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Scaling drives SOTA Deep Learning
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AI Scale is Limited By Compute

• Compute is the primary challenge of training massive models
• Ambitious model at scale and time to train

Model Model Size Hardware Days to Train

BLOOM 176B 384 A100 GPUs 115 days

OPT 175B 992 A100 GPU 56 days

MT-NLG 530B 2200 A100 GPU 60 days

PaLM 540B 6144 TPU v4 57 days

Next jump in scale:
• Next-generation hardware 
• Significant investment in GPUs
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Next AI Scale?

• Can we achieve next generation model quality on current 
generation of hardware?

• From a computation perspective sparse Mixture-of-Experts 
provides a promising path
• Scale at sub-linear cost
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Recap: MoE Models are Sparse and Need 
Less Compute 

• All parameters are used in forward and backward 
paths

• Increasing model capacity needs more computation
• Larger model size →Higher compute requirements 

(FLOPs)

Dense Models:

• Sparse utilization of subset of  parameters based on 
input

• Same computation is needed regardless of the model 
size

• Larger model size → Similar/Same Compute 
requirements

Sparse MoE models
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Mixture of Experts (MoE): Overview

• MoE models have been around for a while..

• Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer
• Harder to scale, instability during training, and inefficient training

• GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding
• 600B models beating 96-layer dense models, 10x training speedup, generic 

sharding framework (Tensorflow XLA)
• Less stability with larger models, full precision training

• Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
• More efficient training

• Top-1 gating instead of top-2/top-k, Better initialization conditions, Mixed precision 
training: FP32 gating (instead of FP16), Stable training with larger models

• SOTA results on language understanding task
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https://arxiv.org/pdf/2006.16668v1.pdf
https://arxiv.org/abs/2101.03961


MoE: Road Map
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● Open-source (above the arrow).

● Private models (under the arrow).



MoE Design
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What should we care when designing a MoE?

Network types FFN,  Attention

Fine-grained experts 32 experts/128 experts/…

Shared experts Isolated experts

Activation Function ReLU/GEGLU/SwiGLU

MoE frequency Every two layer/Each layer/…

Training auxiliary loss Auxiliary loss/Z-loss/…



Fine-Grained and Shared Experts
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Pyramid Design of Experts
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DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale

● Utilizes more experts in the last few layers as 
compared to previous layers

● Positive results compared with the baseline 
MoE



MoE Experts Design
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A Survey on Mixture of Experts

Key points：

● Most recent models place MoE each 

layer.

● Some of recent models apply shared 

experts.



Auxiliary Loss
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Training with different auxiliary loss:

Importance loss: encourages all experts to have equal importance

Load loss: ensure balanced loads

Auxiliary loss:  mitigating load imbalance losses

Z-loss: improving training stability by penalizing large logits

MI-loss: mutual information (MI) between experts and tasks to build task-expert alignment 

A Survey on Mixture of Experts



Routing Algorithms
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Routing Algorithms
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Routing Algorithms
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Training MoE – Mixtral-MoE
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Example 1：Mixtral 8x22B (7B) (April, 2024)

Total 141B parameters, 39B activate parameters,  (8 experts and 2 experts are selected) 



Training MoE – Mixtral-MoE
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Example 1：Mixtral 8x7B (22B)



Training MoE - DeepSeek
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Example 2：Deepseek-MoE 

Deepseek-MoE 16B, total 16.4B parameters, 2.8B activate parameters.

Each MoE layer consists of 2 shared experts and 64 routed experts (select 6 experts).

Key points：

● Fine-grained experts

● Shared experts



Training MoE - DeepSeek
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Example 2：Deepseek-MoE 



Training MoE - Arctic
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Example 3：Arctic (Dense and Sparse) 

Arctic uses a unique Dense-MoE Hybrid transformer architecture. 

● It combines a 10B dense transformer model with a residual 

128×3.66B MoE MLP.

● 480B total and 17B active parameters chosen using a top-2 gating.



Training MoE - Jamba
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Jamba: A Hybrid Transformer-Mamba Language Model

Jamba is a hybrid decoder architecture that mixes 

Transformer layers with Mamba layers, in addition to 

a mixture-of-experts (MoE) module.

Example 4：Jamba (Hybrid architecture) 



Unified Scaling Law
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Unified Scaling Laws for Routed Language Models



MoE Scaling Challenges on Modern Hardware 
with Massive Parallelism

Internode Interconnect Internode Interconnect

Internode Interconnect Internode Interconnect

Intranode Interconnect

?
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MoE Scaling Challenges on Modern Hardware 
with Massive Parallelism
• How to break the memory wall to enable massive MoEs?

• How to efficiently route tokens to different experts across GPUs?

• How to minimize communication overhead while achieving high per-GPU compute 
throughput?

Internode Interconnect Internode Interconnect

Internode Interconnect Internode Interconnect

Intranode Interconnect

?
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Expert Parallelism

• Expert parameters – partitioned (sharded)
• Like model parallelism (MP)
• Each expert process a subset of tokens

• Two All-to-All(s) in Forward and 
Backward
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Expert Parallelism
1. Gating function: decide target experts for each token
2. Dispatch phase: 

a. 1st layout transformation: tokens to the same target experts are grouped in a continuous 
memory buffer

b. 1st All2All: dispatch tokens to their corresponding experts
3. Expert compute: each expert process its tokens
4. Combine phase:

a.   2nd All2All: combine processed tokens back to their GPUs
b. 2nd layout transformation: restore tokens to their original positions
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How to Design Highly-Scalable Training 
Systems for Trillion-Parameter MoEs?

• DeepSpeed-MoE [1]

    - 4D parallelism for scaling both the base model and expert layers

• DeepSpeed-TED [2]
- Further push the limit of MoE scalability by eliminating unnecessary 
communication in hybrid parallelism

• Tutle [3]
-  System and algorithm co-design achieving excellent scalability at 
2048 A100 GPUs
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DeepSpeed-MoE: Multidimensional Parallelism

Optimal parallelism strategy depends on model and hardware specifics



DeepSpeed-MoE: Cheaper GPT Model 
Training with MoE

Case Model size LAMBADA:

completion 

prediction

PIQA:

commonsense 

reasoning

BoolQ:

reading 

comprehension

RACE-h:

reading 

comprehension

TriviaQA:

question 

answering

WebQs:

question 

answering

Dense GPT:

(1) 350M 350M 52.03 69.31 53.64 31.77 3.21 1.57

(2) 1.3B 1.3B 63.65 73.39 63.39 35.60 10.05 3.25

(3) 6.7B 6.7B 71.94 76.71 67.03 37.42 23.47 5.12

Standard MoE GPT:

(4) 350M+MoE-128 13B 62.70 74.59 60.46 35.60 16.58 5.17

(5) 1.3B+MoE-128 52B 69.84 76.71 64.92 38.09 31.29 7.19

Training 

samples per 

sec

Throughput gain/ 

Cost Reduction

6.7B dense 70 1x

1.3B+MoE-128 372 5x

• 1.3B+MoE with 128 experts, compared to 1.3B and 6.7B 
dense (GPT-3 like)

• 8x more parameters to same accuracy using MoE
• 5x lower training cost to same accuracy using MoE
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DeepSpeed-TED
• Further push the limit of MoE scalability by eliminating 

unnecessary communication

A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize Mixture-of-Experts Training

Duplicate token dropping (DTD):  Eliminating 
unnecessary tokens, e.g., in all2all and all-
gather from EP + TP.

32



DeepSpeed-TED
• Further push the limit of MoE scalability by eliminating 

unnecessary communication

A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize Mixture-of-Experts Training

Duplicate token dropping (DTD):  Eliminating 
unnecessary tokens, e.g., in all2all and all-
gather from EP + TP.

Communication-aware Activation Checkpointing 
(CAC): selective activation checkpointing by 
avoiding all2all during recomputation

128 GPUs
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DeepSpeed-TED
• Further push the limit of MoE scalability by eliminating 

unnecessary communication

A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize Mixture-of-Experts Training

Duplicate token dropping (DTD):  Eliminating 
unnecessary tokens, e.g., in all2all and all-
gather from EP + TP.

Communication-aware Activation Checkpointing 
(CAC): selective activation checkpointing by 
avoiding all2all during recomputation

Nearly 50% time in 
communication!!

128 GPUs
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DeepSpeed-TED
• Further push the limit of MoE scalability by eliminating 

unnecessary communication

A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize Mixture-of-Experts Training

Duplicate token dropping (DTD):  Eliminating 
unnecessary tokens, e.g., in all2all and all-
gather from EP + TP.

Communication-aware Activation Checkpointing 
(CAC): selective activation checkpointing by 
avoiding all2all during recomputation

Overall 21% 
Speedup

128 GPUs
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Tutle: Adaptive MoE at Scale

Tutel: Adaptive mixture-of-experts at scale

• Key idea: system-algorithm co-design

• Dynamically adapt parallelism

• 2D hierarchical all2all

• Adaptive pipeline
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Tutle: Adaptive MoE at Scale

Tutel: Adaptive mixture-of-experts at scale

• Observation: Workload per expert 
changes during training

• Solution: Dynamically adapt 
parallelism DP + EP vs. TP + EP
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Tutle: Adaptive MoE at Scale

Tutel: Adaptive mixture-of-experts at scale

• Observation: All2all is expensive 
across nodes and with many small 
messages

• Solution 1: Take into account of 
network hierarchy with 2D 
hierarchical all2all: Intra-node 
all2all + Inter-node all2all 

• Solution 2: Leverage highly-
optimized communication 
collectives from MSCCL Up to 10x all2all speedup
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Tutle: Adaptive MoE at Scale

Tutel: Adaptive mixture-of-experts at scale

• Observation: Token 
partitioning + concurrent 
CUDA kernels => pipeline 
parallelism that overlap 
all2all with FFN layer 
compute

• Solution: Adaptive 
pipeline degree based 
on workloads

Up to 57% improvement in comparison to 
pipeline degree 1
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Tutle: Adaptive MoE at Scale

Tutel: Adaptive mixture-of-experts at scale

• Dynamically adaptive parallelism

• Dynamic pipelining 

• 2D hierarchical all2all

5.7× end-to-end speed at 2048 A100 GPUs!
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Moving Forward
• Novel MoE architecture and training objective design

• Expect more optimizations against the training efficiency of MoE 
models, e.g., parameter-efficient MoE, multi-modal MoE

• Subsequent extensions of MoE based foundation models to diverse 
use cases

• System optimizations that leverage heterogeneous hardware 
resource to lower the cost of training and fine-tuning MoE

• Efficient MoE inference systems to achieve low latency and high-
throughput 
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Thank you!
Q&A

Minjia Zhang
minjiza@illinois.edu
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