## Mixture-of-Experts in the Era of LLMs

Minjia Zhang

University of Illinois at Urbana-Champaign

minjiaz@illinois.edu



## Scaling drives SOTA Deep Learning



## Scaling drives SOTA Deep Learning



## Scaling drives SOTA Deep Learning



## AI Scale is Limited By Compute

- Compute is the primary challenge of training massive models
- Ambitious model at scale and time to train

| Model  | Model Size | Hardware      | Days to Train |
|--------|------------|---------------|---------------|
| BLOOM  | 176B       | 384 A100 GPUs | 115 days      |
| OPT    | 175B       | 992 A100 GPU  | 56 days       |
| MT-NLG | 530B       | 2200 A100 GPU | 60 days       |
| PaLM   | 540B       | 6144 TPU v4   | 57 days       |

Next jump in scale:

- Next-generation hardware
- Significant investment in GPUs

## Next AI Scale?

- Can we achieve next generation model quality on current generation of hardware?
- From a computation perspective sparse Mixture-of-Experts provides a promising path
  - Scale at sub-linear cost

# Recap: MoE Models are Sparse and Need Less Compute



## Mixture of Experts (MoE): Overview

- MoE models have been around for a while..
- Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer
  - Harder to scale, instability during training, and inefficient training
- <u>GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding</u>
  - 600B models beating 96-layer dense models, 10x training speedup, generic sharding framework (Tensorflow XLA)
  - Less stability with larger models, full precision training
- Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
  - More efficient training
    - Top-1 gating instead of top-2/top-k, Better initialization conditions, Mixed precision training: FP32 gating (instead of FP16), Stable training with larger models
  - SOTA results on language understanding task

## MoE: Road Map

- Open-source (above the arrow).
- Private models (under the arrow).

G

G



## MoE Design

#### What should we care when designing a MoE?

| Network types           | FFN, Attention              |
|-------------------------|-----------------------------|
| Fine-grained experts    | 32 experts/128 experts/     |
| Shared experts          | Isolated experts            |
| Activation Function     | ReLU/GEGLU/SwiGLU           |
| MoE frequency           | Every two layer/Each layer/ |
| Training auxiliary loss | Auxiliary loss/Z-loss/      |

### **Fine-Grained and Shared Experts**



Figure 2 | Illustration of DeepSeekMoE. Subfigure (a) showcases an MoE layer with the conventional top-2 routing strategy. Subfigure (b) illustrates the fine-grained expert segmentation strategy. Subsequently, subfigure (c) demonstrates the integration of the shared expert isolation strategy, constituting the complete DeepSeekMoE architecture. It is noteworthy that across these three architectures, the number of expert parameters and computational costs remain constant.

## Pyramid Design of Experts

1.3B+MoE-128 (52B)

1.3B+PR-MoE-64/128 (31B)



| Deen Sneed MoE: Advancing Mixture of Experts Inference and Training to Power Next Congration AI Scale |                          |                             |                          |                            |
|-------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|--------------------------|----------------------------|
| - 1 I F F I A I F F I = [VIIII] A I A I A I A I A I F I I = I A I F I I I I I I I I I I A I A I A I   | DeenSneed-MoE · Advanciv | o Mixture-of-Experts Infere | nce and Training to Powe | r Next-Generation AI Scale |

76.71

77.75

64.92

67.16

38.09

38.09

69.84

70.60

31.29

28.86

7.19

7.73

## **MoE Experts Design**

| Reference                    | Models           | Expert Count<br>(Activ./Total) | d <sub>model</sub> | $d_{ffn}$    | d <sub>expert</sub>  | #L | #H  | d <sub>head</sub> | Placement<br>Frequency      | Activation<br>Function | Share Expert<br>Count |
|------------------------------|------------------|--------------------------------|--------------------|--------------|----------------------|----|-----|-------------------|-----------------------------|------------------------|-----------------------|
|                              | 600B             | 2/2048                         | 1024               | 8192         | $d_{ffn}$            | 36 | 16  | 128               | 1/2                         | ReLU                   | 0                     |
| GShard [86]                  | 200B             | 2/2048                         | 1024               | 8192         | $d_{ffn}$            | 12 | 16  | 128               | 1/2                         | ReLU                   | 0                     |
| (2020)                       | 150B             | 2/512                          | 1024               | 8192         | $d_{ffn}$            | 36 | 16  | 128               | 1/2                         | ReLU                   | 0                     |
|                              | 37B              | 2/128                          | 1024               | 8192         | $d_{ffn}$            | 36 | 16  | 128               | 1/2                         | ReLU                   | 0                     |
|                              | 7B               | 1/128                          | 768                | 2048         | $d_{ffn}$            | 12 | 12  | 64                | 1/2                         | GEGLU                  | 0                     |
| Switch [49]                  | 26B              | 1/128                          | 1024               | 2816         | $d_{ffn}$            | 24 | 16  | 64                | 1/2                         | GEGLU                  | 0                     |
| (2021)                       | 395B             | 1/64                           | 4096               | 10240        | $d_{ffn}$            | 24 | 64  | 64                | 1/2                         | GEGLU                  | 0                     |
|                              | 1571B            | 1/2048                         | 2080               | 6144         | $d_{ffn}$            | 15 | 32  | 64                | 1                           | ReLU                   | 0                     |
|                              | 0.1B/1.9B        | 2/64                           | 768                | 3072         | $d_{ffn}$            | 12 | 12  | 64                | 1/2                         | GEGLU                  | 0                     |
| GLaM [44]                    | 1.7B/27 <b>B</b> | 2/64                           | 2048               | 8192         | $d_{ffn}$            | 24 | 16  | 128               | 1/2                         | GEGLU                  | 0                     |
| (2021)                       | 8B/143B          | 2/64                           | 4096               | 16384        | $d_{ffn}$            | 32 | 32  | 128               | 1/2                         | GEGLU                  | 0                     |
|                              | 64B/1.2T         | 2/64                           | 8192               | 32768        | $d_{ffn}$            | 64 | 128 | 128               | 1/2                         | GEGLU                  | 0                     |
|                              | 350M/13B         | 2/128                          | 1024               | $4d_{model}$ | $d_{ffn}$            | 24 | 16  | 64                | 1/2                         | GeLU                   | 0                     |
| DeepSpeed-MoE [121]          | 1.3B/52B         | 2/128                          | 2048               | $4d_{model}$ | $d_{ffn}$            | 24 | 16  | 128               | 1/2                         | GeLU                   | 0                     |
| (2022)                       | PR-350M/4B       | 2/32-2/64                      | 1024               | $4d_{model}$ | $d_{ffn}$            | 24 | 16  | 64                | 1/2, 10L-32E, 2L-64E        | GeLU                   | 1                     |
|                              | PR-1.3B/31B      | 2/64-2/128                     | 2048               | $4d_{model}$ | $d_{ffn}$            | 24 | 16  | 128               | 1/2, 10L-64E, 2L-128E       | GeLU                   | 1                     |
| ST-MoE [197]                 | 0.8B/4.1B        | 2/32                           | 1024               | 2816         | $d_{ffn}$            | 27 | 16  | 64                | 1/4, add extra FFN          | GEGLU                  | 0                     |
| (2022)                       | 32B/269B         | 2/64                           | 5120               | 20480        | $d_{ffn}$            | 27 | 64  | 128               | 1/4, add extra FFN          | GEGLU                  | 0                     |
| Mixtral [74]                 | 13B/47B          | 2/8                            | 4096               | 14336        | $d_{ffn}$            | 32 | 32  | 128               | 1                           | SwiGLU                 | 0                     |
| (2023)                       | 39B/141B         | 2/8                            | 6144               | 16384        | $d_{ffn}$            | 56 | 48  | 128               | 1                           | SwiGLU                 | 0                     |
|                              | 3.0B/6.7B        | 2/16                           | 4096               | 11008        | 688                  | 32 | 32  | 128               | 1                           | SwiGLU                 | 0                     |
| (2023)                       | 3.5B/6.7B        | 4/16                           | 4096               | 11008        | 688                  | 32 | 32  | 128               | 1                           | SwiGLU                 | 0                     |
| (2025)                       | 3.5B/6.7B        | 2/8                            | 4096               | 11008        | 1376                 | 32 | 32  | 128               | 1                           | SwiGLU                 | 0                     |
| DeenSeeltMoE [20]            | 0.24B/1.89B      | 8/64                           | 1280               | -            | $\frac{1}{4}d_{ffn}$ | 9  | 10  | 128               | 1                           | SwiGLU                 | 1                     |
| (2024)                       | 2.8B/16.4B       | 8/66                           | 2048               | 10944        | 1408                 | 28 | 16  | 128               | 1, except 1st layer         | SwiGLU                 | 2                     |
| (2021)                       | 22B/145B         | 16/132                         | 4096               | -            | $\frac{1}{8}d_{ffn}$ | 62 | 32  | 128               | 1, except 1st layer         | SwiGLU                 | 4                     |
| On on MoE [172]              | 339M/650M        | 2/16                           | 768                | 3072         | $d_{ffn}$            | 12 | 12  | 64                | 1/4                         | SwiGLU                 | 1                     |
| (2024)                       | 2.6B/8.7B        | 2/32                           | 2048               | 8192         | $d_{ffn}$            | 24 | 24  | 128               | 1/6                         | SwiGLU                 | 1                     |
| (2021)                       | 6.8B/34B         | 2/32                           | 3072               | 12288        | $d_{ffn}$            | 32 | 24  | 128               | 1/4                         | SwiGLU                 | 1                     |
| Qwen1.5-MoE [151]<br>(2024)  | 2.7B/14.3B       | 8/64                           | 2048               | 5632         | 1408                 | 24 | 16  | 128               | 1                           | SwiGLU                 | 4                     |
| DBRX [34]<br>(2024)          | 36B/132B         | 4/16                           | 6144               | 10752        | $d_{ffn}$            | 40 | 48  | 128               | 1                           | SwiGLU                 | 0                     |
| Jamba [94]<br>(2024)         | 12B/52B          | 2/16                           | 4096               | 14336        | $d_{ffn}$            | 32 | 32  | 128               | 1/2,<br>1:7 Attention:Mamba | SwiGLU                 | 0                     |
| Skywork-MoE [154]<br>(2024)  | 22B/146B         | 2/16                           | 4608               | 12288        | $d_{ffn}$            | 52 | 36  | 128               | 1                           | SwiGLU                 | 0                     |
| Yuan 2.0-M32 [166]<br>(2024) | 3.7B/40B         | 2/32                           | 2048               | 8192         | $d_{ffn}$            | 24 | 16  | 256               | 1                           | SwiGLU                 | 0                     |

#### **Key points:**

- Most recent models place MoE each layer.
- Some of recent models apply shared experts.

## **Auxiliary Loss**

#### Training with different auxiliary loss:

| Reference                                                     | Auxiliary Loss              | Coefficient                            |
|---------------------------------------------------------------|-----------------------------|----------------------------------------|
| Shazeer et al.[135], <u>V-MoE</u> [128]                       | $L_{importance} + L_{load}$ | $w_{importance} = 0.1, w_{load} = 0.1$ |
| Jamba[94], DeepSeekMoE[30], DeepSeek-V2[36], Skywork-MoE[154] | L <sub>aux</sub>            | $w_{aux} = 0.01$                       |
| ST-MoE[197], OpenMoE[172], MoA[182], JetMoE [139]             | $L_{aux} + L_z$             | $w_{aux} = 0.01, w_z = 0.001$          |
| Mod-Squad[21], Moduleformer[140], DS-MoE[117]                 | $L_{MI}$                    | $w_{MI} = 0.001$                       |

Importance loss: encourages all experts to have equal importance

Load loss: ensure balanced loads

Auxiliary loss: mitigating load imbalance losses

Z-loss: improving training stability by penalizing large logits

MI-loss: mutual information (MI) between experts and tasks to build task-expert alignment

A Survey on Mixture of Experts

## **Routing Algorithms**



## **Routing Algorithms**



## **Routing Algorithms**



## Training MoE – Mixtral-MoE

#### Example 1: Mixtral 8x22B (7B) (April, 2024)

Total 141B parameters, 39B activate parameters, (8 experts and 2 experts are selected)



## Training MoE – Mixtral-MoE

#### Example 1: Mixtral 8x7B (22B)



| Model        | Active<br>Params | MMLU  | HellaS | WinoG | PIQA  | Arc-e | Arc-c | NQ    | TriQA | HumanE | MBPP  | Math  | GSM8K |
|--------------|------------------|-------|--------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|
| LLaMA 27B    | 7B               | 44.4% | 77.1%  | 69.5% | 77.9% | 68.7% | 43.2% | 17.5% | 56.6% | 11.6%  | 26.1% | 3.9%  | 16.0% |
| LLaMA 2 13B  | 13B              | 55.6% | 80.7%  | 72.9% | 80.8% | 75.2% | 48.8% | 16.7% | 64.0% | 18.9%  | 35.4% | 6.0%  | 34.3% |
| LLaMA 1 33B  | 33B              | 56.8% | 83.7%  | 76.2% | 82.2% | 79.6% | 54.4% | 24.1% | 68.5% | 25.0%  | 40.9% | 8.4%  | 44.1% |
| LLaMA 2 70B  | 70B              | 69.9% | 85.4%  | 80.4% | 82.6% | 79.9% | 56.5% | 25.4% | 73.0% | 29.3%  | 49.8% | 13.8% | 69.6% |
| Mistral 7B   | 7B               | 62.5% | 81.0%  | 74.2% | 82.2% | 80.5% | 54.9% | 23.2% | 62.5% | 26.2%  | 50.2% | 12.7% | 50.0% |
| Mixtral 8x7B | 13B              | 70.6% | 84.4%  | 77.2% | 83.6% | 83.1% | 59.7% | 30.6% | 71.5% | 40.2%  | 60.7% | 28.4% | 74.4% |

**Table 2: Comparison of Mixtral with Llama.** Mixtral outperforms or matches Llama 2 70B performance on almost all popular benchmarks while using 5x fewer active parameters during inference.

## Training MoE - DeepSeek

#### **Example 2: Deepseek-MoE**

Deepseek-MoE 16B, total 16.4B parameters, 2.8B activate parameters. Each MoE layer consists of 2 shared experts and 64 routed experts (select 6 experts).



#### **Key points:**

- Fine-grained experts
- Shared experts

## Training MoE - DeepSeek

#### **Example 2: Deepseek-MoE**



| Metric                | # Shot | DeepSeek 7B (Dense) | DeepSeekMoE 16B |
|-----------------------|--------|---------------------|-----------------|
| # Total Params        | N/A    | 6.9B                | 16.4B           |
| # Activated Params    | N/A    | 6.9B                | 2.8B            |
| FLOPs per 4K Tokens   | N/A    | 183.5T              | 74.4T           |
| # Training Tokens     | N/A    | 2T                  | 2T              |
| Pile (BPB)            | N/A    | 0.75                | 0.74            |
| HellaSwag (Acc.)      | 0-shot | 75.4                | 77.1            |
| PIQA (Acc.)           | 0-shot | 79.2                | 80.2            |
| ARC-easy (Acc.)       | 0-shot | 67.9                | 68.1            |
| ARC-challenge (Acc.)  | 0-shot | 48.1                | 49.8            |
| RACE-middle (Acc.)    | 5-shot | 63.2                | 61.9            |
| RACE-high (Acc.)      | 5-shot | 46.5                | 46.4            |
| DROP (EM)             | 1-shot | 34.9                | 32.9            |
| GSM8K (EM)            | 8-shot | 17.4                | 18.8            |
| MATH (EM)             | 4-shot | 3.3                 | 4.3             |
| HumanEval (Pass@1)    | 0-shot | 26.2                | 26.8            |
| MBPP (Pass@1)         | 3-shot | 39.0                | 39.2            |
| TriviaQA (EM)         | 5-shot | 59.7                | 64.8            |
| NaturalQuestions (EM) | 5-shot | 22.2                | 25.5            |
| MMLU (Acc.)           | 5-shot | 48.2                | 45.0            |
| WinoGrande (Acc.)     | 0-shot | 70.5                | 70.2            |
| CLUEWSC (EM)          | 5-shot | 73.1                | 72.1            |
| CEval (Acc.)          | 5-shot | 45.0                | 40.6            |
| CMMLU (Acc.)          | 5-shot | 47.2                | 42.5            |
| CHID (Acc.)           | 0-shot | 89.3                | 89.4            |

## Training MoE - Arctic

#### **Example 3:** Arctic (Dense and Sparse)



Arctic uses a unique Dense-MoE Hybrid transformer architecture.

- It combines a 10B dense transformer model with a residual 128×3.66B MoE MLP.
- 480B total and 17B active parameters chosen using a top-2 gating.

|                                  | Snowflake Arctic | DBRX | Llama 3 8B | Llama 2 70B | Llama 3 70B | Mixtral 8x7B | Mixtral 8x22B |  |  |  |
|----------------------------------|------------------|------|------------|-------------|-------------|--------------|---------------|--|--|--|
| Active Parameters                | 17B              | 36B  | 8B         | 70B         | 70B         | 13B          | 44B           |  |  |  |
| ENTERPRISE                       |                  |      |            |             |             |              |               |  |  |  |
| SQL Generation (Spider)          | 79.0             | 76.3 | 69.9       | 62.8        | 80.2        | 71.3         | 79.2          |  |  |  |
| Coding (HumanEval+, MBPP+)       | 64.3             | 61.0 | 59.2       | 33.7        | 71.9        | 48.1         | 69.9          |  |  |  |
| Instruction Following (IFEval)   | 57.4             | 54.8 | 42.7       | -           | 43.6        | 52.2         | 61.5          |  |  |  |
| ACADEMIC                         |                  |      |            |             |             |              |               |  |  |  |
| Math (GSM8K)                     | 74.2             | 73.5 | 75.4       | 52.6        | 91.4        | 63.2         | 84.2          |  |  |  |
| Common Sense (Avg of 11 metrics) | 73.1             | 74.8 | 68.5       | 72.1        | 72.6        | 74.1         | 75.6          |  |  |  |
| World Knowledge (MMLU)           | 67.3             | 73.3 | 65.7       | 68.6        | 79.8        | 70.4         | 77.5          |  |  |  |

## **Training MoE - Jamba**

#### **Example 4: Jamba (Hybrid architecture)**



Jamba is a hybrid decoder architecture that mixes Transformer layers with Mamba layers, in addition to a mixture-of-experts (MoE) module.

|         | Available params | Active params |
|---------|------------------|---------------|
| LLAMA-2 | 6.7B             | 6.7B          |
| Mistral | 7.2B             | 7.2B          |
| Mixtral | 46.7B            | 12.9B         |
| Jamba   | 52B              | 12B           |



Jamba: A Hybrid Transformer-Mamba Language Model

## **Unified Scaling Law**



Figure 1: (a) The performance achieved by Routing Networks when varying the number of experts for a fixed dense model size is described by a bilinear function (Eq. 1), (b) whose level curves indicate how to trade model size with expert count to maintain a fixed performance, (c) and which can be manipulated to align dense and routed model performance under a shared power law.

## MoE Scaling Challenges on Modern Hardware with Massive Parallelism



# MoE Scaling Challenges on Modern Hardware with Massive Parallelism

- How to break the memory wall to enable massive MoEs?
- How to efficiently route tokens to different experts across GPUs?
- How to minimize communication overhead while achieving high per-GPU compute throughput?



## **Expert Parallelism**

- Expert parameters partitioned (sharded)
  - Like model parallelism (MP)
  - Each expert process a subset of tokens
- Two All-to-All(s) in Forward and Backward



## Expert Parallelism

- 1. Gating function: decide target experts for each token
- 2. Dispatch phase:
  - a. 1<sup>st</sup> layout transformation: tokens to the same target experts are grouped in a continuous memory buffer
  - b. 1<sup>st</sup> All2All: dispatch tokens to their corresponding experts
- 3. Expert compute: each expert process its tokens

#### 4. Combine phase:

- a. 2<sup>nd</sup> All2All: combine processed tokens back to their GPUs
- b. 2<sup>nd</sup> layout transformation: restore tokens to their original positions



# How to Design Highly-Scalable Training Systems for Trillion-Parameter MoEs?

- DeepSpeed-MoE [1]
  - 4D parallelism for scaling both the base model and expert layers
- DeepSpeed-TED [2]
  - Further push the limit of MoE scalability by eliminating unnecessary communication in hybrid parallelism
- Tutle [3]

- System and algorithm co-design achieving excellent scalability at 2048 A100 GPUs

## DeepSpeed-MoE: Multidimensional Parallelism

| Short Name | Flexible Parallelism Combinations | Benefit                                                                         |
|------------|-----------------------------------|---------------------------------------------------------------------------------|
| E          | Expert                            | Scales the model size by increasing the number of experts                       |
| E+D        | Expert + Data                     | Accelerates training throughput by scaling to multiple data parallel groups     |
| E+Z        | Expert + ZeRO                     | Partitions the nonexpert parameters to support larger base models               |
| E+D+M      | Expert + Data + Model             | Supports massive hidden sizes and even larger base                              |
| E+D+Z      | Expert + Data + ZeRO              | models than E+Z                                                                 |
| E+Z-Off+M  | Expert + ZeRO-Offload + Model     | Leverages both GPU and CPU memory for large MoE models on limited GPU resources |

Optimal parallelism strategy depends on model and hardware specifics

## DeepSpeed-MoE: Cheaper GPT Model Training with MoE

- 1.3B+MoE with 128 experts, compared to 1.3B and 6.7B dense (GPT-3 like)
- 8x more parameters to same accuracy using MoE
- 5x lower training cost to same accuracy using MoE

| Case                 | Model size |      | ase Model size |       | LAMBADA:<br>completion<br>prediction | PIQA:<br>commonsense<br>reasoning | BoolQ:<br>reading<br>comprehension | RACE-h:<br>reading<br>comprehension | TriviaQA:<br>question<br>answering | WebQs:<br>question<br>answering |
|----------------------|------------|------|----------------|-------|--------------------------------------|-----------------------------------|------------------------------------|-------------------------------------|------------------------------------|---------------------------------|
| Dense GPT:           |            |      |                |       |                                      |                                   |                                    |                                     |                                    |                                 |
| (1) 350M             |            | 3    | 50M            | 52.03 | 69.31                                | 53.64                             | 31.77                              | 3.21                                | 1.57                               |                                 |
| (2) 1.3B             |            |      | 1.3B           | 63.65 | 73.39                                | 63.39                             | 35.60                              | 10.05                               | 3.25                               |                                 |
| (3) 6.7B 6.7B        |            | 6.7B | 71.94          | 76.71 | 67.03                                | 37.42                             | 23.47                              | 5.12                                |                                    |                                 |
| Standard Mo          | E GPT:     |      |                |       | •                                    |                                   |                                    | •                                   |                                    |                                 |
| (4) 350M+Mo          | E-128      |      | 13B            | 62.70 | 74.59                                | 60.46                             | 35.60                              | 16.58                               | 5.17                               |                                 |
| (5) 1.3B+MoE-128 52E |            | 52B  | 69.84          | 76.71 | 64.92                                | 38.09                             | 31.29                              | 7.19                                |                                    |                                 |



|              | Training<br>samples per<br>sec | Throughput gain/<br>Cost Reduction |
|--------------|--------------------------------|------------------------------------|
| 6.7B dense   | 70                             | 1x                                 |
| 1.3B+MoE-128 | 372                            | 5x                                 |

• Further push the limit of MoE scalability by eliminating unnecessary communication

Duplicate token dropping (DTD): Eliminating unnecessary tokens, e.g., in all2all and all-gather from EP + TP.



#### A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize Mixture-of-Experts Training

 Further push the limit of MoE scalability by eliminating unnecessary communication

Duplicate token dropping (DTD): Eliminating unnecessary tokens, e.g., in all2all and allgather from EP + TP.



Communication-aware Activation Checkpointing (CAC): selective activation checkpointing by avoiding all2all during recomputation

All-gather

All-to-all



Performance Profile of a 6.7B Base Model with 16 Experts on Summit

#### A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize Mixture-of-Experts Training

• Further push the limit of MoE scalability by eliminating unnecessary communication

Duplicate token dropping (DTD): Eliminating unnecessary tokens, e.g., in all2all and allgather from EP + TP. Communication-aware Activation Checkpointing (CAC): selective activation checkpointing by avoiding all2all during recomputation



A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize Mixture-of-Experts Training

 Further push the limit of MoE scalability by eliminating unnecessary communication

Duplicate token dropping (DTD): Eliminating unnecessary tokens, e.g., in all2all and allgather from EP + TP.



Communication-aware Activation Checkpointing (CAC): selective activation checkpointing by avoiding all2all during recomputation



Performance Profile of a 6.7B Base Model with 16 Experts on Summit

- Key idea: system-algorithm co-design
- Dynamically adapt parallelism
- 2D hierarchical all2all
- Adaptive pipeline

- Observation: Workload per expert changes during training
- Solution: Dynamically adapt parallelism DP + EP vs. TP + EP



- Observation: All2all is expensive across nodes and with many small messages
- Solution 1: Take into account of network hierarchy with 2D hierarchical all2all: Intra-node all2all + Inter-node all2all
- Solution 2: Leverage highlyoptimized communication collectives from MSCCL



 Observation: Token partitioning + concurrent CUDA kernels => pipeline parallelism that overlap all2all with FFN layer compute

16 GPUs 32 GPUs 64 GPUs 128 GPUs 256 GPUs 80%**Pipe Degree**  $\rightarrow 1$   $\rightarrow 2$   $\rightarrow 4$   $\rightarrow 8$  - - Adaptive 60%Improvement 40%20%0% -20%8 1 2 8 1 2 8 1 2 Capacity Factor

 Solution: Adaptive pipeline degree based on workloads

Up to 57% improvement in comparison to pipeline degree 1

• Dynamically adaptive parallelism

• Dynamic pipelining

• 2D hierarchical all2all



5.7× end-to-end speed at 2048 A100 GPUs!

## **Moving Forward**

- Novel MoE architecture and training objective design
- Expect more optimizations against the training efficiency of MoE models, e.g., parameter-efficient MoE, multi-modal MoE
- Subsequent extensions of MoE based foundation models to diverse use cases
- System optimizations that leverage heterogeneous hardware resource to lower the cost of training and fine-tuning MoE
- Efficient MoE inference systems to achieve low latency and highthroughput

## Thank you! Q&A

Minjia Zhang minjiza@illinois.edu