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HW: End of Moore’s Law

48 Years of Microprocessor Trend Data
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HW: Heterogeneous Computing Systems

= The end of Moore’s law created the need for heterogeneous
systems

= More suitable devices for each type of workload
= Increased performance and energy efficiency
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Credits: Prof. Reetu Das, UM CSE/EE P590A, Dr. Hari Sadasivan



HW: Silent revolution in Graphics
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An Effective Dynamic Scheduling Runtime and Tuning System for Heterogeneous Multi and Many-Core Desktop Platforms,
Binotto et al.
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HW: GPUs in High Performance Computing
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Computing at Exascale

El Capitan at Lawrence Livermore National Laboratory
(LLNL) uses AMD’s MI300A

Performance expected [alisii: 3 et
| . ENEFGY
to exceed 2ExaFLOPs, e
which comes with a el
Ll-l? Nati ynal Labg ratory »

$600 million price tag. AMDIl ST
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Frontier- World's fastest supercomputer

« Oak Ridge National Lab

e Uses MI250X and 3"
Gen AMD Zen CPU for
1.6ExaFLOPs
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CPUs: Latency Oriented Design

High clock frequency

Intel® Core™ i7-3960X Processor Die Detail
Large caches

—ConYert lon Iatﬁnca/ memory accesses to
short latencytache dccesses

Sophisticated control

—Branch prediction for reduced branch latency

Powerful ALU
—Reduced operation latency
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CPUs: Instruction Is fetched, decoded & executed per data element

Fetch Decode M

w
Fetch Decode M
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Efficiency: Fetch once & decode once

Fetch Decode M

&3
=

Fetch Decode M
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GPUs: Throughput Oriented Design

= Moderate clock frequency

= Small caches
—To boost memory throughput

-

' =
= Simple control —

—No branch prediction —
=

-

= Energy efficient ALUs —

amlong R B

heavily pipelined for high
throughput

= Require massive number of threads to tolerate latencies

Credits: Prof. Reetu Das, UM CSE/EE P590A, Dr. Hari Sadasivan



Few more observations on CPU vs GPU

Common fetch & decode for multiple data elements saves chip area & energy
GPU can do zero overhead context-switching.
In a CPU, instructions executed in a pipeline come from same thread.
* Ina GPU, instructions executed at different stages of the pipeline originate from different wavefronts.

GPUs are a more energy-efficient solution if we can completely utilize the GPUs

CSE/EE P590A, Dr. Hari Sadasivan



Sequential Execution Model

= One instruction at the time

= Optimizations possible at the machine level

Int a[N]; // ais image, N is large

for (i =0; i < N; i++)

{

}

a[i] = a[i] * fade;

time

alil ¥
a[i+l] o,

a[i+2] ‘o,
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Parallel Execution Model: SIMD

« Example: image fading
- Some instructions executed concurrently
int a[N]; // N is large

for all elements do in parallel
{ a[i] = a[i] * fade;

9

‘.

v

"o " %

[ ] n | ]

“‘ “‘ “‘

o B . v ¥, essecssscccens Most modern CPUs

= Y hm % offer some limited
v’ i v’ support for SIMD

This has been tried before: ILLIAC IlI, UIUC, 1966

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4038028&tag=1
http://ed-thelen.org/comp-hist/vs-illiac-iv.html
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Parallel Execution Model: SPMD

« Programming Model

* Procedures can synchronize at certain points in program, e.g.
barriers

« Each program/procedure 1) works on different data, 2) can
execute a different control-flow path, at run-time

« Example: image fading "
- The code is identical across all threads 21 ey .
- The execution path may differ TV s g
int a[N]; // N is large ! v

for all elements do 1n parallel
{ 1f | ) a[li]*= fade;
}
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Warp-based SIMD vs. Traditional SIMD

= Traditional SIMD contains a single thread

a

Q

Sequential instruction execution; lock-step operations in a SIMD instruction

Programming model is SIMD (no extra threads) [ SW needs to know
vector length

ISA contains vector/SIMD instructions

= Warp-based SIMD consists of multiple scalar threads executing in a
SIMD manner (i.e., same instruction executed by all threads)

Q

Q

Does not have to be lock step

Each thread can be treated individually (i.e., placed in a different warp)
Ll programming model not SIMD

= SW does not need to know vector length

= Enables multithreading and flexible dynamic grouping of threads

ISAIs scalar LI SIMD operations can be formed dynamically

Essentially, it is SPMD programming model implemented on SIMD hardware
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SIMD vs SIMT

SIMD

= SIMD: A single sequential stream of SIMD vector ()
Instructions
| each instruction specifies multiple data inputs

o [VLD, VLD, VADD, VST], VLEN

Data pool

C

= SIMT/ warp-based SIMD: Multiple instruction streams

of scalar instructions
Ithreads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Instruction pool

=
o
35
j -
o
]
o
>
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SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD instructions
1 each instruction specifies multiple data inputs

o [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions

_Ilthreads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately [ i.e., can execute each thread
iIndependently (on any type of scalar pipeline)

o Can group threads into warps flexibl
] i.e.,jcan group threads that are supposed to truly execute the same instruction

[ldynamically obtain and maximize benefits of SIMD processing
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Sample GPU SIMT Code (Simplified)

CPU code

for (ii = 0 ii < 100000; ++ii) {
Cllii] = Alii] + BJiil;

}
HIP code i

G there are 100000 threads \
__global__ void KernelFunction(...) {
int tid = blockDim.x * blockldx.x + threadldx.x;
int varA = aaltid];
int varB = bb[tid];
Cltid] = varA + varB;

Q J
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Slide credit: Hyesoon Kim



Warps not Exposed to GPU Programmers

= CPU threads and GPU kernels

o Sequential or modestly parallel sections on CPU
o Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

Parallel Kernel (device)
KernelA<<<nBIk, nThr>>>(args);

o o

S
L

Serial Code (host)

Parallel Kernel (device)
KernelB<<<nBIlk, nThr>>>(args);

i

Slide credit: Hwu & Kirk
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From Blocks/\WWavegroups to Warps/\WWavefronts

= GPU cores: SIMD pipelines
o 16-lane wide Compute Units

= Workgroups/Blocks are divided into wavefronts/warps
o SIMD unit (64 threads)

Block O’s warps Block 1’s warps Block 2’s warps
| | |
QG Raadd? U Lad? QG
P el < 2
| S8 | M| S8 | ML sk
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Threads Can Take Different Paths in Warp-based SIMD

Each thread can have conditional control flow instructions
Threads can execute different control flow paths

Thread Warp Common PC

Thread| Thread| Thread| Thread
1 2 3 4

CSE/EE P590A, Dr. Hari Sadasivan
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Control Flow Problem in GPUSs/SIMT

A GPU uses a SIMD
pipeline to save

area on control logic 1 1 | 1 1 1 1
o Groups scalar 1

threads into #Bra Ell 1 1 vy 1 1 1 1
warps/wavefronts
Path A 1 ! 1

Branch divergence

occurs when threads Patfj 1 1 1 1

Inside warps branch to
different execution 1 1 1 1 1 1 1 1
paths
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Applications optimal for CPU and GPU

Strategies: Use Both CPU and GPU

CPUs for sequential parts where latency matters
—CPUs can be 10+X faster than GPUs for sequential code

GPUs for parallel parts where throughput wins
— GPUs can be 10+X faster than CPUs for parallel code
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Parallel Programming Workflow

ldentify compute-intensive parts of an application

Adopt scalable algorithms
Optimize data arrangements to maximize locality
Performance Tuning

Pay attention to code portability, scalability, and maintainability
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Improve HW & SW to meet growing compute demand
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Data collected by Kartik Hegde (kvhegde2@illinois.edu). Training FLOPS for transformers is based on Narayanan et al. “Efficient large-scale language model training on gpu
clusters using megatron-Im”. In SC'22, for others it is calculated as FLoPS/forward pass* #dataset * #epochs * 3.

CSE/EE P590A, Dr. Hari Sadasivan



ROCmM SW stack for HPC & Al workloads

Optimized Training/Inference Models & Applications

Benchmarks & App Support
MLPERF HPL/HPCG Life Science Geo Science Physics

Operating Systems Support CentOS Ubuntu

Cluster Deployment Singularity Kubernetes®

Framework Support Kokkos/RAJA PyTorch TensorFlow

— BLAS RAND FFT MIGraphX MIVisionX
Libraries
SOLVER ALUTION SPARSE THRUST MIOpen
I Programming Models OpenMP® API OpenCL™ HIP API
I

Development Toolchain Compiler Profiler Tracer Debugger hipify GPUFort

I Drivers & Runtime GPU Device Drivers and ROCm Run-Time

Deployment Tools ROCm Validation Suite ROCm Data Center Tool ROCm SMI
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AMD GPU Programming Concepts

Programming with HIP:
Kernels, blocks, threads, and more
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What is AMD’s HIP?

Heterogeneous-compute Interface for Portability, or HIP, is a C++ runtime API

& kernel language for AMD & NVIDIA devices.

[ J

HIP: ¥

= Open-source.

» Provides an API for an application to \
leverage GPU acceleration for both [ ]

AMD and CUDA devices.

» Syntactically similar to CUDA. Most CUDA ) l

API calls can be _
converted in place: cuda -> hip

= Supports a strong subset of CUDA runtime ‘
functionality. [ ] (
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A Tale of Host and Device

Source code in HIP has two flavors:
Host code and Device code

= The Host is the CPU
Host code runs here
Usual C++ syntax and features

Entry point is the ‘main’ function
HIP API can be used to create
device buffers, move between
host and device, and launch
device code.

The Device is the GPU
Device code runs here
C-like syntax

Device codes are launched via
“kernels”

Instructions from the Host are
engueued into “streams”
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HIP API

» Device Management:
- hipSetDevice(), hipGetDevice(), hipGetDeviceProperties()
= Memory Management
- hipMalloc(), hipMemcpy(), hipMemcpyAsync(), hipFree()
= Streams
- hipStreamCreate(), hipSynchronize(), hipStreamSynchronize(),
hipStreamFree()
= Events
- hipEventCreate(), hipEventRecord(), hipStreamWaitEvent(),
hipEventElapsedTime()
= Device Kernels
- _global_,__device_, hipLaunchKernelGGL()
= Device code
- threadldx, blockldx, blockDim,__shared_
- 200+ math functions covering entire CUDA math library.
= Error handling
- hipGetLastError(), hipGetErrorString()
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Kernels, memory, and
structure of host code



Device Kernels: The Grid

» In HIP, kernels are executed on a 3D "grid”

» The “grid” is what you can map your problem to
- It's not a physical thing, but it can be useful to think that way

= AMD devices (GPUs) support 1D, 2D, and 3D grids,

but most work maps well to 1D

Each dimension of the grid partitioned into equal sized “blocks”
Each block is made up of multiple “threads”

The grid and its associated blocks are just organizational constructs
- The threads are the things that do the work

If you're familiar with CUDA already, the grid+block structure is very similar in HIP
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Device Kernels: The Grid

Some Terminology:

CUDA OpenCL™

grid grid NDRange
block workgroup work group
warp wavefront sub-group
thread work item / thread work item
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The Grid: blocks of threads in 1D

Grid of blocks
I~
— I
IIIIQDDQIIIIDDDDI\IIIDDDDIIIIDDDD
Block of threads Thread

Threads in grid have access to:

» Their respective block: blockldx.x

» Their respective thread ID in a block: threadldx.x
= Their block’s dimension: blockDim.x

* The number of blocks in the grid: gridDim.x
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The Grid: blocks of threads in 2D

Each color is a block of threads

Each small square is a thread

In 2D each block and thread now has
a two-dimensional index

Threads in grid have access to:

" Their respective block IDs:
blockIdx.x, blockIdx.y
= Their respective thread IDs in a
block: threadIdx.x,

threadIdx.y

The concept is the same in 1D and 2D
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Kernel Properties

A simple embarrassingly parallel loop:

for (int iI=0;I<N;I++)
h_afi] *= 2.0;

Can be translated into a GPU kernel:

_global_void myKernel(int N, double *d_a)
{

int | = threadldx.x + blockldx.x*blockDim.x;
if (i<N) d_a[i] *= 2.0;
}

CSE/EE P590A, Dr.

= A device function that will be

launched from the host
program is called a kernel & is
declared with the
_global_attribute

= Kernels should be declared void

= All pointers passed to kernels
must point to memory on the
device

= All threads execute the kernel’s
body “simultaneously”

» Each thread uses its unigue
thread and block IDs to

compute a global ID
* There could be more than N
threads in the grid

Hari Sadasivan



Kernel launch

Kernels are launched from the host:;

dim3 threads(256,1,1); //3D dimensions of a block of threads
dim3 blocks((N+256-1)/256,1,1); //3D dimensions the grid of blocks

hipLaunchKernelGGL(myKernel;/kernel name (_global_void function)

blocks, /IGrid dimensions

threads, //Block dimensions

0, /IBytes of dynamic LDS space
0, /IStream (O=NULL stream)

N, a); /IKernel arguments

Analogous to CUDA kernel launch syntax:
myKernel<<<blocks, threads, 0, 0>>>(N,a);
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SIMD operations

Why blocks and threads?

Natural mapping of kernels to hardware:

» Blocks are dynamically scheduled onto CUs

= All threads in a block execute on the same CU

» Threads in a block share LDS memory and L1 cache

» Threads in a block are executed in 64-wide chunks called “wavefronts”
= Wavefronts execute on SIMD units (Single Instruction Multiple Data)

» |f a wavefront stalls (e.g. data dependency) CUs can quickly context switch to
another wavefront

A good practice is to make the block size a multiple of 64 and have several
wavefronts (e.g. 256 threads)



Device Memory

The host instructs the device to allocate device memory and records a pointer to device memory:

int main() {
int N = 1000;
size_t Nbytes = N*sizeof(double);
double *h_a = (double*) malloc(Nbytes); //[Host memory

double *d_a = NULL,;

hipMalloc(&d_a, Nbytes); //Allocate Nbytes on device
free(h_a); /[free host memory
hipFree(d_a); /lfree device memory

CSE/EE P590A, Dr. Hari Sadasivan



Device Memory

The host queues memory transfers:
//copy data from host to device
hipMemcpy(d_a, h_a, Nbytes, hipMemcpyHostToDevice);

//copy data from device to host
hipMemcpy(h_a, d_a, Nbytes, hipMemcpyDeviceToHost);

//copy data from one device buffer to another
hipMemcpy(d_b, d_a, Nbytes, hipMemcpyDeviceToDevice);
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Putting it all together

#include “hip/hip_runtime.h” _global void myKernel(int N, double *d_a) {

int main() { intN = int i = threadldx.x + blockldx.x*blockDim.x; if (i<N) {
1000; d_alfi]*=2.0;
size_t Nbytes = N*sizeof(double); }
double *h_a = (double*) malloc(Nbytes); /lhost memory }

double *d_a = NULL;
HIP_CHECK(hipMalloc(&d_a, Nbytes));

HIP_CHECK(hipMemcpy(d_a, h_a, Nbytes, hipMemcpyHostToDevice)); /[copy data to device

hipLaunchKernelGGL(myKernel, dim3((N+256-1)/256,1,1), dim3(256,1,1), 0, O, N, d_a); //Launch kernel
HIP_CHECK(hipGetLastError());

#define HIP_CHECK(command) {

hipError_t status = command; if

HIP_CHECK(hipMemcpy(h_a, d_a, Nbytes, hipMemcpyDeviceToHost)) (statusi=hipSuccess) {

—_ = -

std::cerr << “Error: HIP reports ”
free(h_a); /lfree host memory << hipGetErrorString(status) \

<< std::endl;
HIP_CHECK(hipFree(d_a)); /lfree device memory std-:abort(); }}

—
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Vector Addition

__global___void vecAddkernel(float* A_d, float* B_d, float* C_d, int n) {

int i = threadldx.x + blockDim.x * blockldx.x;

ifi<n) {
C_d[i] = A_d[i] + B_d[i;
}
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Vector Addition

void vecAdd(float* A, float* B, float* C, int n) {
int size = n * sizeof(float);
float*A_d, B_d, C_d;

/I Allocate device memory

hipMalloc((void **) &A d, size);
hipMalloc((void **) &B_d, size);
hipMalloc((void **) &C_d, size);

/I Transfer A and B to device memory
hipMemcpy(A_d, A, size, hipMemcpyHostToDevice);
hipMemcpy(B_d, B, size, hipMemcpyHostToDevice);

/I Kernel invocation code
vecAddKernel<<<ceil(n/256.0), 256>>>(A_d, B_d, C_d, n);
hipDeviceSynchronize();

/I Transfer C from device to host
hipMemcpy(C, C_d, size, hipMemcpyDeviceToHost);

/I Free device memory for A, B, C
hipFree(A_d); hipFree(B_d); hipFree (C_d);
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Another way to launch kernel

int vecAdd(float* A, float* B, float* C, int n) {
/I Kernel invocation code
dim3 DimGrid(ceil(n/256), 1, 1);
dim3 DimBlock(256,1,1);

vecAddKernel<<<DimGrid, DimBlock>>>(A d, B_d, C_d, n);
hipDeviceSynchronize();

/I Transfer C from device to host

CSE/EE-R590A,-Dr-Hari-Sadasivan



Mapping to the data

Suppose we use 1d thread blocks of size 4

e | e
S0 N T O O

Thread

1T T T 8T 87T 31T 387 81 3¢ H H
VIOl | VI1] | VI[2] | VI3] | V4] | V[5] | VI6] | V[7] | VI8] | V9]

Boundary
Check!

I = blockldx.x * blockDim.x + threadldx.x
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Questions

1. How many floating operations are being performed in the vector add
kernel? Give your answer in terms of N and explain.

2. How many global memory reads and writes are being performed by the
vector add kernel? Give your answer in terms of N.
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Questions

1. How many floating operations are being performed in the vector add
kernel? Give your answer in terms of N and explain.

N, one for each pair of input vector elements

2. How many global memory reads and writes are being performed by the
vector add kernel? Give your answer in terms of N.
Reads: 2N, one for each of the two input vectors elements.

Writes: N, one for each output vector element.
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Function Qualifiers

hipcc makes two compilation passes through source code. One to compile
host code, and one to compile device code.

= __global___functions:
- These are entry points to device code, called from the host
- Code in these regions will execute on SIMD units

= __device___functions:
- Can be called from __global___and other__device  functions.
- Cannot be called from host code.
- Not compiled into host code — essentially ignored during host compilation pass

= host  device  functions :
- Can be called from _ global , device , and host functions.
- Will execute on SIMD units when called from device code!

CSE/EE P590A, Dr. Hari Sadasivan



Memory declarations in Device Code

= Malloc/free not supported in device code.
= Variables/arrays can be declared on the stack.
» Stack variables declared in device code are allocated in registers and are private to each thread.

» Threads can all access common memory via device pointers, but otherwise do not share memory.
- Important exception: _shared  memory

» Stack variables declared as  shared
- Allocated once per block in LDS memory
- Shared and accessible by all threads in the same block
- Access is faster than device global memory (but slower than register)
- Must have size known at compile time
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Thread Synchronization

= _syncthreads():

- Blocks a wavefront from continuing execution until all wavefronts
have reached syncthreads()

- Memory transactions made by a thread before  syncthreads() are
visible to all other threads in the block after  syncthreads()

- Can have a noticeable overhead if called repeatedly

CSE/EE P590A, Dr. Hari Sadasivan



Shared Memory

_global__ void reverse(double *d_a) {
_ shared __ double s_a[256]; //array of doubles, shared in this block

int tid = threadldx.x;
s_a[tid] = d_a[tid]; /leach thread fills one entry

/lall wavefronts must reach this point before any wavefront is allowed to continue.
//something is missing here...

_syncthreads();

d_aftid] = s_a[255-tid]; //write out array in reverse order

int main() {

hipLaunchKernelGGL(reverse, dim3(1), dim3(256), 0, 0, d_a); //Launch kernel
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Device Management

Multiple GPUs in system? Multiple host threads/MPI ranks? What device are we running on?

» Host can query number of devices visible to system:

int numDevices = 0; hipGetDeviceCount(&numbDevices);

= Host tells the runtime to issue instructions to a particular device:

int devicelD = 0; hipSetDevice(devicelD);

= Host can query what device is currently selected:

hipGetDevice(&devicelD);

» The host can manage several devices by swapping the currently selected device during
runtime.

» MPI ranks can set different devices or over-subscribe (share) devices.
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Device Properties during run-time

The host can also query a device’s properties:
hipDeviceProp t props;
hipGetDeviceProperties(&props, devicelD);

= hipDeviceProp tis a struct that contains useful fields like the device’s name, warpsize,
max workgroup size, max grid size, #CUs, cache, clock speed, and GCN arch

architecture.
- See “hip/hip runtime api.h’for full list of fields.
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Querying System from terminal

» rocminfo: Queries and displays information on the system’s hardware
- More info at: https://github.com/RadeonOpenCompute/rocminfo

» Querying ROCm version:
- If you install ROCm in the standard location (/opt/rocm) version info is at:
/opt/rocm/.info/version-dev
- Can also run the command ‘dkms status’ and the ROCm version will be
displayed
» rocm-smi: Queries and sets AMD GPU frequencies, power usage, and fan
speeds
- sudo privileges are needed to set frequencies and power limits
- sudo privileges are not needed to query information

- Get more info by running ‘rocm-smi -h’ or looking at:
https://github.com/RadeonOpenCompute/ROC-smi

$ /opt/rocm/bin/rocm-smi

ROCm System Management Interface

GPU Temp AvgPwr SCLK MCLK Fan Perf PwrCap VRAM% GPU%
1 38.0c 18.0W 1440Mhz 945Mhz 0.0% manual 220.0W 0% 0%

End of ROCm SMI Log
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Blocking vs Nonblocking API functions

The kernel launch function, hipLaunchKernelGGL, is non-blocking for the host.

- After sending instructions/data, the host continues immediately while the device executes
the kernel

- If you know the kernel will take some time, this is a good area to do some work (i.e. MPI
comms) on the host

However, hipMemcpyis blocking.
- The data pointed to in the arguments can be accessed/modified after the function returns.

The non-blocking version is hipMemcpyAsync

hipMemcpyAsync(d_a, h_a, Nbytes, hipMemcpyHostToDevice, stream);

Like hipLaunchKernelGGL, this function takes an argument of type hipStream_t

It is not safe to access/modify the arguments of hipMemcpyAsyncwithout some sort of
synchronization.
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Streams

A stream in HIP is a queue of tasks (e.g. kernels, memcpys, events).
- Tasks enqueued in a stream complete in order on that stream.
- Tasks being executed in different streams are allowed to overlap and share device resources.

Streams are created via:
hipStream _t stream;
hipStreamCreate(&stream);

And destroyed via:
hipStreamDestroy(stream);

Passing 0 or NULL as the hipStream t argument to a function instructs the function

to execute on a stream called the ‘NULL Stream’:
- No task on the NULL stream will begin until all previously enqueued tasks in all other
streams have completed.
- Blocking calls like hipMemcpy run on the NULL stream.
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Streams

= Suppose we have 4 small kernels to execute:

hipLaunchKernelGGL(myKernell dim3(1), dim3(256), @, 0, 256, d_al);

J

hipLaunchKernelGGL(myKernel2 dim3(1), dim3(256), @, 0, 256, d_a2);

)

hipLaunchKernelGGL(myKernel3 dim3(1), dim3(256), @, 0, 256, d_a3);

)

hipLaunchKernelGGL(myKernel4 dim3(1), dim3(256), @, 0, 256, d_a4d);

J

NULL Stream myKernell myKernel2 myKernel3 myKerneld

= Even though these kernels use only one block each, they’ll execute in
serial on the NULL stream:
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Streams

» With streams we can effectively share the GPU’s compute resources:

hipLaunchKernelGGL(myKernell dim3(1), dim3(256), @, streaml, 256, d_al);

J

hipLaunchKernelGGL(myKernel2 dim3(1), dim3(256), @, stream2, 256, d _a2);

J

hipLaunchKernelGGL(myKernel3 dim3(1), dim3(256), @, stream3, 256, d _a3);

J

hipLaunchKernelGGL(myKerneld4 dim3(1), dim3(256), @, streamd4, 256, d _a4);

NULL Stream

Stream1 myKernell
Stream?2 myKernel2
Stream3 myKernel3
Stream4 myKernel4

Note 1. Check that the kernels modify different parts of memory to avoid data races.
Note 2: With large kernels, overlapping computations may not help performance.
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Streams

= There is another use for streams besides concurrent kernels:
- Overlapping kernels with data movement.

= AMD GPUs have separate engines for:
- Host->Device memcpys
- Device->Host memcpys
- Compute kernels.

» These three different operations can overlap without dividing the GPU’s resources.
- The overlapping operations should be in separate, non-NULL, streams.
- The host memory should be pinned.
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Pinned Memory

Host data allocations are pageable by default. The GPU can directly access Host data if it is pinned
instead.

= Allocating pinned host memory:
double *h_a = NULL;
hipHostMalloc(&h_a, Nbytes);

» Free pinned host memory:
hipHostFree(h_a);

» Host<->Device memcpy bandwidth increases significantly when host memory is pinned.

- It is good practice to allocate host memory that is frequently transferred to/from the device as
pinned memotry.
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Streams

Suppose we have 3 kernels which require moving data to and from the device:

hipMemcpy(d_al, h_al, Nbytes, hipMemcpyHostToDevice));
hipMemcpy(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice));
hipMemcpy(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice));

hipLaunchKernelGGL (myKernell, blocks, threads, 0, @, N, d_al);
hipLaunchKernelGGL (myKernel2, blocks, threads, 0, @, N, d_a2);
hipLaunchKernelGGL (myKernel3, blocks, threads, 0, @, N, d_a3);

hipMemcpy(h_al, d_al, Nbytes, hipMemcpyDeviceToHost);

hipMemcpy(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost);
hipMemcpy(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost);

NULL Stream HToD1 HToD2 HToD3  myKernell myKernel2] myKernel3  DToH1 DToH2 DToH3
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Streams

Changing to asynchronous memcpys and using streams:

hipMemcpyAsync(d_al, h_al, Nbytes, hipMemcpyHostToDevice, streaml);
hipMemcpyAsync(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice, stream2);
hipMemcpyAsync(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice, stream3);

hipLaunchKernelGGL (myKernell, blocks, threads, ©, streaml, N, d_al);
hipLaunchKernelGGL (myKernel2, blocks, threads, 9, stream2, N, d_a2);
hipLaunchKernelGGL (myKernel3, blocks, threads, ©, stream3, N, d_a3);

hipMemcpyAsync(h_al, d_al, Nbytes, hipMemcpyDeviceToHost, streaml);
hipMemcpyAsync(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost, stream2);
hipMemcpyAsync(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost, stream3);

NULL Stream

Stream1l HToD1 | myKernell | DToH1

Stream?2 HToD2 | myKernel2  DToH2

Stream3 HToD3  myKernel3 DToH3
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Synchronization

How do we coordinate execution on device streams with host execution?
Need some synchronization points.

= hipDeviceSynchronize();
- Heavy-duty sync point.
- Blocks host until all work in all device streams has reported complete.

= hipStreamSynchronize(stream);
- Blocks host until all work in stream has reported complete.

Can a stream synchronize with another stream? For that we need ‘Events’.
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Events

A hipEvent_t object is created on a device via:
hipEvent_t event;
hipEventCreate(&event);

We queue an event into a stream:
hipEventRecord(event, stream);

- The event records what work is currently enqueued in the
stream.

- When the stream’s execution reaches the event, the event is
considered ‘complete’.

At the end of the application, event objects should be destroyed:
hipEventDestroy(event);
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Events

What can we do with queued events?

= hipEventSynchronize(event);
- Block host until event reports complete.
- Only a synchronization point with respect to the stream where event was enqueued.

= hipEventElapsedTime(&time, startEvent, endEvent);
- Returns the time in ms between when two events, startEvent and endEvent, completed
- Can be very useful for timing kernels/memcpys

= hipStreamWalitEvent(stream, event);
- Non-blocking for host.
- Instructs all future work submitted to stream to wait until event reports complete.
- Primary way we enforce an ‘ordering’ between tasks in separate streams.
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Questions

1. How would one declare a variable err that can appropriately receive the
returned value of a HIP API call?
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Questions

1. How would one declare a variable err that can appropriately receive the
returned value of a HIP API call?

Ans: hipError_t err = {stmt}; where {stmt} is a HIP API call such as hipMalloc() or a
kernel function call
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Questions

2. If we want to copy 5000 bytes of data from host array h_A (h_A is a pointer to
element O of the source array) to device array d_A (d_A is a pointer to element 0
of the destination array), what would be an appropriate API call for the data copy in
HIP?
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Questions

2. If we want to copy 5000 bytes of data from host array h_A (h_A is a pointer to
element O of the source array) to device array d_A (d_A is a pointer to element 0
of the destination array), what would be an appropriate API call for the data copy in
HIP?

Ans: hipMemcpy(d_A, h_A, 5000, hipMemcpyHostToDevice);
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AMD GPU Libraries

= A note on naming conventions:
- roc* -> AMGCN library usually written in HIP
- cu* -> NVIDIA PTX libraries
- hip* -> usually interface layer on top of roc*/cu* backends
= hip* libraries:
- Can be compiled by hipcc and can generate a call for the device you have:
- hipcc->hip-clang->AMD GCN ISA
- hipcc->nvcc (inlined)->NVPTX
- Just a thin wrapper that marshals calls off to a “backend” library:
- corresponding roc* library backend containing optimized GCN
- corresponding cu* library backend containing NVPTX for NVIDIA devices
- E.g., hipBLAS is a marshalling library:

74 __
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Why libraries?

* Code reuse
« High Performance
« Maximize compute
« Maximize memory bandwidth

* No need to deal with low level GPU code
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Math library equivalents

_ _ Basic Linear Algebra Subroutines
_ _ Fast Fourier Transforms
ThRUST | ROCTHRUST | STLUbrayfor paraliel algos
_ _ Optimized Parallel Primitives
_ _ C++ Template Library for Linear

Algebra
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