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Agenda 

Function calls – connecting LLMs to the digital world

• How to train models to do function calls? 

• How do we evaluate the models? 

From function calls to agentic system. 

• Building a run-time for LLM-agents

• How to evaluate LLM-agents?



prompt

response

act

resp





response

prompt act

resp

Humans are good discriminators, 
LLMs are good generators



response

prompt act

resp

Humans are good discriminators, 
LLMs are good generators



response

prompt act

resp

Humans are good discriminators, 
LLMs are good generators



Let LLMs pick the right APIs for a given task!



the Big Question:

Q1. How to mix Fine-Tuning and Retrieval?

Hypothesis (at least what we wish were true):

• Fine-Tuning: augment the behavior of the model

• Retrieval: introduce new knowledge to the model

Early Evidence (Gorilla): fine-tuning is remarkably effective at behavior and 
knowledge.

• … but you still need retrievers for data freshness

• … and retrievers are inaccurate

Solution: RAT



Data freshness: APIs change a lot more frequently than we think



Big Idea: Retrieval Aware Training (RAT)

Fine-tune the model to use or ignore retrieved context.

• Introduce correct and incorrect retrieval results during instruction 
fine-tuning

• Ensures model is robust to low-quality retrieval
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Is this relevant?

Step 1: Determine to 
use or discard the 
retrieved API!

Retrieval Aware Training
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prompt!

Retrieval Aware Training



Is this relevant?

Retrieval Aware Training

<Reference API>: {"domain": "Semantic Segmentation", "framework": "PyTorch", "functionality": "Neural 
Machine Translation", "api_name": "Transformer (NMT)", "api_call": 
"torch.hub.load(repo_or_dir='pytorch/fairseq')", "api_arguments": ["model_name", "tokenizer", "bpe", 
"beam", "sampling", "sampling_topk"], "python_environment_requirements": ["bitarray", "fastBPE", 
"hydra-core", "omegaconf", "regex", "requests", "sacremoses", "subword_nmt"], "example_code": "import 
torch\n\nen2fr = torch.hub.load('pytorch/fairseq', 'transformer.wmt14.en-fr', tokenizer='moses', 
bpe='subword_nmt')\n\nen2fr.cuda()\n\nfr = en2fr.translate('Hello world!', beam=5)\nassert fr == 
'Bonjour \u00e0 tous !'", "performance": {"dataset": [{"name": "WMT'14", "accuracy": "Not provided"}, 
{"name": "WMT'18", "accuracy": "Not provided"}, {"name": "WMT'19", "accuracy": "Not provided"}]}, 
"description": "Transformer (NMT) is a powerful sequence-to-sequence modeling architecture that 
produces state-of-the-art neural machine translation systems. It is based on the paper 'Attention Is All You 
Need' and has been improved using techniques such as large-scale semi-supervised training, back-
translation, and noisy-channel reranking. It supports English-French and English-German translation as well 
as round-trip translation for paraphrasing."}

Step 1: Determine to 
use or discard the 
retrieved API!

Step 2: Ignore the 
retrieved information!



Question: How much does GPT-4 hallucinate? 
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Overview of the Performance: accuracy vs.  
 hallucination for all models



Technical Collaboration and 
Pull Requests into Gorilla from: 

Used at: 





GoEx: Execution Engine
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A runtime to Execute actions that LLM generates 

GoEx: Gorilla Execution Engine
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add_to_cart() checkout() dispatch()

detect_fraud()

Example: Amazon Shopping Cart



Problems:  
1.Delayed verification.  

2. Only downstream outcome visible

Solution: 

1. Guarantee reversibility for LLM actions

2. Bound the blast-radius 



Abstractions and Policies to enable LLMs to execute actions in 
the presence of delayed and downstream signals!

GoEx: A Runtime to Execute actions LLM generates! 

“undo” ”blast-radius confinement”



Making RESTFull APIs reversible

- GoEx maintains state

Snapshot / versioning for Filesystems and Databases  

- Database Transaction semantics
- CRDTs

- Shadow execution in containers

When reversibility is not possible

- Bound the worst-case scenario

- “Alert” the downstream user

1. Guarantee reversibility for LLM actions

2. Bound the blast-radius 



Can we build GoEx using tools available today?





Two Components

• Identifying Minimal Permissions
• Humas as ultimate-judge!!

• Can we lower human dependence? 
• Self-consistency

• Execution Runtime
• RESTful

• Database

• Filesystems



Identifying Minimal Permissions



Authentication and Scopes 





Execution Runtime



GoEx: Database handlers
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Overview

An interactive sandbox where users can 
compare, visualize, and rate agentic 
workflows personalized to their needs



What are agents?

LLM Model Framework Tool+ +



Models / Frameworks / Tools
We currently support the following agents:

Frameworks  
• Langchain

• OpenAI Assistants

• Anthropic Tool Use

• CrewAI

• Llamaindex

• Composio

Models  
• OpenAI: gpt-4o-2024-08-06, gpt-4o-

2024-05-13, gpt-4-turbo-2024-04-09, 
gpt-4-0613

• Anthropic: claude-3-5-sonnet-
20240620, claude-3-opus-20240229, 
claude-3-haiku-20240307

• Google: gemini-1.5-pro-001, gemini-
1.5-flash-001, gemini-1.5-pro-002, 
gemini-1.5-flash-002

• Mistral: open-mixtral-8x7b, mistral-
large-2407, open-mixtral-8x22b

• Meta: llama-3.1-405B-instruct, llama-
3.1-8B-instruct, llama-3.1-70B-
instruct

Tools  

• Brave Search

• Google Serper

• Alpha Vantage

• Google Jobs

• Arxiv

• + 33 more



The Agent Arena Platform

Components:

-   Arena

- Leaderboard

- Prompt Hub

1. User gives task

2. Router finds 2 Agents

3. Agents attempt task

4. User declares winner



Introduction to the Bradley-Terry Model

What is the Bradley-Terry Model?
• The Bradley-Terry model is a statistical model used to estimate the probability that one entity will win over 

another in pairwise comparisons. It's particularly useful in ranking items (like agents, players, or teams) 
based on the outcomes of their head-to-head matchups.

Core Idea
• Each entity (e.g., an agent) is assigned a skill rating (β).The probability that Agent A beats Agent B depends 

on their respective skill ratings.

• Formula:

• The probability that Agent A wins against Agent B (with βA and βB being the skill rating of Agent A and 
Agent B) is given by:

A higher β means a stronger agent.



langchain google-serper-search 
agent (claude-3-5-sonnet-20240620)

• Framework: llamaindex 

• Tool: brave-search

• Model: (gpt-4o-2024-08-06)

VS

• Framework: langchain 

• Tool: google-serper-search

• Model: (claude-3-5-sonnet-

20240620)

llamaindex brave-search agent 
(gpt-4o-2024-08-06)

Next Step: Setting Up Features and Parameters

Bradley-Terry Model Example



• Motivation for Extension:

• In some cases, agents are not monolithic entities but are composed of subcomponents that contribute to their 
performance. For example, in Agent Arena:

• Models: Different language models (e.g., GPT-4, Claude)

• Tools: Different tools or plugins the agents can use (e.g., search engines).

• Frameworks: Different agent frameworks (e.g., LangChain, LlamaIndex).

• We want to estimate the skill ratings of these subcomponents together, not just individually with separate design matrices.

• Extended Model:

• Instead of assigning a single β per agent, assign βs to each subcomponent.

• The overall skill of an agent is the combination of its subcomponents.

Extending Bradley-Terry (Combining Subcomponents)



Example Cont… (Setting Up Skill Parameter)

β: The Parameter Vector: β is a vector of parameters, with each entry 
corresponding to the "strength" or "rating" of a particular subcomponent (model, 
tool, or framework). This vector is what we optimize during model training to 
minimize the loss function and find the best-fit ratings.

Traditional Approach: Treat Agent, Framework, Models, and Tools as separate 
battles

Individual Tool 
Battle

Individual Model 
Battle

Individual Framework 
Battle

Extended Approach (Combining subcomponents into one battle)



Subcomponent Ratings:

• Suppose after fitting the 
model, we obtain:

• Models:

• GPT-4: β = 1.5

• Claude: β = 0.5

• Tools:

• Brave Search: β = 1.0

• Google Serper: β = 0.8

• Frameworks:

• LangChain: β = 1.2

• LlamaIndex: β = 0.9

Interpretation:

•Models: GPT-4 has a higher 
rating than Claude, suggesting it 
contributes more to winning.

•Tools: Brave Search and Google 
Serper have similar ratings, but 
Brave Search is slightly higher.

•Frameworks: LangChain has a 
higher rating than LlamaIndex.

Predicting Outcomes:

•For any future battle, we can 
compute P(A wins over B) using 
the βs of their subcomponents.

•Agents with stronger 
subcomponents are more likely 
to win

Interpreting the Results



Leaderboard

Leaderboards rating model, framework, and tool subcomponents as well as composite 
agents using Bradley Terry Elo rating methods
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