
Teaching LLMs to Use Tools at Scale:
Function Calling to Agents

Shishir G. Patil
18 Nov 2024

Agenda

Function calls – connecting LLMs to the digital world

• How to train models to do function calls?

• How do we evaluate the models?

From function calls to agentic system.

• Building a run-time for LLM-agents

• How to evaluate LLM-agents?

prompt

response

act

resp

response

prompt act

resp

Humans are good discriminators,
LLMs are good generators

response

prompt act

resp

Humans are good discriminators,
LLMs are good generators

response

prompt act

resp

Humans are good discriminators,
LLMs are good generators

Let LLMs pick the right APIs for a given task!

the Big Question:

Q1. How to mix Fine-Tuning and Retrieval?

Hypothesis (at least what we wish were true):

• Fine-Tuning: augment the behavior of the model

• Retrieval: introduce new knowledge to the model

Early Evidence (Gorilla): fine-tuning is remarkably effective at behavior and
knowledge.

• … but you still need retrievers for data freshness

• … and retrievers are inaccurate

Solution: RAT

Data freshness: APIs change a lot more frequently than we think

Big Idea: Retrieval Aware Training (RAT)

Fine-tune the model to use or ignore retrieved context.

• Introduce correct and incorrect retrieval results during instruction
fine-tuning

• Ensures model is robust to low-quality retrieval

RAG

Finetune

Retrieval Aware Training

Is this relevant?

Step 1: Determine to
use or discard the
retrieved API!

Retrieval Aware Training

Step 1: Determine to
use or discard the
retrieved API!

Step 2: Respond to the
prompt!

Retrieval Aware Training

Is this relevant?

Retrieval Aware Training

<Reference API>: {"domain": "Semantic Segmentation", "framework": "PyTorch", "functionality": "Neural
Machine Translation", "api_name": "Transformer (NMT)", "api_call":
"torch.hub.load(repo_or_dir='pytorch/fairseq')", "api_arguments": ["model_name", "tokenizer", "bpe",
"beam", "sampling", "sampling_topk"], "python_environment_requirements": ["bitarray", "fastBPE",
"hydra-core", "omegaconf", "regex", "requests", "sacremoses", "subword_nmt"], "example_code": "import
torch\n\nen2fr = torch.hub.load('pytorch/fairseq', 'transformer.wmt14.en-fr', tokenizer='moses',
bpe='subword_nmt')\n\nen2fr.cuda()\n\nfr = en2fr.translate('Hello world!', beam=5)\nassert fr ==
'Bonjour \u00e0 tous !'", "performance": {"dataset": [{"name": "WMT'14", "accuracy": "Not provided"},
{"name": "WMT'18", "accuracy": "Not provided"}, {"name": "WMT'19", "accuracy": "Not provided"}]},
"description": "Transformer (NMT) is a powerful sequence-to-sequence modeling architecture that
produces state-of-the-art neural machine translation systems. It is based on the paper 'Attention Is All You
Need' and has been improved using techniques such as large-scale semi-supervised training, back-
translation, and noisy-channel reranking. It supports English-French and English-German translation as well
as round-trip translation for paraphrasing."}

Step 1: Determine to
use or discard the
retrieved API!

Step 2: Ignore the
retrieved information!

Question: How much does GPT-4 hallucinate?

torch

utils hub Tensor

model_zoo load

repo:
pytorch/vision

model:
densenet121

model:
densenet161

model:
densenet201

pretrained: True pretrained: False

repo: huggingface/
pytorch-transformers

torch.hub.load(’pytorch/vision:v0.10.0’,

 ‘densenet121’, pretrained=True)

torch

hub

load

pytorch/vision

densenet121

pretrained = True

AST sub-tree matching - measure Hallucination

torch

utils hub Tensor

model_zoo load

repo:
pytorch/vision

model:
densenet121

model:
densenet161

model:
densenet201

pretrained: True pretrained: False

repo: huggingface/
pytorch-transformers

torch.hub.load(’pytorch/vision:v0.10.0’,

 ‘densenet121’, pretrained=True)

torch

hub

load

pytorch/vision

densenet121

pretrained = True

AST sub-tree matching - measure Hallucination

Overview of the Performance: accuracy vs.
 hallucination for all models

Technical Collaboration and
Pull Requests into Gorilla from:

Used at:

GoEx: Execution Engine

Retrieval Aware Training
(RAT)

Measure
Hallucination!

gorilla.cs.berkeley.edu

{} Open Functions Berkeley Function-
Calling Leaderboard

Agent-Arena

A runtime to Execute actions that LLM generates

GoEx: Gorilla Execution Engine

prompt

response

act

resp

Users verify the process

Users verify the the output

response

prompt act

resp

add_to_cart() checkout() dispatch()

detect_fraud()

Example: Amazon Shopping Cart

Problems:
1.Delayed verification.

2. Only downstream outcome visible

Solution:

1. Guarantee reversibility for LLM actions

2. Bound the blast-radius

Abstractions and Policies to enable LLMs to execute actions in
the presence of delayed and downstream signals!

GoEx: A Runtime to Execute actions LLM generates!

“undo” ”blast-radius confinement”

Making RESTFull APIs reversible

- GoEx maintains state

Snapshot / versioning for Filesystems and Databases

- Database Transaction semantics
- CRDTs

- Shadow execution in containers

When reversibility is not possible

- Bound the worst-case scenario

- “Alert” the downstream user

1. Guarantee reversibility for LLM actions

2. Bound the blast-radius

Can we build GoEx using tools available today?

Two Components

• Identifying Minimal Permissions
• Humas as ultimate-judge!!

• Can we lower human dependence?
• Self-consistency

• Execution Runtime
• RESTful

• Database

• Filesystems

Identifying Minimal Permissions

Authentication and Scopes

Execution Runtime

GoEx: Database handlers

GoEx: Execution Engine

Retrieval Aware Training
(RAT)

Measure
Hallucination!

gorilla.cs.berkeley.edu

{} Open Functions Berkeley Function-
Calling Leaderboard

Agent-Arena

Overview

An interactive sandbox where users can
compare, visualize, and rate agentic
workflows personalized to their needs

What are agents?

LLM Model Framework Tool+ +

Models / Frameworks / Tools
We currently support the following agents:

Frameworks
• Langchain

• OpenAI Assistants

• Anthropic Tool Use

• CrewAI

• Llamaindex

• Composio

Models
• OpenAI: gpt-4o-2024-08-06, gpt-4o-

2024-05-13, gpt-4-turbo-2024-04-09,
gpt-4-0613

• Anthropic: claude-3-5-sonnet-
20240620, claude-3-opus-20240229,
claude-3-haiku-20240307

• Google: gemini-1.5-pro-001, gemini-
1.5-flash-001, gemini-1.5-pro-002,
gemini-1.5-flash-002

• Mistral: open-mixtral-8x7b, mistral-
large-2407, open-mixtral-8x22b

• Meta: llama-3.1-405B-instruct, llama-
3.1-8B-instruct, llama-3.1-70B-
instruct

Tools

• Brave Search

• Google Serper

• Alpha Vantage

• Google Jobs

• Arxiv

• + 33 more

The Agent Arena Platform

Components:

- Arena

- Leaderboard

- Prompt Hub

1. User gives task

2. Router finds 2 Agents

3. Agents attempt task

4. User declares winner

Introduction to the Bradley-Terry Model

What is the Bradley-Terry Model?
• The Bradley-Terry model is a statistical model used to estimate the probability that one entity will win over

another in pairwise comparisons. It's particularly useful in ranking items (like agents, players, or teams)
based on the outcomes of their head-to-head matchups.

Core Idea
• Each entity (e.g., an agent) is assigned a skill rating (β).The probability that Agent A beats Agent B depends

on their respective skill ratings.

• Formula:

• The probability that Agent A wins against Agent B (with βA and βB being the skill rating of Agent A and
Agent B) is given by:

A higher β means a stronger agent.

langchain google-serper-search
agent (claude-3-5-sonnet-20240620)

• Framework: llamaindex

• Tool: brave-search

• Model: (gpt-4o-2024-08-06)

VS

• Framework: langchain

• Tool: google-serper-search

• Model: (claude-3-5-sonnet-

20240620)

llamaindex brave-search agent
(gpt-4o-2024-08-06)

Next Step: Setting Up Features and Parameters

Bradley-Terry Model Example

• Motivation for Extension:

• In some cases, agents are not monolithic entities but are composed of subcomponents that contribute to their
performance. For example, in Agent Arena:

• Models: Different language models (e.g., GPT-4, Claude)

• Tools: Different tools or plugins the agents can use (e.g., search engines).

• Frameworks: Different agent frameworks (e.g., LangChain, LlamaIndex).

• We want to estimate the skill ratings of these subcomponents together, not just individually with separate design matrices.

• Extended Model:

• Instead of assigning a single β per agent, assign βs to each subcomponent.

• The overall skill of an agent is the combination of its subcomponents.

Extending Bradley-Terry (Combining Subcomponents)

Example Cont… (Setting Up Skill Parameter)

β: The Parameter Vector: β is a vector of parameters, with each entry
corresponding to the "strength" or "rating" of a particular subcomponent (model,
tool, or framework). This vector is what we optimize during model training to
minimize the loss function and find the best-fit ratings.

Traditional Approach: Treat Agent, Framework, Models, and Tools as separate
battles

Individual Tool
Battle

Individual Model
Battle

Individual Framework
Battle

Extended Approach (Combining subcomponents into one battle)

Subcomponent Ratings:

• Suppose after fitting the
model, we obtain:

• Models:

• GPT-4: β = 1.5

• Claude: β = 0.5

• Tools:

• Brave Search: β = 1.0

• Google Serper: β = 0.8

• Frameworks:

• LangChain: β = 1.2

• LlamaIndex: β = 0.9

Interpretation:

•Models: GPT-4 has a higher
rating than Claude, suggesting it
contributes more to winning.

•Tools: Brave Search and Google
Serper have similar ratings, but
Brave Search is slightly higher.

•Frameworks: LangChain has a
higher rating than LlamaIndex.

Predicting Outcomes:

•For any future battle, we can
compute P(A wins over B) using
the βs of their subcomponents.

•Agents with stronger
subcomponents are more likely
to win

Interpreting the Results

Leaderboard

Leaderboards rating model, framework, and tool subcomponents as well as composite
agents using Bradley Terry Elo rating methods

GoEx: Execution Engine

Retrieval Aware Training
(RAT)

Measure
Hallucination!

gorilla.cs.berkeley.edu

{} Open Functions Berkeley Function-
Calling Leaderboard

Agent-Arena

	Introduction
	Slide 1
	Slide 2: Agenda

	Gorilla
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: the Big Question: Q1. How to mix Fine-Tuning and Retrieval?
	Slide 10: Data freshness: APIs change a lot more frequently than we think
	Slide 11: Big Idea: Retrieval Aware Training (RAT)
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 22
	Slide 23
	Slide 24

	GoEx
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Can we build GoEx using tools available today?
	Slide 33
	Slide 34: Two Components
	Slide 35: Identifying Minimal Permissions
	Slide 36: Authentication and Scopes
	Slide 37
	Slide 38: Execution Runtime
	Slide 40: GoEx: Database handlers
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: Example Cont… (Setting Up Skill Parameter)
	Slide 51
	Slide 52
	Slide 53

