULL stream.

CSE/EE P590A, Dr. Hari Sadasivan

Streams

▪ Suppose we have 4 small kernels to execute:

hipLaunchKernelGGL(myKernel1
,

dim3(1), dim3(256), 0, 0, 256, d_a1);

hipLaunchKernelGGL(myKernel2

,

dim3(1), dim3(256), 0, 0, 256, d_a2);

hipLaunchKernelGGL(myKernel3

,

dim3(1), dim3(256), 0, 0, 256, d_a3);

hipLaunchKernelGGL(myKernel4

,

dim3(1), dim3(256), 0, 0, 256, d_a4);

▪ Even though these kernels use only one block each, they’ll execute in

serial on the NULL stream:

NULL Stream myKernel1 myKernel2 myKernel3 myKernel4

CSE/EE P590A, Dr. Hari Sadasivan

Streams

▪ With streams we can effectively share the GPU’s compute resources:

hipLaunchKernelGGL(myKernel1
,

dim3(1), dim3(256), 0, stream1, 256, d_a1);

hipLaunchKernelGGL(myKernel2

,

dim3(1), dim3(256), 0, stream2, 256, d_a2);

hipLaunchKernelGGL(myKernel3

,

dim3(1), dim3(256), 0, stream3, 256, d_a3);

hipLaunchKernelGGL(myKernel4 dim3(1), dim3(256), 0, stream4, 256, d_a4);

Note 1: Check that the kernels modify different parts of memory to avoid data races.

Note 2: With large kernels, overlapping computations may not help performance.

NULL Stream

Stream1 myKernel1

Stream2 myKernel2

Stream3 myKernel3

Stream4 myKernel4

CSE/EE P590A, Dr. Hari Sadasivan

Streams

▪ There is another use for streams besides concurrent kernels:

- Overlapping kernels with data movement.

▪ AMD GPUs have separate engines for:

- Host->Device memcpys

- Device->Host memcpys

- Compute kernels.

▪ These three different operations can overlap without dividing the GPU’s resources.

- The overlapping operations should be in separate, non-NULL, streams.

- The host memory should be pinned.

CSE/EE P590A, Dr. Hari Sadasivan

Pinned Memory

Host data allocations are pageable by default. The GPU can directly access Host data if it is pinned

instead.

▪ Allocating pinned host memory:

double *h_a = NULL;

hipHostMalloc(&h_a, Nbytes);

▪ Free pinned host memory:

hipHostFree(h_a);

▪ Host<->Device memcpy bandwidth increases significantly when host memory is pinned.

- It is good practice to allocate host memory that is frequently transferred to/from the device as

pinned memory.

CSE/EE P590A, Dr. Hari Sadasivan

Streams

Suppose we have 3 kernels which require moving data to and from the device:

hipMemcpy(d_a1, h_a1, Nbytes, hipMemcpyHostToDevice));

hipMemcpy(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice));

hipMemcpy(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice));

hipLaunchKernelGGL(myKernel1, blocks, threads, 0, 0, N, d_a1);

hipLaunchKernelGGL(myKernel2, blocks, threads, 0, 0, N, d_a2);

hipLaunchKernelGGL(myKernel3, blocks, threads, 0, 0, N, d_a3);

hipMemcpy(h_a1, d_a1, Nbytes, hipMemcpyDeviceToHost);

hipMemcpy(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost);

hipMemcpy(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost);

NULL Stream HToD1 HToD2 HToD3 myKernel1 myKernel2 myKernel3 DToH1 DToH2 DToH3

CSE/EE P590A, Dr. Hari Sadasivan

Streams

Changing to asynchronous memcpys and using streams:

hipMemcpyAsync(d_a1, h_a1, Nbytes, hipMemcpyHostToDevice, stream1);

hipMemcpyAsync(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice, stream2);

hipMemcpyAsync(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice, stream3);

hipLaunchKernelGGL(myKernel1, blocks, threads, 0, stream1, N, d_a1);

hipLaunchKernelGGL(myKernel2, blocks, threads, 0, stream2, N, d_a2);

hipLaunchKernelGGL(myKernel3, blocks, threads, 0, stream3, N, d_a3);

hipMemcpyAsync(h_a1, d_a1, Nbytes, hipMemcpyDeviceToHost, stream1);

hipMemcpyAsync(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost, stream2);

hipMemcpyAsync(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost, stream3);

NULL Stream

Stream1 HToD1 myKernel1 DToH1

Stream2 HToD2 myKernel2 DToH2

Stream3 HToD3 myKernel3 DToH3

CSE/EE P590A, Dr. Hari Sadasivan

Synchronization

How do we coordinate execution on device streams with host execution?

Need some synchronization points.

▪ hipDeviceSynchronize();

- Heavy-duty sync point.

- Blocks host until all work in all device streams has reported complete.

▪ hipStreamSynchronize(stream);

- Blocks host until all work in stream has reported complete.

Can a stream synchronize with another stream? For that we need ‘Events’.

CSE/EE P590A, Dr. Hari Sadasivan

Events

A hipEvent_t object is created on a device via:

hipEvent_t event;

hipEventCreate(&event);

We queue an event into a stream:

hipEventRecord(event, stream);

- The event records what work is currently enqueued in the

stream.

- When the stream’s execution reaches the event, the event is

considered ‘complete’.

At the end of the application, event objects should be destroyed:

hipEventDestroy(event);

CSE/EE P590A, Dr. Hari Sadasivan

Events

What can we do with queued events?

▪ hipEventSynchronize(event);

- Block host until event reports complete.

- Only a synchronization point with respect to the stream where event was enqueued.

▪ hipEventElapsedTime(&time, startEvent, endEvent);

- Returns the time in ms between when two events, startEvent and endEvent, completed

- Can be very useful for timing kernels/memcpys

▪ hipStreamWaitEvent(stream, event);

- Non-blocking for host.

- Instructs all future work submitted to stream to wait until event reports complete.

- Primary way we enforce an ‘ordering’ between tasks in separate streams.

CSE/EE P590A, Dr. Hari Sadasivan

Questions

1. If we want to copy 5000 bytes of data from host array h_A (h_A is a pointer to

element 0 of the source array) to device array d_A (d_A is a pointer to element 0

of the destination array), what would be an appropriate API call for the data copy in

HIP?

CSE/EE P590A, Dr. Hari Sadasivan

Questions

1. If we want to copy 5000 bytes of data from host array h_A (h_A is a pointer to

element 0 of the source array) to device array d_A (d_A is a pointer to element 0

of the destination array), what would be an appropriate API call for the data copy in

HIP?

Ans: hipMemcpy(d_A, h_A, 5000, hipMemcpyHostToDevice);

CSE/EE P590A, Dr. Hari Sadasivan

▪ A note on naming conventions:

- roc* -> AMGCN library usually written in HIP

- cu* -> NVIDIA PTX libraries

- hip* -> usually interface layer on top of roc*/cu* backends

▪ hip* libraries:

- Can be compiled by hipcc and can generate a call for the device you have:

- hipcc->hip-clang->AMD GCN ISA

- hipcc->nvcc (inlined)->NVPTX

- Just a thin wrapper that marshals calls off to a “backend” library:

- corresponding roc* library backend containing optimized GCN

- corresponding cu* library backend containing NVPTX for NVIDIA devices

- E.g., hipBLAS is a marshalling library:

21

AMD GPU Libraries

hipBLAS

rocBLAS cuBLAS

CSE/EE P590A, Dr. Hari Sadasivan

Why libraries?

• Code reuse

• High Performance

• Maximize compute

• Maximize memory bandwidth

• No need to deal with low level GPU code

CSE/EE P590A, Dr. Hari Sadasivan

Math library equivalents

Basic Linear Algebra Subroutines
CUBLAS ROCBLAS

Fast Fourier TransformsCUFFT ROCFFT

STL Library for parallel algosTHRUST ROCTHRUST

Optimized Parallel PrimitivesCUB ROCPRIM

C++ Template Library for Linear

Algebra
EIGEN EIGEN

MORE INFO AT: GITHUB.COM/ROCM-DEVELOPER-TOOLS/HIP HIP_PORTING_GUIDE.MD

CSE/EE P590A, Dr. Hari Sadasivan

AMD GCN HW Layout

CSE/EE P590A, Dr. Hari Sadasivan

Nathan Otterness and James H. Anderson. 2021. Exploring AMD GPU Scheduling Details by Experimenting With “Worst Practices”.

MI100 micro-architecture

EE P590A, Dr. Hari Sadasivan 25

Prof. Yifan Sun, Prof. David R. Kaeli and Dr. Trinayan Baruah

ROCm queue management

1.A user program calls

the hipLaunchKernelGGL API function to

launch a kernel.

EE P590A, Dr. Hari Sadasivan 26

Exploring AMDGPU Scheduling Details by Experimenting With “WorstPractices” by Otterness et al.

ROCm queue management

1.A user program calls

the hipLaunchKernelGGL API function to launch

a kernel.

2.The HIP runtime inserts a kernel-launch

command into a software queue managed by

the ROCclr runtime library.

EE P590A, Dr. Hari Sadasivan 27

Exploring AMDGPU Scheduling Details by Experimenting With “WorstPractices” by Otterness et al.

ROCm queue management

1.A user program calls

the hipLaunchKernelGGL API function to

launch a kernel.

2.The HIP runtime inserts a kernel-

launch command into a software queue

managed by the ROCclr runtime library.

3.ROCclr converts the kernel-launch

command into an AQL (architected

queuing language) packet.

EE P590A, Dr. Hari Sadasivan 28

Exploring AMDGPU Scheduling Details by Experimenting With “WorstPractices” by Otterness et al.

ROCm queue management

1.A user program calls

the hipLaunchKernelGGL API function to launch

a kernel.

2.The HIP runtime inserts a kernel-launch

command into a software queue managed by the

ROCclr runtime library.

3.ROCclr converts the kernel-launch command

into an AQL (architected queuing language)

packet.

4.ROCclr inserts the AQL packet into an HSA

(heterogeneous system architecture) queue.

EE P590A, Dr. Hari Sadasivan 29Exploring AMDGPU Scheduling Details by Experimenting With “WorstPractices” by Otterness et al.

ROCm queue management

1.A user program calls the hipLaunchKernelGGL API

function to launch a kernel.

2.The HIP runtime inserts a kernel-launch command

into a software queue managed by the ROCclr runtime

library.

3.ROCclr converts the kernel-launch command into an

AQL (architected queuing language) packet.

4.ROCclr inserts the AQL packet into an HSA

(heterogeneous system architecture) queue.

5.In hardware, an asynchronous compute engine

(ACE) processes HSA queues, assigning kernels to

compute hardware.

EE P590A, Dr. Hari Sadasivan 30
Exploring AMDGPU Scheduling Details by Experimenting With “WorstPractices” by Otterness et al.

HSA Queue Management

• HSA API creates & manages the memory-mapped queues & commands that interface with driver &

software.

• HSA queues (4 in total) are ring buffers of AQL packets & shared directly between GPU & userspace

memory

• On creation of a new HSA queue, amdgpu driver sends GPU an updated runlist

• list of HSA queues & memory locations

• For in-stream ordering, ROCm uses both HW (barrier AQL packets) & SW (ROCclr’s SW queues)

mechanisms.

EE P590A, Dr. Hari Sadasivan 31

AMD GCN GPU Hardware Layout

Command Processor

EE P590A, Dr. Hari Sadasivan 32

Shader Engine
(SE3)

Shader Engine
(SE1)

Shader Engine
(SE2)

AMD ORNL training series

Shader Engine
(SE0)

AMD GCN GPU Hardware Layout

EE P590A, Dr. Hari Sadasivan 33

Command Processor

Workload
Manager

Workload
Manager

Workload
Manager

Workload
Manager

CU CU
CU CU
CU CU
CU CU
CU CU
CU CU
CU CU
CU CU
CU CU
CU CU
CU CU
CU CU
CU CU
CU CU
CU CU
CU CU

CU CU
CU CU
CU CU
CU CU
CU CU
CU CU
CU CU
CU CU
CU CU
CU CU
CU CU
CU CU
CU CU
CU CU
CU CU
CU CU

Command Queue Command Queue
Queues reside in

user-visible DRAM

AMD ORNL training series

Hardware Configuration Parameters on Modern AMD GPUs

EE P590A, Dr. Hari Sadasivan 34

GPU SKU Shader Engines CUs / SE

AMD Radeon Instinct MI60 4 16

AMD Radeon Instinct MI50 4 15

AMD Radeon VII 4 15

AMD Radeon Instinct
MI25 AMD Radeon Vega
64

4 16

AMD Radeon Vega 56 4 14

AMD Radeon Instinct MI6 4 9

AMD Ryzen 5 2400G 1 11

AMD ORNL training series

GPU Organization

1. Controlling

• Command Processor (CP)

• Asynchronouse Compute Engine (ACE)

• Direct Memory Access (DMA)

2. User-programmable shader

• Shader Engine

• Shader Arrays

• Compute Units (CU)

3. Memory

• L2 cache, Memory controller

EE P590A, Dr. Hari Sadasivan 35

Prof. Yifan Sun, Prof. David R. Kaeli and Dr. Trinayan Baruah

Controlling

• Command Processor (CP) receives mem-

copy/kernel launch commands from CPU.

• Kernel launching command is forwarded to

Asynchronous Compute Engine (ACE).

• DMA engines oversees mem-copy

EE P590A, Dr. Hari Sadasivan 36

Prof. Yifan Sun, Prof. David R. Kaeli and Dr. Trinayan Baruah

Workgroup dispatching for kernels

• Asynchronous Compute Engines

(ACEs) handle kernel launch

commands.

• ACEs break down kernels into

workgroups & distribute to Shader

Pipe Input (SPI) blocks.

• SPI breaks down workgroups into

wavefronts, dispatches wavefronts to

CUs & initializes registers.

• SPI guarantees all wavefronts in a

workgroup are dispatched to same

CU.

CSE/EE P590A, Dr. Hari Sadasivan

Prof. Yifan Sun, Prof. David R. Kaeli and Dr. Trinayan Baruah

GPU

Command Processor

Memory Controllers

HBM/GDDR Memory

GPU Memory, I/O, and Connectivity

Command Queue Command Queue

PCIe®

Controllers

Infinity

Fabric

Controllers

DMA

Engines

DMA

EnginesSystem

Memory

Other

GPUs
L2 Cache

Scheduling memcpy to a GPU

CSE/EE P590A, Dr. Hari Sadasivan

AMD ORNL training series

DMA Engines Accept Work from the Same Queues

GPU

Command Processor

Memory Controllers

HBM/GDDR Memory

Command Queue Command Queue

PCIe®

Controller

s

Infinity

Fabric

Controllers

DMA

Engines

DMA

EnginesSystem

Memory

Other

GPUs

Step 1

CPU submits a DMA Transfer

packet to the command queue This is done with user-level

memory writes in Radeon

Open Compute (ROCm).

No kernel drivers involved.

L2 Cache

Scheduling memcpy to a GPU

CSE/EE P590A, Dr. Hari Sadasivan

AMD ORNL training series

DMA Engines Accept Work from the Same Queues

GPU

Command Processor

Memory Controllers

HBM/GDDR Memory

Command Queue Command Queue

PCIe®

Controllers

Infinity

Fabric

Controllers

DMA

Engines

DMA

EnginesSystem

Memory

Other

GPUs

Step 2

CP Reads the packet and

understands the transfer request

L2 Cache

Scheduling memcpy to a GPU

CSE/EE P590A, Dr. Hari Sadasivan

AMD ORNL training series

GPU

Command Processor

Memory Controllers

HBM/GDDR Memory

DMA Engines Accept Work from the Same Queues

Command Queue Command Queue

PCIe®

Controller

s

Infinity

Fabric

Controllers

DMA

Engines

DMA

EnginesSystem

Memory

Other

GPUs

Step 3

CP sends transfer command to

the target DMA Engine

This can take place in parallel

with other compute work &

transfers

Scheduling memcpy to a GPU

L2 Cache

CSE/EE P590A, Dr. Hari Sadasivan

AMD ORNL training series

GPU

Command Processor

Memory Controllers

HBM/GDDR Memory

DMA Engines Accept Work from the Same Queues

Command Queue Command Queue

PCIe®

Controller

s

Infinity

Fabric

Controllers

DMA

Engines

DMA

EnginesSystem

Memory

Other

GPUs

Step 4

DMA Engines Transfer

Data to/from GPU Memory

Transfer takes place within

process’s virtual memory space

L2 Cache

Scheduling memcpy to a GPU

CSE/EE P590A, Dr. Hari Sadasivan

AMD ORNL training series

The GCN Compute Unit (CU)

▪ SIMD Units

- 4x SIMD vector units (each 16 lanes wide)

- 4x 64KiB (256KiB total) Vector General-Purpose Register (VGPR) file

- A maximum of 256 total registers per SIMD lane – each register is 64x 4-byte

entries

- Instruction buffer for 10 wavefronts on each SIMD unit

- Each wavefront is local to a single SIMD unit, not spread among the 4 (more

on this in a moment)

SI MD 0Scalar Unit

SGPR VGPR

S
I

MD 1

VGPR

SIMD 2 SIM D3

VGPR VGPR

CSE/EE P590A, Dr. Hari Sadasivan

AMD ORNL training series

The GCN Compute Unit (CU)

▪ 64KiB Local Data Share (LDS, or shared memory)

- 32 banks with conflict resolution

- Can share data between all threads in a block

▪ 16 KiB Read/Write L1 vector data cache

-Write-through; L2 cache is the coherence point – shared by all CUs

SIMD 0Scalar Unit

SGPR

LDS

VGPR

L1 Cache

SIMD 1

VGPR

S
I

MD 2 SIM D3

VGPR VGPR

CSE/EE P590A, Dr. Hari Sadasivan

AMD ORNL training series

The GCN Compute Unit (CU)

▪ Scheduler

- Buffer for 40 wavefronts – 2560 threads

- Separate decode/issue for

- VALU, VGPR load/store

- SALU, SGPR load/store

- LDS load/store

- Global mem load/store

- Special instructions (NoOps, barriers, branch instructions)

SIMD 0Scalar Unit

SGPR

LDS

VGPR

L1 Cache

Scheduler

SIMD 1

VGPR

SIMD 2 SIM D3

VGPR VGPR

CSE/EE P590A, Dr. Hari Sadasivan

AMD ORNL training series

The GCN Compute Unit (CU)

▪ Sequencer

- At each clock, waves on 1 SIMD unit are considered for execution (Round Robin

scheduling among SIMDs)

- At most 1 instruction per wavefront may be issued

- At most 1 instruction from each category may be issued (S/V ALU, S/V GPR, LDS,

global, branch, etc)

- Maximum of 5 instructions issued to wavefronts on a single SIMD, per cycle per CU

- Some instructions take 4 or more cycles to retire (e.g. FP32VALU instruction on 1

wavefront using 16-wide SIMD)

- Round robin scheduling of SIMDs hides execution latency

- Programmer can still ‘pretend’ CU operates in 64-wide SIMD

SIMD 0Scalar Unit

SGPR

LDS

VGPR

L1 Cache

Sequencer

SIMD 1

VGPR

SIMD 2 SIM D3

VGPR VGPR

CSE/EE P590A, Dr. Hari Sadasivan

Registers contd.

• SPI dynamically maps HW registers to logical ones

• However, the following special registers are physically located

in SQ’s wavefront slots.

• Program Counter (PC) stores 32b address

• EXEC

• 64b execution mask for predicated execution

• Comparison registers:

• VCC-64b

• SCC-1b

CSE/EE P590A, Dr. Hari Sadasivan

Calculating GPU throughput

• For MI100 with 120CUs,

• Instruction throughput= 120CUs x 4 SIMDs x 16 ALUs = 7680 instructions/cycle (IPC)

• Fused Mul-Add is 2ops/cycle, clock is 1.5GHz.

• Theoretical max throughput (TFLOPS)= ?

CSE/EE P590A, Dr. Hari Sadasivan

AMD ORNL training series

Calculating GPU throughput

• For MI100 with 120CUs,

• Instruction throughput= 120CUs x 4 SIMDs x 16 ALUs = 7680 instructions/cycle (IPC)

• Fused Mul-Add is 2ops/cycle, clock is 1.5GHz.

• Theoretical max throughput = 7680 x 1.502 x 109 x 2 = 23 TFLOPS

CSE/EE P590A, Dr. Hari Sadasivan

AMD ORNL training series

Amdahl’s Law calculates upper bound on SpeedUp

◼ Maximum speedup limited by serial portion: Serial bottleneck

Speedup =

◼ Amdahl’s Law

❑ f: Parallelizable fraction of a program

❑ S: Number of processors

1

1 - f + f

S

CSE/EE P590A, Dr. Hari Sadasivan

Speed of Light Instruction Throughput can be derived

◼ Estimation by hand

◼ #CUs x CLK x #Ops/cycle/CU

◼ MI250 peak FP32 vector performance:

◼ 104*1.7*(2x64) = 22.63TFLOPS

◼ Additionally, profiler displays SOL (more later)

CSE/EE P590A, Dr. Hari Sadasivan

Arithmetic Intensity checks if kernel is memory/compute bound

◼ Arithmetic Intensity (AI)

◼ FLOPs/Bytes

◼ For a GEMM problem of size A (MxK), B (KxN) & C(MxN):

◼ AI = (#FLOPs) / (#Bytes)

 = 2MNK/2(MK+NK+MN) = MNK/(MK+NK+MN)

• Estimating bounds:

• FP16 SOL = 181TFLOPS/1.6TB/s = 113 FLOPs/B

• If M or N=1, AI<1 => memory bound

• For GEMM MxKxN: 8192x128x8192,

 AI= 124.1FLOPs/B => compute bound

CSE/EE P590A, Dr. Hari Sadasivan

• Attainable FLOPs/s =

•
Min(peak GB/s, peak FLOPs/s)

• Machine Balance:

• Where 𝐴𝐼 =
𝑃𝑒𝑎𝑘 𝐹𝐿𝑂𝑃𝑠/𝑠

𝑃𝑒𝑎𝑘 𝐺𝐵/𝑠

A
tt
a
in

a
b
le

F
L
O

P
s
/s

101

Arithmetic Intensity

(FLOPs/Byte)

0.

1

100

0

100

10

Peak FLOPs/s

Unattainable

performance (greater

than peak FLOPs/s)

Roofline model guides optimization

Compute Bound

Memory bound Compute bound

CSE/EE P590A, Dr. Hari Sadasivan

Optimization Strategies

◼ Know your architecture

◼ Optimize memory layouts, execution config

◼ Profile & find the bottleneck

◼ Balance compute & memory operations:

◼ Datatypes

◼ Arithmetic costs

◼ Latencies

◼ Better hardware utilization:

◼ Control flow

◼ Reduce instruction count

◼ High throughput instructions

◼ Parallel compute resources

◼ Maximize data-independence

◼ Minimize communication or synchronization required

CSE/EE P590A, Dr. Hari Sadasivan

rocprof Profiler

• Command line profiler

• GPU HW counters vary by architecture:

• rocprof –list-basic

• rocprof –list-derived

• rocprof –stats <your_app>

• https://rocm.docs.amd.com/projects/rocprofiler/en/latest/rocprof.html

results.stats.csv

CSE/EE P590A, Dr. Hari Sadasivan

https://rocm.docs.amd.com/projects/rocprofiler/en/latest/rocprof.html

rocprof flags
• To get help:

rocprof -h

• Useful housekeeping flags:
• --timestamp <on|off> - turn on/off gpu kernel timestamps

• --basenames <on|off> - turn on/off truncating gpu kernel names (i.e., removing

template parameters and argument types)

• -o <output csv file> - Direct counter information to a particular file name

• -d <data directory> - Send profiling data to a particular directory

• -t <temporary directory> - Change the directory where data files typically created in
/tmp are placed. This allows you to save these temporary files.

• Flags directing rocprofiler activity:
• -i input<.txt|.xml> - specify an input file (note the output files will now be named

input.*)

• --hsa-trace - to trace GPU Kernels, host HSA events (more later) and HIP memory

copies.

• --hip-trace - to trace HIP API calls

• --roctx-trace - to trace roctx markers

• --kfd-trace - to trace GPU driver calls

• Advanced usage
• -m <metric file> - Allows the user to define and collect custom metrics. See

rocprofiler/test/tool/*.xml on GitHub for examples.

CSE/EE P590A, Dr. Hari Sadasivan

rocprof contd.

• rocprof –i input.txt –o vadd_profile.csv ./vadd

• Measure RD/WR between cache & memory

• TCC_EA_RDREQ

• TCC_EA_WRREQ

 input.txt

results.stats.csv

RDs = 2 X WRs for vecAdd

CSE/EE P590A, Dr. Hari Sadasivan

rocprof: Commonly Used GPU Counters

Full list at: https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

CSE/EE P590A, Dr. Hari Sadasivan

rocprof + Perfetto: Collecting and Visualizing Application Traces

• rocprof can collect traces

$ /opt/rocm/bin/rocprof --hip-trace <app with arguments>

This will output a .json file that can be visualized using the chrome browser and Perfetto (https://ui.perfetto.dev/)

Copy activity (H2D and D2H)

HIP API Activity

GPU activity

CSE/EE P590A, Dr. Hari Sadasivan

[Public]

Omniperf profiler: rocprof metrics + SOL

We use the example sample/vcopy.cpp from the Omniperf installation folder:

Compile with hipcc:

Profile with Omniperf:

A new directory will be created called workloads/vcopy_all

Analyze the profiled workload:

$ hipcc –o vcopy vcopy.cpp

$ omniperf profile –n vcopy_all -- ./vcopy 1048576 256

$ omniperf analyze –p workloads/vcopy_all/mi200/ &> vcopy_analyze.txt

CSE/EE P590A, Dr. Hari Sadasivan

[Public]

Omniperf profiler: rocprof metrics + SOL

CSE/EE P590A, Dr. Hari Sadasivan

SW optimizations help achieve higher performance/watt

Reducing compute Increasing FLOPs/Byte Parallelism

• Model Compression
• Pruning
• Quantization
• Knowledge

distillation
• Efficient architectures

• Lightweight models
• Linear Attention

• Sparse Computation

• Memory access optimization
• Layout, Hierarchy

• Compute re-use
• Caching, Kernel fusion

• Mixed-precision

• Inter-device
• Data, model, pipeline

• Intra-device
• Concurrency

SW Optimizations for AI can be classified into 3

AMD Hiring in AI

1. 80% of software engineer roles will adopt AI by ‘27 (ACM tech news, ITPro, Oct 3, ‘24)
2. Internships & Full-time

• https://careers.amd.com/careers-home/jobs
• https://www.linkedin.com/in/hariss-

https://careers.amd.com/careers-home/jobs
https://www.linkedin.com/in/hariss-/

	Slide 1: Introduction to High-Performance GPU Programming, Part-2
	Slide 2: About Me
	Slide 3: Agenda
	Slide 4
	Slide 5: Mapping to the data
	Slide 6: Questions
	Slide 7: Questions
	Slide 8: Blocking vs Nonblocking API functions
	Slide 9: Streams
	Slide 10: Streams
	Slide 11: Streams
	Slide 12: Streams
	Slide 13: Pinned Memory Host data allocations are pageable by default. The GPU can directly access Host data if it is pinned instead.
	Slide 14: Streams Suppose we have 3 kernels which require moving data to and from the device:
	Slide 15: Streams Changing to asynchronous memcpys and using streams:
	Slide 16: Synchronization How do we coordinate execution on device streams with host execution? Need some synchronization points.
	Slide 17: Events A hipEvent_t object is created on a device via: hipEvent_t event; hipEventCreate(&event);
	Slide 18: Events What can we do with queued events?
	Slide 19: Questions
	Slide 20: Questions
	Slide 21: AMD GPU Libraries
	Slide 22: Why libraries?
	Slide 23: Math library equivalents
	Slide 24: AMD GCN HW Layout
	Slide 25: MI100 micro-architecture
	Slide 26: ROCm queue management
	Slide 27: ROCm queue management
	Slide 28: ROCm queue management
	Slide 29: ROCm queue management
	Slide 30: ROCm queue management
	Slide 31: HSA Queue Management
	Slide 32
	Slide 33: AMD GCN GPU Hardware Layout
	Slide 34: Hardware Configuration Parameters on Modern AMD GPUs
	Slide 35: GPU Organization
	Slide 36: Controlling
	Slide 37: Workgroup dispatching for kernels
	Slide 38: Scheduling memcpy to a GPU
	Slide 39: Scheduling memcpy to a GPU
	Slide 40: Scheduling memcpy to a GPU
	Slide 41: Scheduling memcpy to a GPU
	Slide 42: Scheduling memcpy to a GPU
	Slide 43: The GCN Compute Unit (CU)
	Slide 44: The GCN Compute Unit (CU)
	Slide 45: The GCN Compute Unit (CU)
	Slide 46: The GCN Compute Unit (CU)
	Slide 47: Registers contd.
	Slide 48: Calculating GPU throughput
	Slide 49: Calculating GPU throughput
	Slide 50: Amdahl’s Law calculates upper bound on SpeedUp
	Slide 51: Speed of Light Instruction Throughput can be derived
	Slide 52: Arithmetic Intensity checks if kernel is memory/compute bound
	Slide 53: Roofline model guides optimization
	Slide 54: Optimization Strategies
	Slide 55: rocprof Profiler
	Slide 56: rocprof flags
	Slide 57: rocprof contd.
	Slide 58: rocprof: Commonly Used GPU Counters
	Slide 59: rocprof + Perfetto: Collecting and Visualizing Application Traces
	Slide 60: Omniperf profiler: rocprof metrics + SOL
	Slide 61: Omniperf profiler: rocprof metrics + SOL
	Slide 62: SW optimizations help achieve higher performance/watt
	Slide 63: AMD Hiring in AI

