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HW: End of Moore’s Law
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HW: Heterogeneous Computing Systems
◼ The end of Moore’s law created the need for heterogeneous

systems

◼ More suitable devices for each type of workload

◼ Increased performance and energy efficiency
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HW: Silent revolution in Graphics

An Effective Dynamic Scheduling Runtime and Tuning System for Heterogeneous Multi and Many-Core Desktop Platforms, 

Binotto et al.
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HW: GPUs in High Performance Computing
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Computing at Exascale

El Capitan at Lawrence Livermore National Laboratory

(LLNL) uses AMD’s MI300A

Performance expected 

to exceed 2ExaFLOPs, 

which comes with a

$600 million price tag.
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Frontier- World’s fastest supercomputer

• Oak Ridge National Lab

• Uses MI250X and 3rd 

Gen AMD Zen CPU for 

1.6ExaFLOPs
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CPUs: Latency Oriented Design

◼ High clock frequency

◼ Large caches

–Convert long latency memory accesses to
short latency cache accesses

◼ Sophisticated control

–Branch prediction for reduced branch latency

◼ Powerful ALU

–Reduced operation latency
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CPUs: Instruction is fetched, decoded & executed per data element
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Efficiency: Fetch once & decode once
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GPUs: Throughput Oriented Design
◼ Moderate clock frequency

◼ Small caches

–To boost memory throughput

◼ Simple control

–No branch prediction

◼ Energy efficient ALUs

–Many, long latency but

heavily pipelined for high

throughput

◼ Require massive number of threads to tolerate latencies
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Few more observations on CPU vs GPU

• Common fetch & decode for multiple data elements saves chip area & energy

• GPU can do zero overhead context-switching.

• In a CPU, instructions executed in a pipeline come from same thread.

• In a GPU, instructions executed at different stages of the pipeline originate from different wavefronts.

• GPUs are a more energy-efficient solution if we can completely utilize the GPUs
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Sequential Execution Model

int a[N]; // a is image, N is large

for (i =0; i < N; i++) 

{ 

 a[i] = a[i] * fade;

}

▪ One instruction at the time

▪ Optimizations possible at the machine level
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Parallel Execution Model: SIMD

• Example: image fading

- Some instructions executed concurrently

int a[N]; // N is large

for all elements do in parallel 

{ a[i] = a[i] * fade;

}
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Parallel Execution Model: SPMD

• Programming Model

• Procedures can synchronize at certain points in program, e.g. 

barriers

• Each program/procedure 1) works on different data, 2) can 

execute a different control-flow path, at run-time

• Example: image fading

- The code is identical across all threads
- The execution path may differ

int a[N]; // N is large

for all elements do in parallel

{ if (a[i] > threshold) a[i]*= fade;

}

CSE/EE P590A, Dr. Hari Sadasivan



Warp-based SIMD vs. Traditional SIMD
◼ Traditional SIMD contains a single thread

❑ Sequential instruction execution; lock-step operations in a SIMD instruction

❑ Programming model is SIMD (no extra threads) SW needs to know

vector length

❑ ISA contains vector/SIMD instructions

◼ Warp-based SIMD consists of multiple scalar threads executing in a

SIMD manner (i.e., same instruction executed by all threads)

❑ Does not have to be lock step

❑ Each thread can be treated individually (i.e., placed in a different warp)

programming model not SIMD

◼ SW does not need to know vector length

◼ Enables multithreading and flexible dynamic grouping of threads

❑ ISA is scalar SIMD operations can be formed dynamically

❑ Essentially, it is SPMD programming model implemented on SIMD hardware
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SIMD vs SIMT

◼ SIMD: A single sequential stream of SIMD vector 
instructions 

     each instruction specifies multiple data inputs

❑ [VLD, VLD, VADD, VST], VLEN

◼ SIMT/ warp-based SIMD: Multiple instruction streams 

of scalar instructions 

    threads grouped dynamically into warps

❑ [LD, LD, ADD, ST], NumThreads
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SIMD vs. SIMT Execution Model

◼ SIMD: A single sequential instruction stream of SIMD instructions

     each instruction specifies multiple data inputs

❑ [VLD, VLD, VADD, VST], VLEN

◼ SIMT: Multiple instruction streams of scalar instructions 

    threads grouped dynamically into warps

❑ [LD, LD, ADD, ST], NumThreads

◼ Two Major SIMT Advantages:

❑ Can treat each thread separately i.e., can execute each thread

independently (on any type of scalar pipeline)

❑ Can group threads into warps flexibly

      i.e., can group threads that are supposed to truly execute the same instruction

      dynamically obtain and maximize benefits of SIMD processing
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Sample GPU SIMT Code (Simplified)

CPU code

for (ii = 0; ii < 100000; ++ii) {

C[ii] = A[ii] + B[ii];
}

HIP code

// there are 100000 threads
global void KernelFunction(…) {

int tid = blockDim.x * blockIdx.x + threadIdx.x; 
int varA = aa[tid];

int varB = bb[tid];
C[tid] = varA + varB;

}

Slide credit: Hyesoon Kim
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◼ CPU threads and GPU kernels

❑ Sequential or modestly parallel sections on CPU

❑ Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<<nBlk, nThr>>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<<nBlk, nThr>>>(args);

Warps not Exposed to GPU Programmers

Slide credit: Hwu & Kirk
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From Blocks/Wavegroups to Warps/Wavefronts

◼ GPU cores: SIMD pipelines

❑ 16-lane wide Compute Units

◼ Workgroups/Blocks are divided into wavefronts/warps

❑ SIMD unit (64 threads)

…

Block 0’s warps

…
t0 t1 t2 … t64

…

Block 1’s warps

…
t0 t1 t2 … t64

…

Block 2’s warps

…
t0 t1 t2 … t64
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Threads Can Take Different Paths in Warp-based SIMD

◼ Each thread can have conditional control flow instructions

◼ Threads can execute different control flow paths

Thread Warp Common PC

Thread
1

Thread
2

Thread
3

Thread
4C D F

A

B

E

G

Slide credit: Tor Aamodt
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Control Flow Problem in GPUs/SIMT

◼ A GPU uses a SIMD 
pipeline to save

area on control logic

❑ Groups scalar 

threads into 

warps/wavefronts

◼ Branch divergence 
occurs when threads 

inside warps branch to 

different execution 
paths

Branch

Path A

Path B

Branch

Path A

Path B
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Applications optimal for CPU and GPU

Strategies: Use Both CPU and GPU

◼ CPUs for sequential parts where latency matters

– CPUs can be 10+X faster than GPUs for sequential code

◼ GPUs for parallel parts where throughput wins

– GPUs can be 10+X faster than CPUs for parallel code

CSE/EE P590A, Dr. Hari Sadasivan



Parallel Programming Workflow

◼ Identify compute-intensive parts of an application

◼ Adopt scalable algorithms

◼ Optimize data arrangements to maximize locality

◼ Performance Tuning

◼ Pay attention to code portability, scalability, and maintainability
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Improve HW & SW to meet growing compute demand
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ROCm SW stack for HPC & AI workloads
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AMD GPU Programming Concepts

Programming with HIP:

Kernels, blocks, threads, and more
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What is AMD’s HIP?

Heterogeneous-compute Interface for Portability, or HIP, is a C++ runtime API
& kernel language for AMD & NVIDIA devices.

HIP:

▪Open-source.

▪ Provides an API for an application to
 leverage GPU acceleration for both
 AMD and CUDA devices.

▪ Syntactically similar to CUDA. Most CUDA
  API calls can be

converted in place: cuda -> hip

▪ Supports a strong subset of CUDA runtime

functionality.

Portable HIP C++ (Host & Device Code)

nvcc

hipcc

Nvidia GPU

“hip/hip_runtime.h”

hip-clang

AMD GCN

NVIDIA 

GPU

nvcc

hipcc

PTX

AMD GPU

CSE/EE P590A, Dr. Hari Sadasivan



A Tale of Host and Device

▪ The Device is the GPU

▪ Device code runs here

▪ C-like syntax

▪ Device codes are launched via

“kernels”

▪ Instructions from the Host are

enqueued into “streams”

Source code in HIP has two flavors:

Host code and Device code

▪ The Host is the CPU

▪ Host code runs here

▪ Usual C++ syntax and features

▪ Entry point is the ‘main’ function

▪ HIP API can be used to create
 device buffers, move between
 host and device, and launch
 device code.
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HIP API
▪ Device Management:

- hipSetDevice(), hipGetDevice(), hipGetDeviceProperties()

▪ Memory Management

- hipMalloc(), hipMemcpy(), hipMemcpyAsync(), hipFree()

▪ Streams

- hipStreamCreate(), hipSynchronize(), hipStreamSynchronize(), 

  hipStreamFree()

▪ Events

- hipEventCreate(), hipEventRecord(), hipStreamWaitEvent(),

  hipEventElapsedTime()

▪ Device Kernels

- global , device , hipLaunchKernelGGL()

▪ Device code

- threadIdx, blockIdx, blockDim, shared

- 200+ math functions covering entire CUDA math library.

▪ Error handling

- hipGetLastError(), hipGetErrorString()
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Kernels, memory, and 

structure of host code
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Device Kernels: The Grid

▪ In HIP, kernels are executed on a 3D ”grid”

▪ The “grid” is what you can map your problem to

- It’s not a physical thing, but it can be useful to think that way

▪ AMD devices (GPUs) support 1D, 2D, and 3D grids,

   but most work maps well to 1D

▪ Each dimension of the grid partitioned into equal sized “blocks”

▪ Each block is made up of multiple “threads”

▪ The grid and its associated blocks are just organizational constructs

- The threads are the things that do the work

▪ If you’re familiar with CUDA already, the grid+block structure is very similar in HIP
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Device Kernels: The Grid

CUDA HIP OpenCL

grid grid NDRange

block workgroup work group

warp wavefront sub-group

thread work item / thread work item

Some Terminology:
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The Grid: blocks of threads in 1D

Grid of blocks

Block of threads Thread

Threads in grid have access to:

▪ Their respective block: blockIdx.x

▪ Their respective thread ID in a block: threadIdx.x

▪ Their block’s dimension: blockDim.x

▪ The number of blocks in the grid: gridDim.x
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The Grid: blocks of threads in 2D

▪ Each color is a block of threads

▪ Each small square is a thread

▪ The concept is the same in 1D and 2D
▪ In 2D each block and thread now has
   a two-dimensional index

Threads in grid have access to:

▪ Their respective block IDs:
blockIdx.x, blockIdx.y

▪ Their respective thread IDs in a
  block: threadIdx.x, 
   threadIdx.y
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A simple embarrassingly parallel loop:

for (int i=0;i<N;i++)

h_a[i] *= 2.0;

Can be translated into a GPU kernel:

global void myKernel(int N, double *d_a)

{

int i = threadIdx.x + blockIdx.x*blockDim.x;

if (i<N) d_a[i] *= 2.0;

}

▪ A device function that will be
  
  launched from the host

program is called a kernel & is 

declared with the

global_attribute

▪ Kernels should be declared void

▪ All pointers passed to kernels
 must point to memory on the 
  device

▪ All threads execute the kernel’s

body “simultaneously”

▪ Each thread uses its unique
 thread and block IDs to 
    compute a global ID
▪ There could be more than N
  threads in the grid

Kernel Properties
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Kernels are launched from the host:

dim3 threads(256,1,1);

dim3 blocks((N+256-1)/256,1,1);

//3D dimensions of a block of threads

//3D dimensions the grid of blocks

hipLaunchKernelGGL(myKernel,

blocks,

threads,

0,

0,

N, a);

//Kernel name ( global void function)

//Grid dimensions

//Block dimensions

//Bytes of dynamic LDS space

//Stream (0=NULL stream)

//Kernel arguments

Analogous to CUDA kernel launch syntax:

myKernel<<<blocks, threads, 0, 0>>>(N,a);

Kernel launch
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SIMD operations
Why blocks and threads?

Natural mapping of kernels to hardware:

▪ Blocks are dynamically scheduled onto CUs

▪ All threads in a block execute on the same CU

▪ Threads in a block share LDS memory and L1 cache

▪ Threads in a block are executed in 64-wide chunks called “wavefronts”

▪ Wavefronts execute on SIMD units (Single Instruction Multiple Data)

▪ If a wavefront stalls (e.g. data dependency) CUs can quickly context switch to

another wavefront

A good practice is to make the block size a multiple of 64 and have several

wavefronts (e.g. 256 threads)
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Device Memory

The host instructs the device to allocate device memory and records a pointer to device memory:

int main() {

…

int N = 1000;

size_t Nbytes = N*sizeof(double);

double *h_a = (double*) malloc(Nbytes); //Host memory

double *d_a = NULL;

hipMalloc(&d_a, Nbytes); //Allocate Nbytes on device

…

free(h_a); 

hipFree(d_a);

//free host memory

//free device memory

}
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Device Memory

The host queues memory transfers:

//copy data from host to device

hipMemcpy(d_a, h_a, Nbytes, hipMemcpyHostToDevice);

//copy data from device to host

hipMemcpy(h_a, d_a, Nbytes, hipMemcpyDeviceToHost);

//copy data from one device buffer to another 

hipMemcpy(d_b, d_a, Nbytes, hipMemcpyDeviceToDevice);
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Putting it all together

//host memory

#include “hip/hip_runtime.h”

int main() { int N =

1000;

size_t Nbytes = N*sizeof(double);

double *h_a = (double*) malloc(Nbytes);

double *d_a = NULL; 

HIP_CHECK(hipMalloc(&d_a, Nbytes));

…

HIP_CHECK(hipMemcpy(d_a, h_a, Nbytes, hipMemcpyHostToDevice)); //copy data to device

hipLaunchKernelGGL(myKernel, dim3((N+256-1)/256,1,1), dim3(256,1,1), 0, 0, N, d_a); //Launch kernel

HIP_CHECK(hipGetLastError());

HIP_CHECK(hipMemcpy(h_a, d_a, Nbytes, hipMemcpyDeviceToHost)) ; //copy results back to host

…

free(h_a);

HIP_CHECK(hipFree(d_a));

//free host memory

//free device memory

}

global void myKernel(int N, double *d_a) {

int i = threadIdx.x + blockIdx.x*blockDim.x; if (i<N) {

d_a[i] *= 2.0;

}

}

#define HIP_CHECK(command) { 

hipError_t status = command; if

(status!=hipSuccess) {

\

\

\

std::cerr << “Error: HIP reports ” \
<< hipGetErrorString(status) \
<< std::endl; \

std::abort(); } }
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Vector Addition

global void vecAddkernel(float* A_d, float* B_d, float* C_d, int n) {

int i = threadIdx.x + blockDim.x * blockIdx.x;

if(i < n) {

C_d[i] = A_d[i] + B_d[i];

}
}
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void vecAdd(float* A, float* B, float* C, int n) {

int size = n * sizeof(float); 

float* A_d, B_d, C_d;

// Allocate device memory 

hipMalloc((void **) &A_d, size); 

hipMalloc((void **) &B_d, size); 

hipMalloc((void **) &C_d, size);

// Transfer A and B to device memory

hipMemcpy(A_d, A, size, hipMemcpyHostToDevice); 

hipMemcpy(B_d, B, size, hipMemcpyHostToDevice);

// Kernel invocation code

vecAddKernel<<<ceil(n/256.0), 256>>>(A_d, B_d, C_d, n); 

hipDeviceSynchronize();

// Transfer C from device to host

hipMemcpy(C, C_d, size, hipMemcpyDeviceToHost);

// Free device memory for A, B, C

hipFree(A_d); hipFree(B_d); hipFree (C_d);

}

Vector Addition
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Another way to launch kernel

int vecAdd(float* A, float* B, float* C, int n) {

…

// Kernel invocation code

dim3 DimGrid(ceil(n/256), 1, 1); 

dim3 DimBlock(256,1,1);

vecAddKernel<<<DimGrid, DimBlock>>>(A_d, B_d, C_d, n); 

hipDeviceSynchronize();

// Transfer C from device to host

...

}
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Mapping to the data

V[0] V[1] V[2] V[3] V[4] V[5] V[6] V[7] V[8] V[9]

Suppose we use 1d thread blocks of size 4

0 1 2 3Thread 0 1 2 3

Block 0 Block 1 Block 2

0 1 2 3

Boundary 

Check!

i = blockIdx.x * blockDim.x + threadIdx.x
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Questions

1. How many floating operations are being performed in the vector add

kernel? Give your answer in terms of N and explain.

2. How many global memory reads and writes are being performed by the

vector add kernel? Give your answer in terms of N.
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Questions

1. How many floating operations are being performed in the vector add

kernel? Give your answer in terms of N and explain.

N, one for each pair of input vector elements

2. How many global memory reads and writes are being performed by the

vector add kernel? Give your answer in terms of N.

Reads: 2N, one for each of the two input vectors elements.

Writes: N, one for each output vector element.
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Function Qualifiers

hipcc makes two compilation passes through source code. One to compile

host code, and one to compile device code.

▪ global _ functions:

- These are entry points to device code, called from the host

- Code in these regions will execute on SIMD units

▪ device _ functions:

- Can be called from __global__ and other__device__ functions.

- Cannot be called from host code.

- Not compiled into host code – essentially ignored during host compilation pass

▪ __host__ __device__  functions :

- Can be called from __global__, __device__ , and host functions.

- Will execute on SIMD units when called from device code!
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Memory declarations in Device Code

▪ Malloc/free not supported in device code.

▪ Variables/arrays can be declared on the stack.

▪ Stack variables declared in device code are allocated in registers and are private to each thread.

▪ Threads can all access common memory via device pointers, but otherwise do not share memory.

- Important exception: __shared__ memory

▪ Stack variables declared as __shared__ :

- Allocated once per block in LDS memory

- Shared and accessible by all threads in the same block

- Access is faster than device global memory (but slower than register)

- Must have size known at compile time
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Thread Synchronization

▪ syncthreads():

- Blocks a wavefront from continuing execution until all wavefronts 

have reached __syncthreads() 

- Memory transactions made by a thread before __syncthreads()  are

visible to all other threads in the block after __syncthreads() 

- Can have a noticeable overhead if called repeatedly
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Shared Memory

global__    void reverse(double *d_a) {

_ shared __   double s_a[256]; //array of doubles, shared in this block

int tid = threadIdx.x;

s_a[tid] = d_a[tid]; //each thread fills one entry

//all wavefronts must reach this point before any wavefront is allowed to continue.

//something is missing here…

syncthreads();

d_a[tid] = s_a[255-tid]; //write out array in reverse order

}

int main() {

…

hipLaunchKernelGGL(reverse, dim3(1), dim3(256), 0, 0, d_a); //Launch kernel

…

}

CSE/EE P590A, Dr. Hari Sadasivan



Device Management

Multiple GPUs in system? Multiple host threads/MPI ranks? What device are we running on?

▪ Host can query number of devices visible to system: 

   int numDevices = 0; hipGetDeviceCount(&numDevices);

▪ Host tells the runtime to issue instructions to a particular device:

  int deviceID = 0; hipSetDevice(deviceID);

▪ Host can query what device is currently selected:

   hipGetDevice(&deviceID);

▪ The host can manage several devices by swapping the currently selected device during

runtime.

▪ MPI ranks can set different devices or over-subscribe (share) devices.
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Device Properties during run-time

The host can also query a device’s properties: 

 hipDeviceProp_t props; 

hipGetDeviceProperties(&props, deviceID);

▪ hipDeviceProp_t is a struct that contains useful fields like the device’s name, warpsize,

   max workgroup size, max grid size, #CUs, cache, clock speed, and GCN arch

architecture.

- See “hip/hip_runtime_api.h”for full list of fields.
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Querying System from terminal
▪ rocminfo: Queries and displays information on the system’s hardware

- More info at: https://github.com/RadeonOpenCompute/rocminfo

▪ Querying ROCm version:

- If you install ROCm in the standard location (/opt/rocm) version info is at:

/opt/rocm/.info/version-dev

- Can also run the command ‘dkms status’ and the ROCm version will be

displayed

▪ rocm-smi: Queries and sets AMD GPU frequencies, power usage, and fan

speeds

- sudo privileges are needed to set frequencies and power limits

- sudo privileges are not needed to query information

- Get more info by running ‘rocm-smi -h’ or looking at:

https://github.com/RadeonOpenCompute/ROC-smi
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Blocking vs Nonblocking API functions

▪ The kernel launch function, hipLaunchKernelGGL, is non-blocking for the host.

- After sending instructions/data, the host continues immediately while the device executes

the kernel

- If you know the kernel will take some time, this is a good area to do some work (i.e. MPI

comms) on the host

▪ However, hipMemcpyis blocking.

- The data pointed to in the arguments can be accessed/modified after the function returns.

▪ The non-blocking version is hipMemcpyAsync

hipMemcpyAsync(d_a, h_a, Nbytes, hipMemcpyHostToDevice, stream);

▪ Like hipLaunchKernelGGL, this function takes an argument of type hipStream_t

▪ It is not safe to access/modify the arguments of hipMemcpyAsyncwithout some sort of

synchronization.
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Streams

▪ A stream in HIP is a queue of tasks (e.g. kernels, memcpys, events).

- Tasks enqueued in a stream complete in order on that stream.

-  Tasks being executed in different streams are allowed to overlap and share device resources.

▪ Streams are created via: 

   hipStream_t stream; 

   hipStreamCreate(&stream);

▪ And destroyed via:

hipStreamDestroy(stream);

▪ Passing 0 or NULL as the hipStream_t argument to a function instructs the function

   to execute on a stream called the ‘NULL Stream’:

- No task on the NULL stream will begin until all previously enqueued tasks in all other

   streams have completed.

- Blocking calls like hipMemcpy run on the NULL stream.
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Streams

▪ Suppose we have 4 small kernels to execute:

hipLaunchKernelGGL(myKernel1
,

dim3(1), dim3(256), 0, 0, 256, d_a1);

hipLaunchKernelGGL(myKernel2

,

dim3(1), dim3(256), 0, 0, 256, d_a2);

hipLaunchKernelGGL(myKernel3

,

dim3(1), dim3(256), 0, 0, 256, d_a3);

hipLaunchKernelGGL(myKernel4

,

dim3(1), dim3(256), 0, 0, 256, d_a4);

▪ Even though these kernels use only one block each, they’ll execute in

serial on the NULL stream:

NULL Stream myKernel1 myKernel2 myKernel3 myKernel4
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Streams

▪ With streams we can effectively share the GPU’s compute resources:

hipLaunchKernelGGL(myKernel1
,

dim3(1), dim3(256), 0, stream1, 256, d_a1);

hipLaunchKernelGGL(myKernel2

,

dim3(1), dim3(256), 0, stream2, 256, d_a2);

hipLaunchKernelGGL(myKernel3

,

dim3(1), dim3(256), 0, stream3, 256, d_a3);

hipLaunchKernelGGL(myKernel4 dim3(1), dim3(256), 0, stream4, 256, d_a4);

Note 1: Check that the kernels modify different parts of memory to avoid data races. 

Note 2: With large kernels, overlapping computations may not help performance.

NULL Stream

Stream1 myKernel1

Stream2 myKernel2

Stream3 myKernel3

Stream4 myKernel4
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Streams

▪ There is another use for streams besides concurrent kernels:

- Overlapping kernels with data movement.

▪ AMD GPUs have separate engines for:

- Host->Device memcpys

- Device->Host memcpys

- Compute kernels.

▪ These three different operations can overlap without dividing the GPU’s resources.

- The overlapping operations should be in separate, non-NULL, streams.

- The host memory should be pinned.
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Pinned Memory

Host data allocations are pageable by default. The GPU can directly access Host data if it is pinned

instead.

▪ Allocating pinned host memory: 

double *h_a = NULL; 

hipHostMalloc(&h_a, Nbytes);

▪ Free pinned host memory:

hipHostFree(h_a);

▪ Host<->Device memcpy bandwidth increases significantly when host memory is pinned.

- It is good practice to allocate host memory that is frequently transferred to/from the device as

pinned memory.
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Streams

Suppose we have 3 kernels which require moving data to and from the device:

hipMemcpy(d_a1, h_a1, Nbytes, hipMemcpyHostToDevice));

hipMemcpy(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice));

hipMemcpy(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice));

hipLaunchKernelGGL(myKernel1, blocks, threads, 0, 0, N, d_a1);

hipLaunchKernelGGL(myKernel2, blocks, threads, 0, 0, N, d_a2);

hipLaunchKernelGGL(myKernel3, blocks, threads, 0, 0, N, d_a3);

hipMemcpy(h_a1, d_a1, Nbytes, hipMemcpyDeviceToHost);

hipMemcpy(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost);

hipMemcpy(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost);

NULL Stream HToD1 HToD2 HToD3 myKernel1 myKernel2 myKernel3 DToH1 DToH2 DToH3
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Streams

Changing to asynchronous memcpys and using streams:

hipMemcpyAsync(d_a1, h_a1, Nbytes, hipMemcpyHostToDevice, stream1);

hipMemcpyAsync(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice, stream2);

hipMemcpyAsync(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice, stream3);

hipLaunchKernelGGL(myKernel1, blocks, threads, 0, stream1, N, d_a1);

hipLaunchKernelGGL(myKernel2, blocks, threads, 0, stream2, N, d_a2);

hipLaunchKernelGGL(myKernel3, blocks, threads, 0, stream3, N, d_a3);

hipMemcpyAsync(h_a1, d_a1, Nbytes, hipMemcpyDeviceToHost, stream1);

hipMemcpyAsync(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost, stream2);

hipMemcpyAsync(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost, stream3);

NULL Stream

Stream1 HToD1 myKernel1 DToH1

Stream2 HToD2 myKernel2 DToH2

Stream3 HToD3 myKernel3 DToH3
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Synchronization

How do we coordinate execution on device streams with host execution?

Need some synchronization points.

▪ hipDeviceSynchronize();

- Heavy-duty sync point.

- Blocks host until all work in all device streams has reported complete.

▪ hipStreamSynchronize(stream);

- Blocks host until all work in stream has reported complete.

Can a stream synchronize with another stream? For that we need ‘Events’.
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Events

A hipEvent_t object is created on a device via:  

hipEvent_t event; 

hipEventCreate(&event);

We queue an event into a stream:

hipEventRecord(event, stream);

- The event records what work is currently enqueued in the 

stream.

- When the stream’s execution reaches the event, the event is

considered ‘complete’.

At the end of the application, event objects should be destroyed:

hipEventDestroy(event);
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Events

What can we do with queued events?

▪ hipEventSynchronize(event);

- Block host until event reports complete.

- Only a synchronization point with respect to the stream where event was enqueued.

▪ hipEventElapsedTime(&time, startEvent, endEvent);

- Returns the time in ms between when two events, startEvent and endEvent, completed

- Can be very useful for timing kernels/memcpys

▪ hipStreamWaitEvent(stream, event);

- Non-blocking for host.

- Instructs all future work submitted to stream to wait until event reports complete.

- Primary way we enforce an ‘ordering’ between tasks in separate streams.
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Questions

1. How would one declare a variable err that can appropriately receive the 

returned value of a HIP API call?
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Questions

1. How would one declare a variable err that can appropriately receive the 

returned value of a HIP API call?

Ans: hipError_t err = {stmt}; where {stmt} is a HIP API call such as hipMalloc() or a 
kernel function call
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Questions

2. If we want to copy 5000 bytes of data from host array h_A (h_A is a pointer to 

element 0 of the source array) to device array d_A (d_A is a pointer to element 0 

of the destination array), what would be an appropriate API call for the data copy in 

HIP?

CSE/EE P590A, Dr. Hari Sadasivan



Questions

2. If we want to copy 5000 bytes of data from host array h_A (h_A is a pointer to 

element 0 of the source array) to device array d_A (d_A is a pointer to element 0 

of the destination array), what would be an appropriate API call for the data copy in 

HIP?

Ans: hipMemcpy(d_A, h_A, 5000, hipMemcpyHostToDevice);

CSE/EE P590A, Dr. Hari Sadasivan



▪ A note on naming conventions:

- roc* -> AMGCN library usually written in HIP

- cu* -> NVIDIA PTX libraries

- hip* -> usually interface layer on top of roc*/cu* backends

▪ hip* libraries:

- Can be compiled by hipcc and can generate a call for the device you have:

- hipcc->hip-clang->AMD GCN ISA

- hipcc->nvcc (inlined)->NVPTX

- Just a thin wrapper that marshals calls off to a “backend” library:

- corresponding roc* library backend containing optimized GCN

- corresponding cu* library backend containing NVPTX for NVIDIA devices

- E.g., hipBLAS is a marshalling library:

74

AMD GPU Libraries

hipBLAS

rocBLAS cuBLAS
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Why libraries?

• Code reuse

• High Performance

• Maximize compute

• Maximize memory bandwidth

• No need to deal with low level GPU code
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Math library equivalents

Basic Linear Algebra Subroutines
CUBLAS ROCBLAS

Fast Fourier TransformsCUFFT ROCFFT

STL Library for parallel algosTHRUST ROCTHRUST

Optimized Parallel PrimitivesCUB ROCPRIM

C++ Template Library for Linear 

Algebra
EIGEN EIGEN

MORE INFO AT: GITHUB.COM/ROCM-DEVELOPER-TOOLS/HIP HIP_PORTING_GUIDE.MD
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